forked from jlgreathouse/BabelStream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
625 lines (539 loc) · 18.2 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include <iostream>
#include <vector>
#include <numeric>
#include <cmath>
#include <limits>
#include <chrono>
#include <algorithm>
#include <iomanip>
#include <cstring>
#define VERSION_STRING "3.4"
#include "Stream.h"
#if defined(CUDA)
#include "CUDAStream.h"
#elif defined(HIP)
#include "HIPStream.h"
#elif defined(HC)
#include "HCStream.h"
#elif defined(OCL)
#include "OCLStream.h"
#elif defined(USE_RAJA)
#include "RAJAStream.hpp"
#elif defined(KOKKOS)
#include "KokkosStream.hpp"
#elif defined(ACC)
#include "ACCStream.h"
#elif defined(SYCL)
#include "SYCLStream.h"
#elif defined(OMP)
#include "OMPStream.h"
#endif
// Default size of 2^25
unsigned int ARRAY_SIZE = 33554432;
unsigned int num_times = 100;
unsigned int deviceIndex = 0;
bool use_float = false;
bool event_timing = false;
bool triad_only = false;
bool output_as_csv = false;
bool mibibytes = false;
std::string csv_separator = ",";
template <typename T>
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum);
template <typename T>
void run();
template <typename T>
void run_triad();
void parseArguments(int argc, char *argv[]);
int main(int argc, char *argv[])
{
parseArguments(argc, argv);
if (!output_as_csv)
{
std::cout
<< "BabelStream" << std::endl
<< "Version: " << VERSION_STRING << std::endl
<< "Implementation: " << IMPLEMENTATION_STRING << std::endl;
}
// TODO: Fix Kokkos to allow multiple template specializations
if (triad_only)
{
if (use_float)
run_triad<float>();
else
run_triad<double>();
}
else
{
if (use_float)
run<float>();
else
run<double>();
}
}
static double calculate_time_s(const bool evt_timing,
const std::chrono::high_resolution_clock::time_point t1,
const std::chrono::high_resolution_clock::time_point t2,
const float kernel_time)
{
#if defined(HIP) || defined(OCL) || defined(CUDA) || defined(HC)
if (!event_timing)
return std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
else
return kernel_time/1000.;
#else
return std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
#endif
}
template <typename T>
void run()
{
std::streamsize ss = std::cout.precision();
if (!output_as_csv)
{
std::cout << "Running kernels " << num_times << " times" << std::endl;
if (sizeof(T) == sizeof(float))
std::cout << "Precision: float" << std::endl;
else
std::cout << "Precision: double" << std::endl;
if (mibibytes)
{
// MiB = 2^20
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB"
<< " (=" << ARRAY_SIZE*sizeof(T)*pow(2.0, -30.0) << " GiB)" << std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB"
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -30.0) << " GiB)" << std::endl;
}
else
{
// MB = 10^6
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
<< " (=" << ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
}
std::cout.precision(ss);
}
// Create host vectors
std::vector<T> a(ARRAY_SIZE);
std::vector<T> b(ARRAY_SIZE);
std::vector<T> c(ARRAY_SIZE);
// Result of the Dot kernel
T sum;
Stream<T> *stream;
#if defined(CUDA)
// Use the CUDA implementation
stream = new CUDAStream<T>(ARRAY_SIZE, event_timing, deviceIndex);
#elif defined(HIP)
// Use the HIP implementation
stream = new HIPStream<T>(ARRAY_SIZE, event_timing, deviceIndex);
#elif defined(HC)
// Use the HC implementation
stream = new HCStream<T>(ARRAY_SIZE, event_timing, deviceIndex);
#elif defined(OCL)
// Use the OpenCL implementation
stream = new OCLStream<T>(ARRAY_SIZE, event_timing, deviceIndex);
#elif defined(USE_RAJA)
// Use the RAJA implementation
stream = new RAJAStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(KOKKOS)
// Use the Kokkos implementation
stream = new KokkosStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(ACC)
// Use the OpenACC implementation
stream = new ACCStream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
#elif defined(SYCL)
// Use the SYCL implementation
