-
Notifications
You must be signed in to change notification settings - Fork 978
/
Copy pathrcnn_cache_pool5_features.m
99 lines (83 loc) · 3.17 KB
/
rcnn_cache_pool5_features.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function rcnn_cache_pool5_features(imdb, varargin)
% rcnn_cache_pool5_features(imdb, varargin)
% Computes pool5 features and saves them to disk. We compute
% pool5 features because we can easily compute fc6 and fc7
% features from them on-the-fly and they tend to compress better
% than fc6 or fc7 features due to greater sparsity.
%
% Keys that can be passed in:
%
% start Index of the first image in imdb to process
% end Index of the last image in imdb to process
% crop_mode Crop mode (either 'warp' or 'square')
% crop_padding Amount of padding in crop
% net_file Path to the Caffe CNN to use
% cache_name Path to the precomputed feature cache
% AUTORIGHTS
% ---------------------------------------------------------
% Copyright (c) 2014, Ross Girshick
%
% This file is part of the R-CNN code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
ip = inputParser;
ip.addRequired('imdb', @isstruct);
ip.addOptional('start', 1, @isscalar);
ip.addOptional('end', 0, @isscalar);
ip.addOptional('crop_mode', 'warp', @isstr);
ip.addOptional('crop_padding', 16, @isscalar);
ip.addOptional('net_file', ...
'./data/caffe_nets/finetune_voc_2007_trainval_iter_70k', ...
@isstr);
ip.addOptional('cache_name', ...
'v1_finetune_voc_2007_trainval_iter_70000', @isstr);
ip.parse(imdb, varargin{:});
opts = ip.Results;
opts.net_def_file = './model-defs/rcnn_batch_256_output_pool5.prototxt';
image_ids = imdb.image_ids;
if opts.end == 0
opts.end = length(image_ids);
end
% Where to save feature cache
opts.output_dir = ['./feat_cache/' opts.cache_name '/' imdb.name '/'];
mkdir_if_missing(opts.output_dir);
% Log feature extraction
timestamp = datestr(datevec(now()), 'dd.mmm.yyyy:HH.MM.SS');
diary_file = [opts.output_dir 'rcnn_cache_pool5_features_' timestamp '.txt'];
diary(diary_file);
fprintf('Logging output in %s\n', diary_file);
fprintf('\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Feature caching options:\n');
disp(opts);
fprintf('~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n');
% load the region of interest database
roidb = imdb.roidb_func(imdb);
rcnn_model = rcnn_create_model(opts.net_def_file, opts.net_file);
rcnn_model = rcnn_load_model(rcnn_model);
rcnn_model.detectors.crop_mode = opts.crop_mode;
rcnn_model.detectors.crop_padding = opts.crop_padding;
total_time = 0;
count = 0;
for i = opts.start:opts.end
fprintf('%s: cache features: %d/%d\n', procid(), i, opts.end);
save_file = [opts.output_dir image_ids{i} '.mat'];
if exist(save_file, 'file') ~= 0
fprintf(' [already exists]\n');
continue;
end
count = count + 1;
tot_th = tic;
d = roidb.rois(i);
im = imread(imdb.image_at(i));
th = tic;
d.feat = rcnn_features(im, d.boxes, rcnn_model);
fprintf(' [features: %.3fs]\n', toc(th));
th = tic;
save(save_file, '-struct', 'd');
fprintf(' [saving: %.3fs]\n', toc(th));
total_time = total_time + toc(tot_th);
fprintf(' [avg time: %.3fs (total: %.3fs)]\n', ...
total_time/count, total_time);
end