-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
243 lines (222 loc) · 9.24 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from transformers import Trainer, GPTQConfig, deepspeed, DataCollatorWithPadding, AdamW, get_scheduler
from dataclasses import dataclass, field
from typing import Dict, Optional, List
import transformers
import torch
import random
import numpy as np
from src.utils.utils import derive_num_from_answer
from src.utils.constants import COT_EXAMPLES
from src.model.trainLM import SupervisedDataset, trainL, build_model, make_supervised_data_module
from src.data.filter_data import get_data_weight
from src.model.filterLM import FilterModel
from src.utils.evaluation import test_loss, test_batch_loss, evalauation
from datasets import load_dataset
import jsonlines
from tqdm import tqdm
import time
import os
import sys
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed, ProjectConfiguration
import logging
import tqdm
from torch.utils.data import Dataset, DataLoader
import json
'''
this script is to train LLM on filtered generated data. The two major usage is:
1. train baseline methods
2. train modelL in ADADF
'''
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
logging.basicConfig(level=logging.INFO)
logger = get_logger(__name__)
device = None
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="")
filter_base_model_path: str = field(default="")
vocab_size: int = field(default=0)
peft_model_path: str = field(default="")
@dataclass
class DataArguments:
data_path: str = field(
default="", metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
valid_data_path: str = field(
default=None, metadata={"help": "valid data path, name:split"}
)
temp_data_path: str = field(
default=None
)
dataset_name: str = field(
default=None
)
data_filter_mode: str = field(
default="Consistency", metadata={"help": "Consistency, Groundtruth, Entropy, Weighted"}
)
lazy_preprocess: bool = False
uncertainty_th: float = field(
default=1.0
)
special_weight_path: str = field(
default="", metadata={"help": "special weight"}
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=800,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
use_lora: bool = False
filter_training_batch_size: int = field(default=8)
valid_batch_size: int = field(default=16)
filter_training_epochs: int = field(default=10)
filter_model_lr: float = field(
default=1e-3
)
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(
default_factory=lambda: ["c_attn", "c_proj", "w1", "w2"]
)
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
def load_train_data(tokenizer: transformers.PreTrainedTokenizer, data_args, max_len, weights):
train_data = []
with jsonlines.open(data_args.data_path, "r") as reader:
for idx, obj in enumerate(reader):
question = obj["question"]
candidates = obj["candidates"]
cands_weight = weights[idx]
assert len(candidates) == len(cands_weight)
for i in range(len(candidates)):
train_data.append({
"question": question,
"answer": candidates[i],
"weight": cands_weight[i]
})
train_dataset = SupervisedDataset(
train_data,
tokenizer=tokenizer,
max_len=max_len,
data_processor=lambda x: "Q: " + x["question"] + "\n" + "A: " + tokenizer.eos_token + x["answer"],
weight_extractor=lambda x: x["weight"]
)
return train_dataset
def baseline_main():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
output_dir = "modelL-filter_strategy_{}-ua_{}-time_{}".format(data_args.data_filter_mode, data_args.uncertainty_th, int(time.time()))
if data_args.dataset_name is None or data_args.dataset_name == "":
detailed_output_dir = os.path.join(training_args.output_dir, output_dir)
else:
detailed_output_dir = os.path.join(training_args.output_dir, data_args.dataset_name.replace("/", "_"), output_dir)
config = ProjectConfiguration(project_dir=detailed_output_dir, logging_dir="testfolder")
accelerator = Accelerator(gradient_accumulation_steps=training_args.gradient_accumulation_steps, log_with="tensorboard", project_config=config)
if accelerator.is_local_main_process:
os.makedirs(detailed_output_dir, exist_ok=True)
accelerator.init_trackers("mode_{}".format(data_args.data_filter_mode))
device = accelerator.device
logger.info('Initializing model...')
modelL, tokenizerL = build_model(model_args, training_args, lora_args, logger)
model_args.vocab_size = modelL.config.vocab_size
modelL.to(device)
logger.info('Loading training&evaluation data...')
data_weights = get_data_weight(data_args, model=None)
if accelerator.is_local_main_process:
if data_args.data_filter_mode in ["K-Mixed", "Entropy", "RM", "Self"]:
path = os.path.join(data_args.temp_data_path, data_args.dataset_name.replace("/","_"), "{}_{}_weights.json".format(data_args.data_filter_mode, data_args.uncertainty_th))
else:
path = os.path.join(data_args.temp_data_path, data_args.dataset_name.replace("/","_"), "{}_weights.json".format(data_args.data_filter_mode))
with open(path, "w") as f:
json.dump(data_weights, f)
train_dataset = load_train_data(tokenizerL, data_args, training_args.model_max_length, data_weights)
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
batch_size=training_args.per_device_train_batch_size,
)
epochs = training_args.num_train_epochs
train_steps = epochs * len(train_dataloader)
optimizer = AdamW(modelL.parameters(), lr=training_args.learning_rate)
lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=train_steps,
)
loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
logger.info('accelerator preparing...')
modelL, train_dataloader, optimizer, lr_scheduler = accelerator.prepare(modelL, train_dataloader, optimizer, lr_scheduler)
iter = 0
for epoch in range(int(epochs)):
logger.info('=' * 10 + 'Start training' + '=' * 10)
modelL.train()
total_loss = 0
pbar = tqdm.tqdm(enumerate(train_dataloader), total=len(train_dataloader), disable=(not accelerator.is_local_main_process))
with accelerator.accumulate(modelL):
for i, batch in pbar:
outputs = modelL(
input_ids = batch["input_ids"],
labels = batch["labels"],
attention_mask = batch["attention_mask"],
)
logits = outputs.get("logits")
labels = batch["labels"]
weights = batch["weight"]
# Shift so that tokens < n predict n
batch_size = logits.shape[0]
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, model_args.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
# shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
loss = loss.view(batch_size, -1)
loss = torch.mul(weights.unsqueeze(-1), loss)
loss = torch.mean(loss)
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
accelerator.log({"training_loss": loss}, step=iter)
iter += 1
pbar.set_description(f"epoch {epoch + 1} iter {i}: train loss {loss.item():.5f}. lr {lr_scheduler.get_last_lr()[0]:e}")
if accelerator.is_local_main_process:
total_loss += loss.item()
torch.cuda.empty_cache()
logger.info(f'Total local training loss in epoch {epoch + 1} is: {total_loss}', main_process_only=True)
logger.info('Saving checkpoint...')
accelerator.wait_for_everyone()
if accelerator.is_local_main_process:
unwraped_model = accelerator.unwrap_model(modelL)
unwraped_model.save_pretrained(detailed_output_dir + "epoch_{}".format(epoch))
if __name__ == "__main__":
seed = 114514
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
baseline_main()