-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_EDA.py
69 lines (50 loc) · 1.6 KB
/
image_EDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 3 11:05:58 2023
@author: rtsearcy
"""
import os
import pandas as pd
folder = 'data/images/'
site_names = ['malibu_creek','soquel_creek','san_lorenzo_river',
'scott_creek','san_mateo_creek']
os.listdir(folder)
classes = [filename for filename in os.listdir(folder) if os.path.isdir(os.path.join(folder,filename))]
classes.pop(classes.index('other'))
df = pd.DataFrame()
for c in classes:
files = os.listdir(os.path.join(folder,c))
sites = []
dates = []
for f in files:
sites += [s for s in site_names if s in f]
dates += [f.replace(sites[-1] + '_','')[0:8]]
temp = pd.concat([
pd.Series(files),
pd.Series(sites),
pd.Series(dates)
], axis=1)
temp.columns = ['file','site','date']
temp['class'] = c
df = df.append(temp)
df = df.dropna()
df['date'] = pd.to_datetime(df.date)
df['month'] = df.date.dt.month
df['year'] = df.date.dt.year
df.groupby('class').count()['site'] # N in each class
df.groupby('site').count()['class'] # N for each site
df.groupby(['site','class']).count()['file'] # Class by site
df.groupby(['month','class']).count()['file'] # class by month of year
## Update metdata
metadata = pd.read_csv('data/image_metadata.csv')
files = list(df.file)
drop_idx = []
for i in range(0, len(metadata)):
x = metadata.iloc[i]['site'] + '_' + metadata.iloc[i]['id']
if any(x in f for f in files):
continue
else:
drop_idx += [i]
metadata = metadata.drop(drop_idx)
metadata.to_csv('data/image_metadata.csv', index=False)