stream = new SYCLStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(OMP)
// Use the OpenMP implementation
stream = new OMPStream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
#endif
stream->init_arrays(startA, startB, startC);
int num_tests = 7;
// List of times
std::vector<std::vector<double>> timings(num_tests);
float kernel_time;
// Declare timers
std::chrono::high_resolution_clock::time_point t1, t2;
// Main loop
for (unsigned int k = 0; k < num_times; k++)
{
// Execute Read-only
t1 = std::chrono::high_resolution_clock::now();
kernel_time = stream->read();
t2 = std::chrono::high_resolution_clock::now();
timings[0].push_back(calculate_time_s(event_timing, t1, t2, kernel_time));
// Execute Write-only
t1 = std::chrono::high_resolution_clock::now();
kernel_time = stream->write();
t2 = std::chrono::high_resolution_clock::now();
timings[1].push_back(calculate_time_s(event_timing, t1, t2, kernel_time));
// Execute Copy
t1 = std::chrono::high_resolution_clock::now();
kernel_time = stream->copy();
t2 = std::chrono::high_resolution_clock::now();
timings[2].push_back(calculate_time_s(event_timing, t1, t2, kernel_time));
// Execute Mul
t1 = std::chrono::high_resolution_clock::now();
kernel_time = stream->mul();
t2 = std::chrono::high_resolution_clock::now();
timings[3].push_back(calculate_time_s(event_timing, t1, t2, kernel_time));
// Execute Add
t1 = std::chrono::high_resolution_clock::now();
kernel_time = stream->add();
t2 = std::chrono::high_resolution_clock::now();
timings[4].push_back(calculate_time_s(event_timing, t1, t2, kernel_time));
// Execute Triad
t1 = std::chrono::high_resolution_clock::now();
kernel_time = stream->triad();
t2 = std::chrono::high_resolution_clock::now();
timings[5].push_back(calculate_time_s(event_timing, t1, t2, kernel_time));
// Execute Dot
t1 = std::chrono::high_resolution_clock::now();
sum = stream->dot();
t2 = std::chrono::high_resolution_clock::now();
timings[6].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
}
// Check solutions
stream->read_arrays(a, b, c);
check_solution<T>(num_times, a, b, c, sum);
// Display timing results
if (output_as_csv)
{
std::cout
<< "function" << csv_separator
<< "num_times" << csv_separator
<< "n_elements" << csv_separator
<< "sizeof" << csv_separator
<< ((mibibytes) ? "max_mibytes_per_sec" : "max_mbytes_per_sec") << csv_separator
<< "min_runtime" << csv_separator
<< "max_runtime" << csv_separator
<< "avg_runtime" << std::endl;
}
else
{
std::cout
<< std::left << std::setw(12) << "Function"
<< std::left << std::setw(12) << ((mibibytes) ? "MiBytes/sec" : "MBytes/sec")
<< std::left << std::setw(12) << "Min (sec)"
<< std::left << std::setw(12) << "Max"
<< std::left << std::setw(12) << "Average"
<< std::endl
<< std::fixed;
}
std::string labels[7] = {"Read", "Write", "Copy", "Mul", "Add", "Triad", "Dot"};
size_t sizes[7] = {
sizeof(T) * ARRAY_SIZE,
sizeof(T) * ARRAY_SIZE,
2 * sizeof(T) * ARRAY_SIZE,
2 * sizeof(T) * ARRAY_SIZE,
3 * sizeof(T) * ARRAY_SIZE,
3 * sizeof(T) * ARRAY_SIZE,
2 * sizeof(T) * ARRAY_SIZE
};
for (int i = 0; i < num_tests; i++)
{
// Get min/max; ignore the first result
auto minmax = std::minmax_element(timings[i].begin()+1, timings[i].end());
// Calculate average; ignore the first result
double average = std::accumulate(timings[i].begin()+1, timings[i].end(), 0.0) / (double)(num_times - 1);
// Display results
if (output_as_csv)
{
std::cout
<< labels[i] << csv_separator
<< num_times << csv_separator
<< ARRAY_SIZE << csv_separator
<< sizeof(T) << csv_separator
<< ((mibibytes) ? pow(2.0, -20.0) : 1.0E-6) * sizes[i] / (*minmax.first) << csv_separator
<< *minmax.first << csv_separator
<< *minmax.second << csv_separator
<< average
<< std::endl;
}
else
{
std::cout
<< std::left << std::setw(12) << labels[i]
<< std::left << std::setw(12) << std::setprecision(3) <<
((mibibytes) ? pow(2.0, -20.0) : 1.0E-6) * sizes[i] / (*minmax.first)
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.first
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.second
