-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCSE7766.cpp
294 lines (241 loc) · 7.74 KB
/
CSE7766.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// -----------------------------------------------------------------------------
// CSE7766 based power monitor
// Copyright (C) 2018 by Xose Pérez <xose dot perez at gmail dot com>
// http://www.chipsea.com/UploadFiles/2017/08/11144342F01B5662.pdf
// -----------------------------------------------------------------------------
#include "CSE7766.h"
// Constructor
CSE7766::CSE7766(HardwareSerial* hwSer)
{
hwSerialPort = hwSer;
}
// Destructor
CSE7766::~CSE7766()
{
hwSerialPort = NULL;
}
void CSE7766::setInverted(bool inverted) {
if (_inverted == inverted) return;
_inverted = inverted;
}
bool CSE7766::getInverted() {
return _inverted;
}
void CSE7766::expectedCurrent(double expected) {
if ((expected > 0) && (_current > 0)) {
_ratioC = _ratioC * (expected / _current);
}
}
void CSE7766::expectedVoltage(unsigned int expected) {
if ((expected > 0) && (_voltage > 0)) {
_ratioV = _ratioV * (expected / _voltage);
}
}
void CSE7766::expectedPower(unsigned int expected) {
if ((expected > 0) && (_active > 0)) {
_ratioP = _ratioP * (expected / _active);
}
}
void CSE7766::setCurrentRatio(double value) {
_ratioC = value;
};
void CSE7766::setVoltageRatio(double value) {
_ratioV = value;
};
void CSE7766::setPowerRatio(double value) {
_ratioP = value;
};
double CSE7766::getCurrentRatio() {
return _ratioC;
};
double CSE7766::getVoltageRatio() {
return _ratioV;
};
double CSE7766::getPowerRatio() {
return _ratioP;
};
void CSE7766::resetRatios() {
_ratioC = _ratioV = _ratioP = 1.0;
}
void CSE7766::resetEnergy(double value) {
_energy = value;
}
double CSE7766::getCurrent() {
return _current;
}
double CSE7766::getVoltage() {
return _voltage;
}
double CSE7766::getActivePower() {
return _active;
}
double CSE7766::getApparentPower() {
return _voltage * _current;
}
double CSE7766::getReactivePower() {
double active = getActivePower();
double apparent = getApparentPower();
if (apparent > active) {
return sqrt(apparent * apparent - active * active);
} else {
return 0;
}
}
double CSE7766::getPowerFactor() {
return ((_voltage > 0) && (_current > 0)) ? 100 * _active / _voltage / _current : 100;
}
double CSE7766::getEnergy() {
return _energy;
}
void CSE7766::begin()
{
hwSerialPort->begin(CSE7766_BAUDRATE);
_ready = true;
}
void CSE7766::handle()
{
if (!_ready) return;
_read();
}
// ---------------------------------------------------------------------
// private
// ---------------------------------------------------------------------
/**
* "
* Checksum is the sum of all data
* except for packet header and packet tail lowering by 8bit (...)
