-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathISLR06.R
227 lines (166 loc) · 6.06 KB
/
ISLR06.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# An Introduction to Statistical Learning with Applications in R
# by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani
# Chapter 6: Linear Model Selection and Regularization
# 6.5 Lab 1: Subset Selection Methods
# 6.5.1 Best Subset Selection
library(ISLR)
fix(Hitters)
names(Hitters)
dim(Hitters)
sum(is.na(Hitters$Salary))
Hitters <- na.omit(Hitters)
dim(Hitters)
sum(is.na(Hitters))
library(leaps)
regfit.full <- regsubsets(Salary ~ ., Hitters)
summary(regfit.full)
regfit.full <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19)
reg.summary <- summary(regfit.full)
names(reg.summary)
reg.summary$rsq
par(mfrow = c(2, 2))
plot(reg.summary$rss,
xlab = "Number of Variables", ylab = "RSS", type = "l")
plot(reg.summary$adjr2,
xlab = "Number of Variables", ylab = "Adjusted RSq", type = "l")
which.max(reg.summary$adjr2)
points(11, reg.summary$adjr2[11], col = "red", cex = 2, pch = 20)
plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp", type = "l")
which.min(reg.summary$cp)
points(10, reg.summary$cp[10], col = "red", cex = 2, pch = 20)
which.min(reg.summary$bic)
plot(reg.summary$bic, xlab = "Number of Variables", ylab = "BIC", type = "l")
points(6, reg.summary$bic[6], col = "red", cex = 2, pch = 20)
plot(regfit.full, scale = "r2")
plot(regfit.full, scale = "adjr2")
plot(regfit.full, scale = "Cp")
plot(regfit.full, scale = "bic")
coef(regfit.full, 6)
# 6.5.2 Forward and Backward Stepwise Selection
regfit.fwd <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19,
method = "forward")
summary(regfit.fwd)
regfit.bwd <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19,
method = "backward")
summary(regfit.bwd)
coef(regfit.full, 7)
coef(regfit.fwd, 7)
coef(regfit.bwd, 7)
# 6.5.3 Choosing Among Models
set.seed(1)
train <- sample(c(TRUE, FALSE), nrow(Hitters), rep = TRUE)
test <- !train
regfit.best <- regsubsets(Salary ~ ., data = Hitters[train, ], nvmax = 19)
test.mat <- model.matrix(Salary ~ ., data = Hitters[test, ])
val.errors <- rep(NA, 19)
for(i in 1:19) {
coefi <- coef(regfit.best, id = i)
pred <- test.mat[ , names(coefi)] %*% coefi
val.errors[i] <- mean((Hitters$Salary[test] - pred)^2)
}
val.errors
which.min(val.errors)
coef(regfit.best, 10)
predict.regsubsets <- function(object, newdata, id, ...) {
form <- as.formula(object$call[[2]])
mat <- model.matrix(form, newdata)
coefi <- coef(object, id = id)
xvars <- names(coefi)
mat[ , xvars] %*% coefi
}
regfit.best <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19)
coef(regfit.best, 10)
k <- 10
set.seed(1)
folds <- sample(1:k, nrow(Hitters), replace = TRUE)
cv.errors <- matrix(NA, k, 19, dimnames = list(NULL, paste(1:19)))
for(j in 1:k) {
best.fit <- regsubsets(Salary ~ ., data = Hitters[folds != j, ], nvmax = 19)
for(i in 1:19) {
pred <- predict(best.fit, Hitters[folds == j, ], id = i)
