-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhack.py
54 lines (47 loc) · 2.01 KB
/
hack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from sklearn.decomposition import PCA
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
sc1 = StandardScaler()
sc2 = MinMaxScaler()
X = train.drop(columns=['Target', 'Id', 'Feature 16'], axis=1)
X = np.array(sc2.fit_transform(X))
y = np.array(train['Target'])
X_test = test.drop(columns=['Id', 'Feature 16'], axis=1)
X_test = np.array(sc2.transform(X_test))
# pca = PCA(n_components=20)
# pca.fit_transform(X)
# pca.fit_transform(X_test)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import tree
# classifier = LogisticRegression(tol=1e-7, max_iter=500, solver='liblinear')
# classifier = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
# max_depth=10, max_features='auto', max_leaf_nodes=None,
# min_impurity_decrease=1e-07, min_samples_leaf=1,
# min_samples_split=2, min_weight_fraction_leaf=0.0,
# n_estimators=800, n_jobs=1, oob_score=False, random_state=None,
# verbose=0, warm_start=False)
# classifier = tree.DecisionTreeClassifier(max_depth=20)
classifier = GradientBoostingClassifier(n_estimators=300, max_depth=3)
classifier.fit(X_train, y_train)
prob1 = classifier.predict_proba(X_train)
prob2 = classifier.predict_proba(X_valid)
print(roc_auc_score(y_train, prob1[:, 1]))
print(roc_auc_score(y_valid, prob2[:, 1]))
final_pred = classifier.predict_proba(X_test)
dict = {
'Id': test['Id'],
'Target': final_pred[:, 1]
}
df = pd.DataFrame(dict)
df.set_index('Id', inplace=True)
df.to_csv('submission_final.csv')