<< std::left << std::setw(12) << std::setprecision(5) << average
<< std::endl;
}
}
delete stream;
}
template <typename T>
void run_triad()
{
if (!output_as_csv)
{
std::cout << "Running triad " << num_times << " times" << std::endl;
std::cout << "Number of elements: " << ARRAY_SIZE << std::endl;
if (sizeof(T) == sizeof(float))
std::cout << "Precision: float" << std::endl;
else
std::cout << "Precision: double" << std::endl;
std::streamsize ss = std::cout.precision();
if (mibibytes)
{
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*sizeof(T)*pow(2.0, -10.0) << " KiB"
<< " (=" << ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB)" << std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -10.0) << " KiB"
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB)" << std::endl;
}
else
{
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*sizeof(T)*1.0E-3 << " KB"
<< " (=" << ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB)" << std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-3 << " KB"
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB)" << std::endl;
}
std::cout.precision(ss);
}
// Create host vectors
std::vector<T> a(ARRAY_SIZE);
std::vector<T> b(ARRAY_SIZE);
std::vector<T> c(ARRAY_SIZE);
Stream<T> *stream;
#if defined(CUDA)
// Use the CUDA implementation
stream = new CUDAStream<T>(ARRAY_SIZE, event_timing, deviceIndex);
#elif defined(HIP)
// Use the HIP implementation
stream = new HIPStream<T>(ARRAY_SIZE, event_timing, deviceIndex);
#elif defined(OCL)
// Use the OpenCL implementation
stream = new OCLStream<T>(ARRAY_SIZE, event_timing, deviceIndex);
#elif defined(USE_RAJA)
// Use the RAJA implementation
stream = new RAJAStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(KOKKOS)
// Use the Kokkos implementation
stream = new KokkosStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(ACC)
// Use the OpenACC implementation
stream = new ACCStream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
#elif defined(SYCL)
// Use the SYCL implementation
stream = new SYCLStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(OMP)
// Use the OpenMP implementation
stream = new OMPStream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
#endif
stream->init_arrays(startA, startB, startC);
// Declare timers
std::chrono::high_resolution_clock::time_point t1, t2;
// Run triad in loop
double kernel_times = 0.;
t1 = std::chrono::high_resolution_clock::now();
for (unsigned int k = 0; k < num_times; k++)
{
kernel_times += stream->triad();
}
t2 = std::chrono::high_resolution_clock::now();
double runtime;
if (!event_timing)
runtime = std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
else
runtime = kernel_times / 1000.;
// Check solutions
T sum = 0.0;
stream->read_arrays(a, b, c);
check_solution<T>(num_times, a, b, c, sum);
// Display timing results
double total_bytes = 3 * sizeof(T) * ARRAY_SIZE * num_times;
double bandwidth = ((mibibytes) ? pow(2.0, -30.0) : 1.0E-9) * (total_bytes / runtime);
if (output_as_csv)
{
std::cout
<< "function" << csv_separator
<< "num_times" << csv_separator
<< "n_elements" << csv_separator
<< "sizeof" << csv_separator
<< ((mibibytes) ? "gibytes_per_sec" : "gbytes_per_sec") << csv_separator
<< "runtime"
<< std::endl;
std::cout
<< "Triad" << csv_separator
<< num_times << csv_separator
<< ARRAY_SIZE << csv_separator
<< sizeof(T) << csv_separator
<< bandwidth << csv_separator
<< runtime
<< std::endl;
}
else
{
std::cout
<< "--------------------------------"
<< std::endl << std::fixed
<< "Runtime (seconds): " << std::left << std::setprecision(5)
<< runtime << std::endl
<< "Bandwidth (" << ((mibibytes) ? "GiB/s" : "GB/s") << "): "
<< std::left << std::setprecision(3)
<< bandwidth << std::endl;
}
delete stream;
}
template <typename T>
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum)
{
// Generate correct solution
T goldA = startA;
T goldB = startB;
T goldC = startC;
T goldSum = 0.0;
const T scalar = startScalar;
for (unsigned int i = 0; i < ntimes; i++)
{
// Do STREAM!