cv.errors[j,i] <- mean((Hitters$Salary[folds == j] - pred)^2)
}
}
mean.cv.errors <- apply(cv.errors, 2, mean)
mean.cv.errors
par(mfrow = c(1, 1))
plot(mean.cv.errors, type = "b")
reg.best <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19)
coef(reg.best, 11)
# 6.6 Lab 2: Ridge Regression and the Lasso
x <- model.matrix(Salary ~ ., Hitters)[ , -1]
y <- Hitters$Salary
# 6.6.1 Ridge Regression
library(glmnet)
grid <- 10^seq(10, -2, length = 100)
ridge.mod <- glmnet(x, y, alpha = 0, lambda = grid)
dim(coef(ridge.mod))
ridge.mod$lambda[50]
coef(ridge.mod)[ , 50]
sqrt(sum(coef(ridge.mod)[-1, 50]^2))
ridge.mod$lambda[60]
coef(ridge.mod)[ , 60]
sqrt(sum(coef(ridge.mod)[-1, 60]^2))
predict(ridge.mod, s = 50, type = "coefficients")[1:20, ]
set.seed(1)
train <- sample(1:nrow(x), nrow(x)/2)
test <- -train
y.test <- y[test]
ridge.mod <- glmnet(x[train, ], y[train], alpha = 0, lambda = grid,
thresh = 1e-12)
ridge.pred <- predict(ridge.mod, s = 4, newx = x[test, ])
mean((ridge.pred - y.test)^2)
mean((mean(y[train]) - y.test)^2)
ridge.pred <- predict(ridge.mod, s = 1e10, newx = x[test, ])
mean((ridge.pred - y.test)^2)
ridge.pred <- predict(ridge.mod, s = 0, newx = x[test, ], exact = TRUE)
mean((ridge.pred - y.test)^2)
lm(y ~ x, subset = train)
predict(ridge.mod, s = 0, exact = TRUE, type = "coefficients")[1:20, ]
set.seed(1)
cv.out <- cv.glmnet(x[train, ], y[train], alpha = 0)
plot(cv.out)
bestlam <- cv.out$lambda.min
bestlam
ridge.pred <- predict(ridge.mod, s = bestlam, newx = x[test, ])
mean((ridge.pred - y.test)^2)
out <- glmnet(x, y, alpha = 0)
predict(out, type = "coefficients", s = bestlam)[1:20, ]
# 6.6.2 The Lasso
lasso.mod <- glmnet(x[train, ], y[train], alpha = 1, lambda = grid)
plot(lasso.mod)
set.seed(1)
cv.out <- cv.glmnet(x[train, ], y[train], alpha = 1)
plot(cv.out)
bestlam <- cv.out$lambda.min
lasso.pred <- predict(lasso.mod, s = bestlam, newx = x[test, ])
mean((lasso.pred - y.test)^2)
out <- glmnet(x, y, alpha = 1, lambda = grid)
lasso.coef <- predict(out, type = "coefficients", s = bestlam)[1:20, ]
lasso.coef
lasso.coef[lasso.coef != 0]
# 6.7 Lab 3: PCR and PLS Regression
# 6.7.1 Principal Components Regression
library(pls)
set.seed(2)
pcr.fit <- pcr(Salary ~ ., data = Hitters, scale = TRUE, validation = "CV")
summary(pcr.fit)
validationplot(pcr.fit, val.type = "MSEP")
set.seed(1)
pcr.fit <- pcr(Salary ~ ., data = Hitters, subset = train, scale = TRUE,
validation = "CV")
validationplot(pcr.fit, val.type = "MSEP")
pcr.pred <- predict(pcr.fit, x[test, ], ncomp = 7)
mean((pcr.pred - y.test)^2)
pcr.fit <- pcr(y ~ x, scale = TRUE, ncomp = 7)
summary(pcr.fit)
# 6.7.2 Partial Least Squares
set.seed(1)
pls.fit <- plsr(Salary ~ ., data = Hitters, subset = train, scale = TRUE,
validation = "CV")
summary(pls.fit)
validationplot(pls.fit, val.type = "MSEP")
pls.pred <- predict(pls.fit, x[test, ], ncomp = 2)
mean((pls.pred - y.test)^2)
pls.fit <- plsr(Salary ~ ., data = Hitters, scale = TRUE, ncomp = 2)
summary(pls.fit)