-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
63 lines (46 loc) · 1.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
class SelfPlayDataset(Dataset):
def __init__(self, data):
self.data = data # List of lists [s, pi, z]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx][0], self.data[idx][1], self.data[idx][2]
class AlphaZeroLoss(nn.Module):
def __init__(self):
super(AlphaZeroLoss, self).__init__()
def forward(self, p_log, pi, v, z):
loss_v = ((z - v) ** 2)
loss_p = -torch.sum(pi * p_log, 1)
return torch.mean(loss_v.view(-1) + loss_p)
def train(net, train_data, num_epochs, batch_size, learning_rate, weight_decay):
train_set = SelfPlayDataset(train_data)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)
criterion = AlphaZeroLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=weight_decay)
avg_avg_loss = 0.0
with tqdm(total=num_epochs, desc="Training", unit="epoch") as prog_bar:
for epoch in range(num_epochs):
avg_loss = 0.0
for i, data in enumerate(train_loader, 0):
s, pi, z = data
s = s.cuda()
pi = pi.cuda()
z = z.cuda()
optimizer.zero_grad()
p_log, v = net(s)
loss = criterion(p_log, pi, v, z)
loss.backward()
avg_loss += loss.item()
optimizer.step()
avg_loss /= len(train_loader)
avg_avg_loss += avg_loss
prog_bar.set_postfix_str(f"Avg loss = {avg_loss}")
prog_bar.update(1)
avg_avg_loss /= num_epochs
return avg_avg_loss