-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathls_calibration.ino
645 lines (558 loc) · 25.9 KB
/
ls_calibration.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/***************************** ls_calibration: LinnStrument Calibration ***************************
Copyright 2023 Roger Linn Design (https://www.rogerlinndesign.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
***************************************************************************************************
Functions to sample the measured X and Y values on a particular instrument and to rectify so that
these values become predictible.
The aim is to calculate the ratio that needs to be applied to the scanned X position, so that it
can be uniformized to have identical distances between the centers of the cells. Additionally, this
distance is chosen to make the calibrated X values perfectly correct values for pitchbend when the
target is 48 semitones.
For the Y values, it simply measures the top and bottom extremes for cells in 5 columns. Then we
calculate for each cell the ratio that converts this to usable CC values.
***************************************************************************************************/
byte CALROWNUM = 4;
byte CALCOLNUM = 9;
// these are default starting points for uncalibrated LinnStruments, might need tweaking
int32_t FXD_CALX_DEFAULT_LEFT_EDGE;
int32_t FXD_CALX_DEFAULT_FIRST_CELL;
int32_t FXD_CALX_DEFAULT_CELL_WIDTH;
int32_t FXD_CALX_DEFAULT_RIGHT_EDGE;
// the leftmost and rightmost cells don't reach as far on the edges as other cells, this compensates for that
int32_t FXD_CALX_BORDER_OFFSET;
const short CALY_DEFAULT_MIN[MAXROWS] = {243, 781, 1299, 1810, 2281, 2718, 3187, 3599};
const short CALY_DEFAULT_MAX[MAXROWS] = {473, 991, 1486, 1965, 2449, 2925, 3401, 3851};
// only use a portion of the Y distance, since the fingers can't comfortably reach until the real edges
const byte CALY_MARGIN_FRACTION = 4;
void initializeCalibration() {
if (LINNMODEL == 200) {
CALROWNUM = 4;
CALCOLNUM = 9;
// these are default starting points for uncalibrated LinnStruments, might need tweaking
FXD_CALX_DEFAULT_LEFT_EDGE = FXD_MAKE(188);
FXD_CALX_DEFAULT_FIRST_CELL = FXD_MAKE(248);
FXD_CALX_DEFAULT_CELL_WIDTH = FXD_MAKE(157);
FXD_CALX_DEFAULT_RIGHT_EDGE = FXD_MAKE(4064);
// the leftmost and rightmost cells don't reach as far on the edges as other cells, this compensates for that
FXD_CALX_BORDER_OFFSET = FXD_MAKE(10);
}
else if (LINNMODEL == 128) {
CALROWNUM = 4;
CALCOLNUM = 6;
// these are default starting points for uncalibrated LinnStruments, might need tweaking
FXD_CALX_DEFAULT_LEFT_EDGE = FXD_MAKE(293.75);
FXD_CALX_DEFAULT_FIRST_CELL = FXD_MAKE(387.5);
FXD_CALX_DEFAULT_CELL_WIDTH = FXD_MAKE(245.3125);
FXD_CALX_DEFAULT_RIGHT_EDGE = FXD_MAKE(4064);
// the leftmost and rightmost cells don't reach as far on the edges as other cells, this compensates for that
FXD_CALX_BORDER_OFFSET = FXD_MAKE(15.625);
}
}
void initializeCalibrationSamples() {
calibrationPhase = calibrationRows;
for (byte col = 0; col < NUMCOLS; ++col) {
for (byte row = 0; row < CALROWNUM; ++row) {
calSampleRows[col][row].minValue = 4095;
calSampleRows[col][row].maxValue = 0;
calSampleRows[col][row].pass = 0;
}
}
for (byte col = 0; col < CALCOLNUM; ++col) {
