-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrafficPlanner.py
347 lines (278 loc) · 14.3 KB
/
TrafficPlanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#!/usr/bin/env python3
"""
TrafficPlanner node is used for the distribution of traffic over the factory
and provides information for ETA. All path request to the path planner
trigger the creation of random points by TrafficPlanner. This are then used
to compute a path and at the same time influence the random distribution
which is used for the creation of random points. With this approach the traffic
in the factory shall be distributed equally, avoiding too much congestion.
"""
import rospy
import networkx as nx
from auto_smart_factory.msg import RoadmapGraph
from auto_smart_factory.srv import *
import random
from collections import OrderedDict
import numpy as np
from itertools import chain
from functools import partial
from collections import deque
from math import sqrt
class TrafficPlanner:
"""Holds a graph which models the traffic in the factory for several time steps.
Since the roadmap graph is likely to have many nodes, we create boxes which are
scattered over the graph. The probability distribution updates are carried out
always for a whole box, if a random point from this box is chosen. For the
computation of sensible random points, a certain number of random points is
chosen from the roadmap graph, based on an initially uniform distribution.
Then, a complete graph is created out of these points and Dijsktra is applied
to this graph in order to find a shortest path. The nodes which lie on this
shortest path are then returned as random points."""
def __init__(self):
self.is_ready = False
def initGraph(self, data):
"""Build a new graph after receiving a new RoadmapGraph message from RoadmapGenerator.
Args:
data: Contains the data which is received by the subscriber to the topic roadmap_graph.
Returns:
"""
self.is_ready = False
assert len(data.coordinates) == data.num_nodes
assert len(data.start_nodes) == len(data.end_nodes)
#############################
# Parameters
#############################
# number of time zones is number_of_time_steps - max_offset,
# i.e. for every start time <= max_offset the
# same number of time zones is available
self.number_of_time_steps = 15 # must be in int16
self.max_offset = 5
self.avg_speed = 1.0 # about realistic according to json
self.number_of_random_points = 40
# multiplicator to verify number of nodes of random graph >> path of random nodes
self.random_node_density = 10
# split the grid graph into boxes to have less sections for the traffic density update
# box length is the number of nodes that a square box has in one direction,
# i.e. one box conatains at most box_length**2 nodes
self.box_length = 1
############################
self.height = data.height
self.width = data.width
self.number_of_nodes = data.num_nodes
self.resolution = data.resolution
self.coord_list = [(p.x, p.y) for p in data.coordinates]
self.int_coords_dict = {(x, y): i for i, (x, y) in
enumerate(zip(data.x_coord_int, data.y_coord_int))}
self.int_coords_list = list(zip(data.x_coord_int, data.y_coord_int))
self.boxes_to_nodes = {}
for n in range(self.number_of_nodes):
try:
self.boxes_to_nodes[self._node_to_box(n)].append(n)
except KeyError:
self.boxes_to_nodes[self._node_to_box(n)] = [n]
# we need fixed int names for the boxes
self.list_of_boxes = list(self.boxes_to_nodes.keys())
self.box_coords_to_index = {el: i for i, el in enumerate(self.list_of_boxes)}
self.number_of_boxes = len(self.boxes_to_nodes)
assert self.number_of_boxes > self.number_of_random_points # should be >>
# create graph that contains only the unit (vertical/horizontal) edges for time zone creation
self.graph_reduced = nx.Graph()
self.graph_reduced.add_nodes_from(zip(range(data.num_nodes),
({"coordinates": self.coord_list[i]} for i in range(data.num_nodes))))
unit_edges = ((x, y) for i, (x, y, gr) in
enumerate(zip(data.start_nodes, data.end_nodes, data.is_grid_edge)) if gr)
self.graph_reduced.add_edges_from(unit_edges)
# in the beginning all nodes have equal density probabilities
self.densities = np.empty([self.number_of_time_steps, self.number_of_boxes], dtype=np.float64)
self.densities.fill(1 / self.number_of_boxes)
# create an OrderedDict that maps coordinates to nodes, uses lexical ordering
self.coord_dict = OrderedDict.fromkeys(sorted(self.coord_list))
for node, coord in zip(range(self.number_of_nodes), self.coord_list):
self.coord_dict[coord] = node
# size_of_timezone is distance measured in nodes
self.size_of_timezone = max((self.height, self.width)) / (self.resolution
* (self.number_of_time_steps - self.max_offset))
rospy.loginfo("Initialized TrafficPlanner with new graph.")
self.is_ready = True
def _node_to_box(self, node, asIndex=False):
"""Return the correspondig box to a node given by node name.
