Skip to content

Latest commit

 

History

History
executable file
·
171 lines (135 loc) · 12.6 KB

README.md

File metadata and controls

executable file
·
171 lines (135 loc) · 12.6 KB

mpn logo

Montréal Paris Neurobanque (MPN) 7T MRI Data Processing Pipeline

version Docker Image Version Docker Pulls License: GPL v3 GitHub issues GitHub stars

Overview

This repository hosts scripts and tools for processing and managing high-resolution 7T MRI data as part of the MPN initiative. The aim is to facilitate open data sharing and streamline quality control (QC) and preprocessing using an integrated pipeline that connects LORIS, CBRAIN, and micapipe, following BIDS standards.

loris cbrain micapipe
Seamlessly manages raw and BIDS-formatted data, facilitating initial QC annotation. Connects to LORIS to run QC and preprocessing tools, extracting and feeding back QC metrics and initial derivatives. Performs standardized preprocessing of MRI data and generates derivatives.

Repository Contents

File Description
README Detailed documentation on the project's goals, setup instructions, and usage guidelines.
LICENSE Information on the repository's licensing terms for open-source distribution.
Dockerfile Configuration to containerize the pipeline for reproducibility and easy deployment.
Functions Directory with the functions.

Workflow

The data processing workflow begins by transferring raw MRI data, in both BIDS and MINC format, to the LORIS platform. Once uploaded, initial quality control (QC) annotations are performed on LORIS using both automated tools and human evaluations. The data is then linked to CBRAIN, where automated QC metrics are extracted for further analysis. Following this, the QC reports on LORIS are reviewed and classified as either "pass" or "fail." Once the data is approved, it is transferred back to LORIS for preprocessing with micapipe. micapipe then generates initial derivatives while applying additional QC measures to ensure the integrity of the data throughout the entire pipeline.

mpn workflow

MRI transfering steps

Option 1. Raw DICOM to to NIfTI BIDS

  1. Organizes raw DICOM into a temporary structurated directories
  2. Transforms the sorted dicoms into BIDS
  3. Run BIDS validator through deno
dcm2bids.py --dicoms_dir MPN00001_sorted/ --bids_dir /BIDS_MPN/rawdata --sub MPN00001 --ses v1

Option 2. Sorted DICOM to NIfTI BIDS

dcm2bids.py --dicoms_dir MPN00001_sorted/ --sorted_dir MPN00001_sorted/ --bids_dir /BIDS_MPN/rawdata --sub MPN00001 --ses v1

3. Integrated BIDS validation

deno run --allow-write -ERN jsr:@bids/validator {bids_dir} --ignoreWarnings --outfile {bids_dir}/bids_validator_output.txt

Running micapipe v0.2.3 with container

mpn_micapipe.sh <subject> <session> <path to singularity image>

Naming dictionary

Anatomical

N 7T Terra Siemens acquisition BIDS Directory
1 anat-T1w_acq_mprage_0.8mm_CSptx T1w anat
2 anat-T1w_acq-mp2rage_0.7mm_CSptx_INV1 inv-1_MP2RAGE anat
3 anat-T1w_acq-mp2rage_0.7mm_CSptx_INV2 inv-2_MP2RAGE anat
4 anat-T1w_acq-mp2rage_0.7mm_CSptx_T1_Images T1map anat
5 anat-T1w_acq-mp2rage_0.7mm_CSptx_UNI_Images UNIT1 anat
6 anat-T1w_acq-mp2rage_0.7mm_CSptx_UNI-DEN desc-denoised_UNIT1 anat
7 anat-flair_acq-0p7iso_UPAdia FLAIR anat
8 CLEAR-SWI_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-SWI_T2starw anat
9 Romeo_P_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-romeo_T2starw anat
10 Romeo_Mask_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-romeo_desc-mask_T2starw anat
11 Romeo_B0_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-romeo_desc-unwrapped_T2starw anat
12 Aspire_M_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-aspire_part-mag_T2starw anat
13 Aspire_P_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-aspire_part-phase_T2starw anat
14 EchoCombined_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-aspire_desc-echoCombined_T2starw anat
15 sensitivity_corrected_mag_anat-T2star_acq-me_gre_0*7iso_ASPIRE acq-aspire_desc-echoCombinedSensitivityCorrected_T2starw anat
16 T2star_anat-T2star_acq-me_gre_0*7iso_ASPIRE T2starw anat
17 anat-mtw_acq-MTON_07mm acq-mtw_mt-on_MTR anat
18 anat-mtw_acq-MTOFF_07mm acq-mtw_mt-off_MTR anat
19 anat-mtw_acq-T1w_07mm acq-mtw_T1w anat
20 anat-nm_acq-MTboost_sag_0.55mm acq-neuromelaninMTw_T1w anat
21 anat-angio_acq-tof_03mm_inplane angio anat
22 anat-angio_acq-tof_03mm_inplane_MIP_SAG acq-sag_angio anat
23 anat-angio_acq-tof_03mm_inplane_MIP_COR acq-cor_angio anat
24 anat-angio_acq-tof_03mm_inplane_MIP_TRA acq-tra_angio anat