for (byte row = 0; row < NUMROWS; ++row) {
calSampleCols[col][row].minValue = 4095;
calSampleCols[col][row].maxValue = 0;
calSampleCols[col][row].pass = 0;
}
}
}
int32_t calculateReferenceX(byte col) {
if (col == 0) {
return FXD_MUL(FXD_FROM_INT(-1), FXD_CALX_HALF_UNIT) + FXD_CALX_BORDER_OFFSET;;
}
else if (col < NUMCOLS) {
return FXD_MUL(FXD_CALX_FULL_UNIT, FXD_FROM_INT(col - 1)); // center in the middle of the cells
}
else {
return FXD_MUL(FXD_CALX_FULL_UNIT, FXD_FROM_INT(NUMCOLS - 1)) - FXD_CALX_HALF_UNIT - FXD_CALX_BORDER_OFFSET;
}
}
int32_t calculateDefaultMeasuredX(byte col) {
if (col == 0) {
return FXD_CALX_DEFAULT_LEFT_EDGE;
}
else if (col == NUMCOLS) {
return FXD_CALX_DEFAULT_RIGHT_EDGE;
}
else {
return FXD_CALX_DEFAULT_FIRST_CELL + FXD_MUL(FXD_CALX_DEFAULT_CELL_WIDTH, FXD_FROM_INT(col - 1));
}
}
void initializeCalibrationData() {
Device.calCrc = 0;
Device.calCrcCalculated = false;
Device.calibrated = false;
Device.calibrationHealed = false;
// Initialize default X calibration data
for (byte row = 0; row < CALROWNUM; ++row) {
Device.calRows[0][row].fxdReferenceX = calculateReferenceX(0);
Device.calRows[0][row].fxdMeasuredX = calculateDefaultMeasuredX(0);
Device.calRows[0][row].fxdRatio = 0;
for (byte col = 1; col < NUMCOLS; ++col) {
Device.calRows[col][row].fxdReferenceX = calculateReferenceX(col);
Device.calRows[col][row].fxdMeasuredX = calculateDefaultMeasuredX(col);
Device.calRows[col][row].fxdRatio = FXD_DIV(FXD_CALX_FULL_UNIT, FXD_CALX_DEFAULT_CELL_WIDTH);
}
Device.calRows[NUMCOLS][row].fxdReferenceX = calculateReferenceX(NUMCOLS);
Device.calRows[NUMCOLS][row].fxdMeasuredX = calculateDefaultMeasuredX(NUMCOLS);
Device.calRows[NUMCOLS][row].fxdRatio = 0;
}
// Initialize default Y calibration data
for (byte col = 0; col < CALCOLNUM; ++col) {
for (byte row = 0; row < NUMROWS; ++row) {
Device.calCols[col][row].minY = CALY_DEFAULT_MIN[row];
Device.calCols[col][row].maxY = CALY_DEFAULT_MAX[row];
Device.calCols[col][row].fxdRatio = FXD_DIV(FXD_FROM_INT(Device.calCols[col][row].maxY - Device.calCols[col][row].minY), FXD_CALY_FULL_UNIT);
}
}
}
short calculateCalibratedX(short rawX) {
int32_t fxdRawX = FXD_FROM_INT(rawX);
byte sector = (sensorRow / 3);
byte sectorTop = sector + 1;
byte bottomRow = 0;
byte topRow = 2;
switch (sector) {
case 0: bottomRow = 0; topRow = 2; break;
case 1: bottomRow = 2; topRow = 5; break;
case 2: bottomRow = 5; topRow = 7; break;
}
// We calculate the calibrated X position for the bottom sector row for the current sensor column
int32_t fxdBottomX = Device.calRows[sensorCol][sector].fxdReferenceX + FXD_MUL(fxdRawX - Device.calRows[sensorCol][sector].fxdMeasuredX, Device.calRows[sensorCol][sector].fxdRatio);
// We calculate the calibrated X position for the top sector row for the current sensor column
int32_t fxdTopX = Device.calRows[sensorCol][sectorTop].fxdReferenceX + FXD_MUL(fxdRawX - Device.calRows[sensorCol][sectorTop].fxdMeasuredX, Device.calRows[sensorCol][sectorTop].fxdRatio);
// The final calibrated X position is the interpolation between the bottom and the top sector rows based on the current sensor row
int result = FXD_TO_INT(fxdBottomX + FXD_MUL(FXD_DIV(fxdTopX - fxdBottomX, FXD_FROM_INT(topRow - bottomRow)), FXD_FROM_INT(sensorRow - bottomRow)));
