diff --git a/papers/VelvetThunder-BJgK6iA5KX/README.txt b/papers/VelvetThunder-BJgK6iA5KX/README.txt new file mode 100755 index 0000000..baa8554 --- /dev/null +++ b/papers/VelvetThunder-BJgK6iA5KX/README.txt @@ -0,0 +1,46 @@ +========================================= +Parth Kothari, Yuejiang Liu, Timur Lavrov +Team: Velvet Thunder +Project 2, Machine Learning, EPFL + +ICLR Reproducibility Challenge +Issue +https://github.com/reproducibility-challenge/iclr_2019/issues/89 +Codebase +https://github.com/timur26/ICLR_Reproducibility_Challenge_Autoloss + +============= Dependency ================ +python 3.6 +tensorflow 1.11.0 + +============= Download ================ +- Download MNIST data +python download.py mnist +- Download CIFAR10 data +Link: https://www.cs.toronto.edu/~kriz/cifar.html +cd data +wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz +Unzip in 'cifar-10-python' folder as 'cifar10' folder +- Download MNIST Inception Score graph +mkdir model +cd model +wget https://github.com/tensorflow/models/raw/master/research/gan/mnist/data/classify_mnist_graph_def.pb + +============= Command ================ +- Joint minimization for classification: +sh run_gs_classification.sh +- Joint minimization for regression: +sh run_gs_regression.sh +- Hand-crafted schedule for classification: +python c_main.py --lambdaa 1e-1 --mode "alter" --T 25 +- Auto-loss schedule for classification: +python c_main.py --lambdaa 1e-1 --mode "autol" --T 25 +- GAN Baseline MNIST +python main.py +- GAN Baseline CIFAR-10 +python main.py --dataset cifar10 +- GAN Autoloss MNIST +python main.py --autoloss +- GAN Autoloss CIFAR10 +python main.py --autoloss --dataset cifar10 + diff --git a/papers/VelvetThunder-BJgK6iA5KX/report.pdf b/papers/VelvetThunder-BJgK6iA5KX/report.pdf new file mode 100644 index 0000000..40fe377 Binary files /dev/null and b/papers/VelvetThunder-BJgK6iA5KX/report.pdf differ