The acquisitions acq-romeo_part-phase_T2starw, acq-aspire_part-mag_T2starw, and acq-aspire_part-phase_T2starw each have five echoes. The final string will include the identifier echo- followed by the echo number. For example: acq-aspire_echo-1_part-mag_T2starw.

Field maps

N 7T Terra Siemens acquisition BIDS Directory
1 fmap-b1_tra_p2 acq-[anat|sfam]_TB1TFL fmap
2 fmap-b1_acq-sag_p2 acq-[anat|sfam]_TB1TFL fmap
3 fmap-fmri_acq-mbep2d_SE_19mm_dir-AP acq-fmri_dir-AP_epi fmap
4 fmap-fmri_acq-mbep2d_SE_19mm_dir-PA acq-fmri_dir-PA_epi fmap

Functional

N 7T Terra Siemens acquisition BIDS Directory
1 func-cross_acq-ep2d_MJC_19mm task-rest_bold func
2 func-cloudy_acq-ep2d_MJC_19mm task-cloudy_bold func
3 func-present_acq-mbep2d_ME_19mm task-present_bold func

Each functional MRI acquisition includes three echoes and a phase. The final string will contain the identifier echo- followed by the echo number (e.g., task-rest_echo-1_bold). Additionally, the string part-phase will be included to identify the phase (e.g., task-rest_echo-1_part-phase_bold).

Naming convention | Diffusion weighted Images

N 7T Terra Siemens acquisition BIDS Directory
1 *dwi_acq_b0_PA acq-b0_dir-PA_dwi dwi
2 *dwi_acq_b0_PA_SBRef acq-b0_dir-PA_sbref dwi
3 *dwi_acq_multib_38dir_AP_acc9 acq-multib38_dir-AP_dwi dwi
4 *dwi_acq_multib_38dir_AP_acc9_SBRef acq-multib38_dir-AP_sbref dwi
5 *dwi_acq_multib_70dir_AP_acc9 acq-multib70_dir-AP_dwi dwi
6 *dwi_acq_multib_70dir_AP_acc9_SBRef acq-multib70_dir-AP_sbref dwi

The string part-phase will be included to identify the phase acquisitions (e.g., acq-multib38_dir-AP_part-phase_dwi).

Abbreviation Glossary

Abbreviation Description
AP Anterio-Posterior
PA Postero-anterior
mtw Magnetic transfer weighted
sfmap Scaled flip angle map
tof Time of flight
multib Multi shell N directions
semphon Semantic-phonetic
romeo Rapid opensource minimum spanning tree algorithm
aspire Combination of multi-channel phase data from multi-echo acquisitions

References

  1. Eckstein K, Dymerska B, Bachrata B, Bogner W, Poljanc K, Trattnig S, Robinson SD. Computationally efficient combination of multi‐channel phase data from multi‐echo acquisitions (ASPIRE). Magnetic resonance in medicine. 2018 Jun;79(6):2996-3006. https://doi.org/10.1002/mrm.26963

  2. Dymerska B, Eckstein K, Bachrata B, Siow B, Trattnig S, Shmueli K, Robinson SD. Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magnetic resonance in medicine. 2021 Apr;85(4):2294-308. https://doi.org/10.1002/mrm.28563

  3. Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport. 2006 Jul 31;17(11):1215-8. https://doi.org/10.1097/01.wnr.0000227984.84927.a7

Requirements

Package Version
python 3.8
dcm2niix 1.0.20240202
jq 1.6
bids_validator 2.0.0
deno 2.0.6

Runing singularity

# Define directories
bids=/BIDS_MPN/rawdata/
dicoms=/BIDS_MPN/dicoms

# Path to singularity image
img=<path_to_image>/dcm2bids_v0.1.2.sif

# Define subject and session 
sub=MPNphantom
ses=v1

# Call singularity
singularity run --writable-tmpfs --containall \
	-B ${bids}:/bids -B ${dicoms}:/dicoms \
    ${img} --sub $sub --ses $ses --dicoms_dir /dicoms --sorted_dir /dicoms --bids_dir /bids