// constrain the calibrated X position to have a full 4095 range between the centers of the left and right cells,
// but still have values for the remaining left and right halves
result = constrain(result, -CALX_VALUE_MARGIN, 4095+CALX_VALUE_MARGIN);
return result;
}
signed char calculateCalibratedY(short rawY) {
byte col = (sensorCol - 1) / 3;
byte row = sensorRow;
int32_t fxdLeftY = FXD_DIV(FXD_FROM_INT(constrain(rawY, Device.calCols[col][row].minY, Device.calCols[col][row].maxY) - Device.calCols[col][row].minY), Device.calCols[col][row].fxdRatio);
int32_t fxdRightY = 0;
if (col < 8) {
fxdRightY = FXD_DIV(FXD_FROM_INT(constrain(rawY, Device.calCols[col+1][row].minY, Device.calCols[col+1][row].maxY) - Device.calCols[col+1][row].minY), Device.calCols[col+1][row].fxdRatio);
}
byte bias = (sensorCol - 1) % 3;
int result = FXD_TO_INT(FXD_MUL(fxdLeftY, FXD_DIV(FXD_CONST_3 - FXD_FROM_INT(bias), FXD_CONST_3)) +
FXD_MUL(fxdRightY, FXD_DIV(FXD_FROM_INT(bias), FXD_CONST_3)));
// Bound the Y position to accepted value limits
result = constrain(result, 0, 127);
return result;
}
boolean handleCalibrationSample() {
// calibrate the X value distribution by measuring the minimum and maximum for each cell
if (displayMode == displayCalibration) {
// only calibrate a deliberate touch that is at least half-way through the pressure sensitivity range
if (sensorCell->isStableYTouch() && cellsTouched == 1) {
short rawX = readX(0);
short rawY = readY(0);
if (calibrationPhase == calibrationRows && (sensorRow == 0 || sensorRow == 2 || sensorRow == 5 || sensorRow == 7)) {
byte row = (sensorRow / 2);
int32_t fxd_default_center = FXD_CALX_DEFAULT_FIRST_CELL + FXD_MUL(FXD_FROM_INT(sensorCol - 1), FXD_CALX_DEFAULT_CELL_WIDTH);
int min_limit = FXD_TO_INT(fxd_default_center - FXD_MUL(FXD_CALX_DEFAULT_CELL_WIDTH, FXD_CONST_2));
int max_limit = FXD_TO_INT(fxd_default_center + FXD_MUL(FXD_CALX_DEFAULT_CELL_WIDTH, FXD_CONST_2));
if (rawX < min_limit || rawX > max_limit) return false;
calSampleRows[sensorCol][row].minValue = min(rawX, calSampleRows[sensorCol][row].minValue);
calSampleRows[sensorCol][row].maxValue = max(rawX, calSampleRows[sensorCol][row].maxValue);
}
else if (calibrationPhase == calibrationCols && sensorCol > 0 && (sensorCol % 3 == 1)) {
byte col = (sensorCol - 1) / 3;
calSampleCols[col][sensorRow].minValue = min(rawY, calSampleCols[col][sensorRow].minValue);
calSampleCols[col][sensorRow].maxValue = max(rawY, calSampleCols[col][sensorRow].maxValue);
}
}
return true;
}
return false;
}
uint32_t calculateCalibrationCRC() {
uint32_t crc = ~0L;
for (uint8_t c = 0; c < MAXCOLS+1; ++c) {
for (uint8_t r = 0; r < 4; ++r) {
uint8_t* bytes = (uint8_t*)&Device.calRows[c][r];
for (uint8_t i = 0; i < sizeof(CalibrationX); ++i) {
crc = crc_update(crc, *bytes++);
}
}
}
for (uint8_t c = 0; c < 9; ++c) {
for (uint8_t r = 0; r < MAXROWS; ++r) {
uint8_t* bytes = (uint8_t*)&Device.calCols[c][r];
for (uint8_t i = 0; i < sizeof(CalibrationY); ++i) {
crc = crc_update(crc, *bytes++);
}
}
}
crc = ~crc;
return crc;
}
boolean isValidCalibrationRatioX(byte col, byte row) {
int ratio = FXD_TO_INT(FXD_MUL(Device.calRows[col][row].fxdRatio, FXD_CONST_100));
return ratio >= 0 && ratio <= 200;
}
boolean isValidCalibrationMeasuredX(byte col, byte row) {