Args:
node: int, node name
asIndex: bool, indicates if index of box should be returned rather
than tuple of coordinates. Must only be true after
self.box_coords_to_index is initialized.
Returns:
tuple (int, int) integer coordinates of the box corresponding to
node if asIndex == False, int index of the box otherwise.
"""
x, y = self.int_coords_list[node]
if not asIndex:
return x // self.box_length, y // self.box_length
else:
return self.box_coords_to_index[x // self.box_length, y // self.box_length]
def _bfs_dist(self, graph, source):
"""Perform a breadth first search and compute the distances from the source node to all other nodes.
Args:
graph: instance of networkx.Graph
source: a node of graph
Returns:
dict of distances from source for all nodes, measured in number of edges
"""
visited = set([source])
queue = deque([(source, graph.neighbors(source))])
distances = {source: 0}
while queue:
parent, children = queue[0]
try:
child = next(children)
if child not in visited:
visited.add(child)
queue.append((child, graph.neighbors(child)))
distances[child] = distances[parent] + 1
except StopIteration:
queue.popleft()
return distances
def getClosestNode(self, p):
"""Returns a node which is close to the coordinates given by argument p.
Args:
geometry_msgs/Point p: coordinates
Returns:
int: name of node that is close to (x,y)
"""
int_x, int_y = int(p.x / self.resolution), int(p.y / self.resolution)
if not (int_x, int_y) in self.int_coords_dict:
for j in range(15):
if (int_x + j, int_y + j) in self.int_coords_dict:
return self.int_coords_dict[int_x + j, int_y + j]
if (int_x - j, int_y - j) in self.int_coords_dict:
return self.int_coords_dict[int_x - j, int_y - j]
if (int_x + j, int_y - j) in self.int_coords_dict:
return self.int_coords_dict[int_x + j, int_y - j]
if (int_x - j, int_y + j) in self.int_coords_dict:
return self.int_coords_dict[int_x - j, int_y + j]
raise ValueError
return self.int_coords_dict[int_x, int_y]
def updateDistribution(self, update_nodes, time_steps, positive=True):
"""
Makes an update of self.densities, to increase / decrease the
probability for nodes to be selected as random points. If positive,
then the traffic densities increase for the corresponding nodes
and decrease otherwise.
Args:
update_nodes: list / set of node names whose distribution
values shall be changed
positive: bool that indicates whether density for
update_nodes is increased or decreased
Returns:
None
updates self.densities
"""
# define constant c in ]0, min(len(update_nodes), self.number_of_nodes - len(update_nodes)[
# which sets the intensity of the update
c = 1
mini = np.min(self.densities)
assert update_nodes
assert mini >= 0
sign = 1 if positive else -1
diff_update_nodes = sign * mini * c / len(update_nodes)
diff_other_nodes = - sign * mini * c / (self.number_of_boxes - len(update_nodes))
diff_array = np.empty(self.number_of_boxes)
diff_array.fill(diff_other_nodes)
for i in time_steps:
self.densities[i] += diff_array
for node in update_nodes:
self.densities[i][self._node_to_box(node, True)] += diff_update_nodes - diff_other_nodes
def getRandomPoints(self, req):
"""
Args:
req: Contains the arguments for the request as received by the service.
