-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.sh
46 lines (44 loc) · 1.3 KB
/
baseline.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/bin/bash
MODEL_PATH="" # base model
DATA_PATH="" # self-generated samples, the jsonl file
DATASET_NAME="gsm8k"
VALID_DATA_PATH="" # not used
OUTPUT_DIR="" # model checkpoint save dir
TEMP_PATH="" # data dir. This should contains the "weight.json" if u set mode to "Mixed" or "K-Mixed"
accelerate launch baseline.py \
--model_name_or_path "$MODEL_PATH" \
--data_path "$DATA_PATH" \
--peft_model_path "" \
--dataset_name "$DATASET_NAME" \
--temp_data_path "$TEMP_PATH" \
--valid_data_path "$VALID_DATA_PATH" \
--eval_data_path "" \
--data_filter_mode "K-Mixed" \
--filter_base_model_path "" \
--bf16 True \
--output_dir "$OUTPUT_DIR" \
--filter_model_lr 1e-5 \
--uncertainty_th 0.79 \
--num_train_epochs 4 \
--filter_training_batch_size 8 \
--valid_batch_size 16 \
--filter_training_epochs 30 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 400 \
--lazy_preprocess False \
--use_lora True \
--gradient_checkpointing True
exit 0