int measured_x = FXD_TO_INT(Device.calRows[col][row].fxdMeasuredX);
if (measured_x < 0x000 || measured_x > 0xfff) {
return false;
}
int32_t default_measured_x = calculateDefaultMeasuredX(col);
return FXD_TO_INT(Device.calRows[col][row].fxdMeasuredX) > FXD_TO_INT(default_measured_x - FXD_MUL(FXD_CALX_DEFAULT_CELL_WIDTH, FXD_CONST_2)) &&
FXD_TO_INT(Device.calRows[col][row].fxdMeasuredX) < FXD_TO_INT(default_measured_x + FXD_MUL(FXD_CALX_DEFAULT_CELL_WIDTH, FXD_CONST_2));
}
boolean isValidCalibrationRatioY(byte col, byte row) {
int ratio = FXD_TO_INT(FXD_MUL(Device.calCols[col][row].fxdRatio, FXD_CONST_100));
return ratio >= 0 && ratio <= 200;
}
boolean validateAndHealCalibrationData() {
for (uint8_t r = 0; r < CALROWNUM; ++r) {
for (uint8_t c = 0; c <= NUMCOLS; ++c) {
// ensure the correct reference X data for this column
int32_t reference_x = calculateReferenceX(c);
if (Device.calRows[c][r].fxdReferenceX != reference_x) {
Device.calRows[c][r].fxdReferenceX = reference_x;
Device.calibrationHealed = true;
}
}
int32_t previous_measured_x = FXD_FROM_INT(-500);
for (uint8_t c = 0; c <= NUMCOLS; ++c) {
if (FXD_TO_INT(Device.calRows[c][r].fxdMeasuredX) <= FXD_TO_INT(previous_measured_x) || !isValidCalibrationMeasuredX(c, r)) {
// try to heal the measured X data for this column
if (c > 1 && c < NUMCOLS-1 && isValidCalibrationMeasuredX(c+1, r)) {
Device.calRows[c][r].fxdMeasuredX = FXD_DIV(Device.calRows[c-1][r].fxdMeasuredX + Device.calRows[c+1][r].fxdMeasuredX, FXD_CONST_2);
Device.calibrationHealed = true;
}
else if (c > 0 && c < NUMCOLS && r > 0 && isValidCalibrationMeasuredX(c, r-1)) {
Device.calRows[c][r].fxdMeasuredX = Device.calRows[c][r-1].fxdMeasuredX;
Device.calibrationHealed = true;
}
else if (c > 0 && c < NUMCOLS && r < CALROWNUM - 1 && isValidCalibrationMeasuredX(c, r+1)) {
Device.calRows[c][r].fxdMeasuredX = Device.calRows[c][r+1].fxdMeasuredX;
Device.calibrationHealed = true;
}
else {
return false;
}
}
if (!isValidCalibrationRatioX(c, r)) {
// try to heal the X ratio data for this column
if (c > 1 && c < NUMCOLS-1 && isValidCalibrationRatioX(c+1, r)) {
Device.calRows[c][r].fxdRatio = FXD_DIV(Device.calRows[c-1][r].fxdRatio + Device.calRows[c+1][r].fxdRatio, FXD_CONST_2);
Device.calibrationHealed = true;
}
else if (c > 0 && c < NUMCOLS && r > 0 && isValidCalibrationRatioX(c, r-1)) {
Device.calRows[c][r].fxdRatio = Device.calRows[c][r-1].fxdRatio;
Device.calibrationHealed = true;
}
else if (c > 0 && c < NUMCOLS && r < CALROWNUM-1 && isValidCalibrationRatioX(c, r+1)) {
Device.calRows[c][r].fxdRatio = Device.calRows[c][r+1].fxdRatio;
Device.calibrationHealed = true;
}
else {
return false;
}
}
previous_measured_x = Device.calRows[c][r].fxdMeasuredX;
}
}
// first find a valid Y column after the first one that can be used
// to repair the first column in case it is invalid
int valid_column_y = -1;
for (uint8_t c = 1; c < CALCOLNUM; ++c) {
unsigned short previous_max_y = 0;
uint8_t r;
for (r = 0; r < NUMROWS; ++r) {
if (Device.calCols[c][r].minY <= previous_max_y ||
Device.calCols[c][r].maxY <= Device.calCols[c][r].minY ||
!isValidCalibrationRatioY(c, r)) {
break;
}
previous_max_y = Device.calCols[c][r].maxY;
}
if (r == NUMROWS) {
valid_column_y = c;
break;
}
}
for (uint8_t c = 0; c < CALCOLNUM; ++c) {
unsigned short previous_max_y = 0;