Returns:
getRandomPointsResponse
"""
# compute number of random points, return only start and end nodes for short distances
euclidean_dist = sqrt((req.start_coordinates.x - req.end_coordinates.x)**2
+ (req.start_coordinates.y - req.end_coordinates.y)**2)
if euclidean_dist <= 1.5 * self.size_of_timezone * self.resolution:
res = getRandomPointsResponse()
res.nodes = [self.getClosestNode(req.start_coordinates), self.getClosestNode(req.end_coordinates)]
res.length = euclidean_dist
res.traffic_density = 1
return res
duration_of_timezone = self.avg_speed * self.resolution * self.size_of_timezone
offset = int((req.start_time.to_sec() - rospy.get_time()) // duration_of_timezone)
if offset < 0:
offset = 0
if offset > self.max_offset:
offset = self.max_offset
# compute a distribution on the traffic densities considering the time steps
s_node = self.getClosestNode(req.start_coordinates)
t_node = self.getClosestNode(req.end_coordinates)
distribution_over_time = np.zeros(self.number_of_boxes, dtype=np.float64)
time_steps_assigned = {i: set() for i in range(self.number_of_time_steps)}
for node, dist in self._bfs_dist(self.graph_reduced, s_node).items():
# we multiply by 2 because distance is x+y direction, size_of_timezone just one direction
step = int(dist // (2 * self.size_of_timezone)) + offset
distribution_over_time[self._node_to_box(node, True)] = \
self.densities[step, self._node_to_box(node, True)]
time_steps_assigned[step].add(node)
# norming to a distribution, maybe try softmax as an alternative
sum_of_densities = np.sum(distribution_over_time)
distribution_over_time = distribution_over_time / sum_of_densities
nodes_from_boxes = np.array([random.choice(self.boxes_to_nodes[box]) for box in self.list_of_boxes])
random_graph = nx.complete_graph(chain((int(_) for _ in np.nditer(
np.random.choice(nodes_from_boxes,
size=self.number_of_random_points,
replace=False,
p=distribution_over_time))),
(s_node, t_node)))
# use Euclidean distance as heuristic, should be evaluated
dist_dict = {(a, b): sqrt(sum((x-y)**2 for x, y in zip(self.coord_list[a], self.coord_list[b])))
for a, b in random_graph.edges}
mean_distance = sum(dist_dict.values()) / len(dist_dict)
try:
del dist_dict[s_node, t_node]
except KeyError:
pass
try:
del dist_dict[t_node, s_node]
except KeyError:
pass
# we want to make sure that in the random_graphh there is a path from s to t
dist_dict[s_node, t_node] = 1.5 * (self.height + self.width)
nx.set_edge_attributes(random_graph, dist_dict, "weight")
try:
del dist_dict[s_node, t_node]
except KeyError:
pass
# remove long edges
rem_edges = list(edge for edge, length in dist_dict.items() if length > 0.6 * mean_distance)
random_graph.remove_edges_from(rem_edges)
length, path = nx.algorithms.shortest_paths.weighted.bidirectional_dijkstra(random_graph, s_node, t_node)
path_set = set(path)
if req.path_is_real:
for step, nodes in time_steps_assigned.items():
to_update = path_set.intersection(nodes)
if to_update:
self.updateDistribution(to_update, [step])
rospy.loginfo(str([str(p) for p in path]) + " will be returned as random points")
res = getRandomPointsResponse()
res.nodes = path
res.length = length
res.traffic_density = sum_of_densities * sum(distribution_over_time[self._node_to_box(node, True)] for node in path)
return res
def randomPointService(data, traffic_planner):
"""Waits until traffic planner is ready to provide getRandomPointService."""
if traffic_planner.is_ready:
return traffic_planner.getRandomPoints(data)
else:
r = rospy.Rate(20)
while not traffic_planner.is_ready:
r.sleep()
return traffic_planner.getRandomPoints(data)
if __name__ == "__main__":
tp = TrafficPlanner()
rospy.init_node("traffic_planner")
rospy.Subscriber("roadmap_graph", RoadmapGraph, tp.initGraph)
handleRandomPointService = partial(randomPointService, traffic_planner=tp)
rospy.Service("traffic_planner/get_random_points", getRandomPoints, handleRandomPointService)
rospy.spin()