if (!triad_only)
{
goldC = goldA;
goldB = scalar * goldC;
goldC = goldA + goldB;
}
goldA = goldB + scalar * goldC;
}
// Do the reduction
goldSum = goldA * goldB * ARRAY_SIZE;
// Calculate the average error
double errA = std::accumulate(a.begin(), a.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldA); });
errA /= a.size();
double errB = std::accumulate(b.begin(), b.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldB); });
errB /= b.size();
double errC = std::accumulate(c.begin(), c.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldC); });
errC /= c.size();
double errSum = fabs(sum - goldSum);
double epsi = std::numeric_limits<T>::epsilon() * 100.0;
if (errA > epsi)
std::cerr
<< "Validation failed on a[]. Average error " << errA
<< std::endl;
if (errB > epsi)
std::cerr
<< "Validation failed on b[]. Average error " << errB
<< std::endl;
if (errC > epsi)
std::cerr
<< "Validation failed on c[]. Average error " << errC
<< std::endl;
// Check sum to 8 decimal places
if (!triad_only && errSum > 1.0E-8)
std::cerr
<< "Validation failed on sum. Error " << errSum
<< std::endl << std::setprecision(15)
<< "Sum was " << sum << " but should be " << goldSum
<< std::endl;
}
int parseUInt(const char *str, unsigned int *output)
{
char *next;
*output = strtoul(str, &next, 10);
return !strlen(next);
}
void parseArguments(int argc, char *argv[])
{
for (int i = 1; i < argc; i++)
{
if (!std::string("--list").compare(argv[i]))
{
listDevices();
exit(EXIT_SUCCESS);
}
else if (!std::string("--device").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
{
std::cerr << "Invalid device index." << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--arraysize").compare(argv[i]) ||
!std::string("-s").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE))
{
std::cerr << "Invalid array size." << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--numtimes").compare(argv[i]) ||
!std::string("-n").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &num_times))
{
std::cerr << "Invalid number of times." << std::endl;
exit(EXIT_FAILURE);
}
if (num_times < 2)
{
std::cerr << "Number of times must be 2 or more" << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--float").compare(argv[i]))
{
use_float = true;
}
else if (!std::string("--triad-only").compare(argv[i]))
{
triad_only = true;
}
#if defined(HIP) || defined(CUDA) || defined(OCL) || defined(HC)
else if (!std::string("--event-timing").compare(argv[i]) ||
!std::string("-e").compare(argv[i]))
{
event_timing = true;
}
#endif
else if (!std::string("--csv").compare(argv[i]))
{
output_as_csv = true;
}
else if (!std::string("--mibibytes").compare(argv[i]))
{
mibibytes = true;
}
else if (!std::string("--help").compare(argv[i]) ||
!std::string("-h").compare(argv[i]))
{
std::cout << std::endl;
std::cout << "Usage: " << argv[0] << " [OPTIONS]" << std::endl << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h --help Print the message" << std::endl;
std::cout << " --list List available devices" << std::endl;
std::cout << " --device INDEX Select device at INDEX" << std::endl;
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
std::cout << " --float Use floats (rather than doubles)" << std::endl;
std::cout << " --triad-only Only run triad" << std::endl;
#if defined(HIP) || defined(CUDA) || defined(OCL) || defined(HC)
std::cout << " -e --event-timing Use event timing instead of host-side timing" << std::endl;
#endif
std::cout << " --csv Output as csv table" << std::endl;
std::cout << " --mibibytes Use MiB=2^20 for bandwidth calculation (default MB=10^6)" << std::endl;
std::cout << std::endl;
exit(EXIT_SUCCESS);
}
else
{
std::cerr << "Unrecognized argument '" << argv[i] << "' (try '--help')"
<< std::endl;
exit(EXIT_FAILURE);
}
}
}