for (uint8_t r = 0; r < NUMROWS; ++r) {
if (Device.calCols[c][r].minY <= previous_max_y) {
// try to heal min Y for this row
if (c > 0 && c < CALCOLNUM-1) {
Device.calCols[c][r].minY = (int(Device.calCols[c-1][r].minY) + int(Device.calCols[c+1][r].minY)) / 2;
Device.calibrationHealed = true;
}
else if (c > 0) {
Device.calCols[c][r].minY = Device.calCols[c-1][r].minY;
Device.calibrationHealed = true;
}
else if (c == 0 && valid_column_y != -1) {
Device.calCols[c][r].minY = Device.calCols[valid_column_y][r].minY;
Device.calibrationHealed = true;
}
else {
return false;
}
}
if (Device.calCols[c][r].maxY <= Device.calCols[c][r].minY) {
// try to heal max Y for this row
if (c > 0 && c < CALCOLNUM-1) {
Device.calCols[c][r].maxY = (int(Device.calCols[c-1][r].maxY) + int(Device.calCols[c+1][r].maxY)) / 2;
Device.calibrationHealed = true;
}
else if (c > 0) {
Device.calCols[c][r].maxY = Device.calCols[c-1][r].maxY;
Device.calibrationHealed = true;
}
else if (c == 0 && valid_column_y != -1) {
Device.calCols[c][r].maxY = Device.calCols[valid_column_y][r].maxY;
Device.calibrationHealed = true;
}
else {
return false;
}
}
if (!isValidCalibrationRatioY(c, r)) {
// try to heal the Y ratio data for this column
if (c > 0 && c < CALCOLNUM-1 && isValidCalibrationRatioY(c+1, r)) {
Device.calCols[c][r].fxdRatio = FXD_DIV(Device.calCols[c-1][r].fxdRatio + Device.calCols[c+1][r].fxdRatio, FXD_CONST_2);
Device.calibrationHealed = true;
}
else if (c > 0) {
Device.calCols[c][r].fxdRatio = Device.calCols[c-1][r].fxdRatio;
Device.calibrationHealed = true;
}
else if (c == 0 && valid_column_y != -1) {
Device.calCols[c][r].fxdRatio = Device.calCols[valid_column_y][r].fxdRatio;
Device.calibrationHealed = true;
}
else {
return false;
}
}
previous_max_y = Device.calCols[c][r].maxY;
}
}
return true;
}
boolean handleCalibrationRelease() {
// Handle calibration passes, at least two before indicating green
if (displayMode == displayCalibration) {
int cellPass = -1;
byte cellColor = COLOR_OFF;
if (calibrationPhase == calibrationRows && (sensorRow == 0 || sensorRow == 2 || sensorRow == 5 || sensorRow == 7)) {
byte i1 = sensorCol;
byte i2 = (sensorRow / 2);
#ifdef DEBUG_ENABLED
DEBUGPRINT((0,"calRows"));
DEBUGPRINT((0," col="));DEBUGPRINT((0,(int)sensorCol));
DEBUGPRINT((0," row="));DEBUGPRINT((0,(int)sensorRow));
DEBUGPRINT((0," sampleMin="));DEBUGPRINT((0,(int)calSampleRows[i1][i2].minValue));
DEBUGPRINT((0," sampleMax="));DEBUGPRINT((0,(int)calSampleRows[i1][i2].maxValue));
DEBUGPRINT((0," diff="));DEBUGPRINT((0,(int)calSampleRows[i1][i2].maxValue - calSampleRows[i1][i2].minValue));
DEBUGPRINT((0,"\n"));
#endif
// Only proceed when at least a delta of 20 in X values is measured
if (i2 < 4) {
int delta = calSampleRows[i1][i2].maxValue - calSampleRows[i1][i2].minValue;
if (delta >= 20) {
cellPass = calSampleRows[i1][i2].pass;
// Adapt the color if the the delta is below expected values
if (delta <= 40) {
cellColor = COLOR_RED;
}
else {
// Only advance the pass when at least a delta of 40 in X values is measured
calSampleRows[i1][i2].pass += 1;
if (delta <= 65) {
cellColor = COLOR_YELLOW;
}
// This is the first pass for a sensor, switch the led to cyan
else if (cellPass == 0) {
cellColor = COLOR_CYAN;
}
// This is the second pass for a sensor, switch the led to green