* "
* @return bool
*/
bool CSE7766::_checksum() {
unsigned char checksum = 0;
for (unsigned char i = 2; i < 23; i++) {
checksum += _data[i];
}
return checksum == _data[23];
}
void CSE7766::_process() {
// Sample data:
// 55 5A 02 E9 50 00 03 31 00 3E 9E 00 0D 30 4F 44 F8 00 12 65 F1 81 76 72 (w/ load)
// F2 5A 02 E9 50 00 03 2B 00 3E 9E 02 D7 7C 4F 44 F8 CF A5 5D E1 B3 2A B4 (w/o load)
#if SENSOR_DEBUG
DEBUG_MSG("[SENSOR] CSE7766: _process: ");
for (byte i=0; i<24; i++) DEBUG_MSG("%02X ", _data[i]);
DEBUG_MSG("\n");
#endif
// Checksum
if (!_checksum()) {
_error = SENSOR_ERROR_CRC;
#if SENSOR_DEBUG
DEBUG_MSG("[SENSOR] CSE7766: Checksum error\n");
#endif
return;
}
// Calibration
if (0xAA == _data[0]) {
_error = SENSOR_ERROR_CALIBRATION;
#if SENSOR_DEBUG
DEBUG_MSG("[SENSOR] CSE7766: Chip not calibrated\n");
#endif
return;
}
if ((_data[0] & 0xFC) > 0xF0) {
_error = SENSOR_ERROR_OTHER;
#if SENSOR_DEBUG
if (0xF1 == _data[0] & 0xF1) DEBUG_MSG("[SENSOR] CSE7766: Abnormal coefficient storage area\n");
if (0xF2 == _data[0] & 0xF2) DEBUG_MSG("[SENSOR] CSE7766: Power cycle exceeded range\n");
if (0xF4 == _data[0] & 0xF4) DEBUG_MSG("[SENSOR] CSE7766: Current cycle exceeded range\n");
if (0xF8 == _data[0] & 0xF8) DEBUG_MSG("[SENSOR] CSE7766: Voltage cycle exceeded range\n");
#endif
return;
}
// Calibration coefficients
unsigned long _coefV = (_data[2] << 16 | _data[3] << 8 | _data[4] ); // 190770
unsigned long _coefC = (_data[8] << 16 | _data[9] << 8 | _data[10]); // 16030
unsigned long _coefP = (_data[14] << 16 | _data[15] << 8 | _data[16]); // 5195000
// Adj: this looks like a sampling report
uint8_t adj = _data[20]; // F1 11110001
// Calculate voltage
_voltage = 0;
if ((adj & 0x40) == 0x40) {
unsigned long voltage_cycle = _data[5] << 16 | _data[6] << 8 | _data[7]; // 817
_voltage = _ratioV * _coefV / voltage_cycle / CSE7766_V2R; // 190700 / 817 = 233.41
}
// Calculate power
_active = 0;
if ((adj & 0x10) == 0x10) {
if ((_data[0] & 0xF2) != 0xF2) {
unsigned long power_cycle = _data[17] << 16 | _data[18] << 8 | _data[19]; // 4709
_active = _ratioP * _coefP / power_cycle / CSE7766_V1R / CSE7766_V2R; // 5195000 / 4709 = 1103.20
}
}
// Calculate current
_current = 0;
if ((adj & 0x20) == 0x20) {
if (_active > 0) {
unsigned long current_cycle = _data[11] << 16 | _data[12] << 8 | _data[13]; // 3376
_current = _ratioC * _coefC / current_cycle / CSE7766_V1R; // 16030 / 3376 = 4.75
}
}
// Calculate energy
unsigned int difference;
static unsigned int cf_pulses_last = 0;
unsigned int cf_pulses = _data[21] << 8 | _data[22];
if (0 == cf_pulses_last) cf_pulses_last = cf_pulses;
if (cf_pulses < cf_pulses_last) {
difference = cf_pulses + (0xFFFF - cf_pulses_last) + 1;
} else {
difference = cf_pulses - cf_pulses_last;
}
_energy += difference * (float) _coefP / 1000000.0;
cf_pulses_last = cf_pulses;
}
void CSE7766::_read() {
_error = SENSOR_ERROR_OK;
while (_serial_available()) {
// A 24 bytes message takes ~55ms to go through at 4800 bps
// Reset counter if more than 1000ms have passed since last byte.
if (millis() - last > CSE7766_SYNC_INTERVAL)
{
index = 0;
last = millis();
}
uint8_t byte = _serial_read();
// first byte must be 0x55 or 0xF?
if (0 == index) {
if ((0x55 != byte) && (byte < 0xF0))
{
continue;
}
// second byte must be 0x5A
} else if (1 == index) {
if (0x5A != byte) {
index = 0;
continue;
}
}
_data[index++] = byte;
if (index > 23)
{
_serial_flush();
break;
}
}
// Process packet
if (24 == index) {
_process();
index = 0;
}
}
bool CSE7766::_serial_available()
{
return hwSerialPort->available();
}
void CSE7766::_serial_flush()
{
hwSerialPort->flush();
}
uint8_t CSE7766::_serial_read()
{
return hwSerialPort->read();
}