-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMakefile
69 lines (53 loc) · 2.77 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
SHELL := /bin/bash
PYTHON_VERSION = 3.10
# Variables that will be used mainly for the Docker build
PLATFORM = linux/arm64
EXAMPLE_DIR = examples
DOCKER_RUN_FLAGS = --env NEPTUNE_API_TOKEN $(NEPTUNE_API_TOKEN) --env NEPTUNE_PROJECT $(NEPTUNE_PROJECT) --privileged --network=host --ulimit nofile=65536:65536
DOCKER_RUN_FLAGS_GPU = $(DOCKER_RUN_FLAGS) --gpus all
export PROJECT_ROOT = $(shell pwd)
init:
uv init -p $(PYTHON_VERSION)
install: configure_commit_template
uv sync -p $(PYTHON_VERSION) && uv lock
# Configure git commit template, this will help to write better commit messages
configure-commit-template:
git config --global commit.template $(realpath assets/commit-template.txt)
# Pre-commit hooks are useful to run some checks (usually linters) before committing the code to the repository
# It will help to keep the code clean and consistent, this commands sets up the pre-commit hooks
configre-pre-commit:
uvx pre-commit install
# Run pre-commit hooks on all files, it will run the checks on all files in the repository
format:
uvx pre-commit run --all-files
# Run pytest to test the code unit tests under the 'tests/' directory
test:
uv run pytest
# Use uv to run the train script while passing the arguments from the command line
train:
uv run src/train.py ${ARGS}
# Use uv to run the evaluate script while passing the arguments from the command line
evaluate:
uv run src/evaluate.py ${ARGS}
# Build the Docker image with the base dependencies
build-docker:
docker build --target lightning-base -t lightning-base -f dev.Dockerfile .
# Build the Docker image and jump into the container to test a fresh environment (CPU)
dev-container-cpu: build-docker
docker run $(DOCKER_RUN_FLAGS) -v $(PROJECT_ROOT):/app -it lightning-base:latest /bin/bash
# Build the Docker image and jump into the container to test a fresh environment (GPU)
dev-container-gpu: build-docker
docker run $(DOCKER_RUN_FLAGS_GPU) -v $(PROJECT_ROOT):/app -it lightning-base:latest /bin/bash
# Run the train script using the Docker image
train-docker: docker-build
docker run $(DOCKER_RUN_FLAGS) --user root -v $(PROJECT_ROOT):/app lightning-base:latest /bin/bash -i -c "uv run /app/src/train.py ${ARGS}"
# Run the evaluate script using the Docker image
evaluate-docker: docker-build
docker run $(DOCKER_RUN_FLAGS) --user root -v $(PROJECT_ROOT):/app lightning-base:latest /bin/bash -i -c "uv run /app/src/evaluate.py ${ARGS}"
# This build the documentation based on current code 'src/' and 'docs/' directories and deploy it to the gh-pages branch
# in your GitHub repository (you then need to setup the GitHub Pages to use the gh-pages branch)
deploy-pages:
uv run mkdocs build && uv run mkdocs gh-deploy
# This is to run the documentation locally to see how it looks
serve-docs:
uv run mkdocs build && uv run mkdocs serve