else if (cellPass > 0) {
cellColor = COLOR_GREEN;
}
}
}
}
}
else if (calibrationPhase == calibrationCols && sensorCol > 0 && (sensorCol % 3 == 1)) {
byte i1 = (sensorCol - 1) / 3;
byte i2 = sensorRow;
// Only proceed when at least a delta of 60 in Y values is measured
if (i1 < 9) {
int delta = calSampleCols[i1][i2].maxValue - calSampleCols[i1][i2].minValue;
if (delta >= 60) {
cellPass = calSampleCols[i1][i2].pass;
// Adapt the color if the the delta is below expected values
if (delta <= 110) {
cellColor = COLOR_RED;
}
else {
// Only advance the pass when at least a delta of 110 in Y values is measured
calSampleCols[i1][i2].pass += 1;
if (delta <= 180) {
cellColor = COLOR_YELLOW;
}
// This is the first pass for a sensor, switch the led to cyan
else if (cellPass == 0) {
cellColor = COLOR_CYAN;
}
// This is the second pass for a sensor, switch the led to green
else if (cellPass > 0) {
cellColor = COLOR_GREEN;
}
}
}
}
}
// Only update the cell calibration LED when a change occurred
if (cellColor != COLOR_OFF) {
setLed(sensorCol, sensorRow, cellColor, cellOn);
}
// We need at least two passes to consider the calibration viable
if (cellPass > 0) {
// Scan all the calibration samples to see if at least two passes were made
// for each cell of the rows
if (calibrationPhase == calibrationRows) {
boolean rowsOk = true;
for (byte col = 1; col < NUMCOLS && rowsOk; ++col) {
for (byte row = 0; row < CALROWNUM && rowsOk; ++row) {
if (calSampleRows[col][row].pass < 2) {
rowsOk = false;
}
}
}
if (rowsOk) {
calibrationPhase = calibrationCols;
updateDisplay();
}
}
// Scan all the calibration samples to see if at least two passes were made
// for each cell of the columns
else if (calibrationPhase == calibrationCols) {
boolean colsOk = true;
for (byte row = 0; row < NUMROWS && colsOk; ++row) {
for (byte col = 0; col < CALCOLNUM && colsOk; ++col) {
if (calSampleCols[col][row].pass < 2) {
colsOk = false;
}
}
}
// When the calibration is done, calculate the calibration data and notify the user that everything is ok
if (colsOk) {
// Calculate the calibration X data based on the collected samples
for (byte row = 0; row < CALROWNUM; ++row) {
// The first calibration entry basically indicates the leftmost limit of the measured X values
Device.calRows[0][row].fxdMeasuredX = FXD_FROM_INT(calSampleRows[1][row].minValue);
Device.calRows[0][row].fxdRatio = 0;
// Calculate all the calibration entries in between that use the width of the cells
for (byte col = 1; col < NUMCOLS; ++col) {
Device.calRows[col][row].fxdMeasuredX = FXD_FROM_INT(calSampleRows[col][row].minValue) + FXD_DIV(FXD_FROM_INT(calSampleRows[col][row].maxValue - calSampleRows[col][row].minValue), FXD_CONST_2);
Device.calRows[col][row].fxdRatio = FXD_DIV(FXD_CALX_FULL_UNIT, FXD_FROM_INT(calSampleRows[col][row].maxValue - calSampleRows[col][row].minValue));
}
// The last entry marks the rightmost measured X value
Device.calRows[NUMCOLS][row].fxdMeasuredX = FXD_FROM_INT(calSampleRows[NUMCOLS-1][row].maxValue);
Device.calRows[NUMCOLS][row].fxdRatio = 0;
}
// Store and calculate the calibration Y data based on the collected samples
for (byte row = 0; row < NUMROWS; ++row) {
for (byte col = 0; col < CALCOLNUM; ++col) {
int sampledRange = calSampleCols[col][row].maxValue - calSampleCols[col][row].minValue;
int cellMarginY = (sampledRange / CALY_MARGIN_FRACTION);
Device.calCols[col][row].minY = constrain(calSampleCols[col][row].minValue + cellMarginY, 0, 4095);
Device.calCols[col][row].maxY = constrain(calSampleCols[col][row].maxValue - cellMarginY, 0, 4095);
Device.calCols[col][row].fxdRatio = FXD_DIV(FXD_FROM_INT(Device.calCols[col][row].maxY - Device.calCols[col][row].minY), FXD_CALY_FULL_UNIT);
}
}
Device.calCrc = calculateCalibrationCRC();
Device.calCrcCalculated = true;
Device.calibrated = true;
Device.calibrationHealed = false;
#ifdef DEBUG_ENABLED
debugCalibration();
#endif
// automatically turn off serial mode when the calibration has been performed
// immediately after the first boot since a firmware upgrade, this is to compensate
// for older firmware versions that couldn't export their settings and still provide
// a smooth user experience
if (firstTimeBoot) {
switchSerialMode(false);
}
// Draw the text OK and go back to normal display after a short delay
calibrationPhase = calibrationInactive;
clearDisplay();
bigfont_draw_string((NUMCOLS-11)/2 - 1, 0, "OK", globalColor, false);
delayUsec(500000);
storeSettings();
initializeCalibrationSamples();
initializeTouchInfo();
setDisplayMode(displayNormal);
clearLed(0, GLOBAL_SETTINGS_ROW);
updateDisplay();
}
}
}
return true;
}
return false;
}
void debugCalibration() {
for (byte row = 0; row < CALROWNUM; ++row) {
for (byte col = 0; col < NUMCOLS; ++col) {
DEBUGPRINT((0,"calRows"));
DEBUGPRINT((0," col="));DEBUGPRINT((0,(int)col));
DEBUGPRINT((0," row="));DEBUGPRINT((0,(int)row));
DEBUGPRINT((0," sampleMin="));DEBUGPRINT((0,(int)calSampleRows[col][row].minValue));
DEBUGPRINT((0," sampleMax="));DEBUGPRINT((0,(int)calSampleRows[col][row].maxValue));
DEBUGPRINT((0," referenceX="));DEBUGPRINT((0,(int)FXD_TO_INT(Device.calRows[col][row].fxdReferenceX)));
DEBUGPRINT((0," measuredX="));DEBUGPRINT((0,(int)FXD_TO_INT(Device.calRows[col][row].fxdMeasuredX)));
DEBUGPRINT((0," ratio="));DEBUGPRINT((0,(int)FXD_TO_INT(FXD_MUL(Device.calRows[col][row].fxdRatio, FXD_CONST_100))));
DEBUGPRINT((0,"\n"));
}
DEBUGPRINT((0,"calRows"));
DEBUGPRINT((0," col="));DEBUGPRINT((0,(int)NUMCOLS));
DEBUGPRINT((0," row="));DEBUGPRINT((0,(int)row));
DEBUGPRINT((0," referenceX="));DEBUGPRINT((0,(int)FXD_TO_INT(Device.calRows[NUMCOLS][row].fxdReferenceX)));
DEBUGPRINT((0," measuredX="));DEBUGPRINT((0,(int)FXD_TO_INT(Device.calRows[NUMCOLS][row].fxdMeasuredX)));
DEBUGPRINT((0," ratio="));DEBUGPRINT((0,(int)FXD_TO_INT(FXD_MUL(Device.calRows[NUMCOLS][row].fxdRatio, FXD_CONST_100))));
DEBUGPRINT((0,"\n"));
}
for (byte col = 0; col < CALCOLNUM; ++col) {
for (byte row = 0; row < NUMROWS; ++row) {
DEBUGPRINT((0,"calCols"));
DEBUGPRINT((0," col="));DEBUGPRINT((0,(int)col));
DEBUGPRINT((0," row="));DEBUGPRINT((0,(int)row));
DEBUGPRINT((0," sampleMin="));DEBUGPRINT((0,(int)calSampleCols[col][row].minValue));
DEBUGPRINT((0," sampleMax="));DEBUGPRINT((0,(int)calSampleCols[col][row].maxValue));
DEBUGPRINT((0," minY="));DEBUGPRINT((0,(int)Device.calCols[col][row].minY));
DEBUGPRINT((0," maxY="));DEBUGPRINT((0,(int)Device.calCols[col][row].maxY));
DEBUGPRINT((0," ratio="));DEBUGPRINT((0,(int)FXD_TO_INT(FXD_MUL(Device.calCols[col][row].fxdRatio, FXD_CONST_100))));
DEBUGPRINT((0,"\n"));
}
}
}