diff --git a/examples/Kanji - TRec Example.ipynb b/examples/Kanji - TRec Example.ipynb index 0ce284c..b06460c 100644 --- a/examples/Kanji - TRec Example.ipynb +++ b/examples/Kanji - TRec Example.ipynb @@ -6,10 +6,9 @@ "metadata": {}, "outputs": [], "source": [ - "from fit.datamodules.tomo_rec.TRecDataModule import KanjiFourierTargetDataModule\n", - "from fit.utils import convert2FC, fft_interpolate\n", - "from fit.utils.tomo_utils import get_proj_coords, get_img_coords\n", - "\n", + "from fit.datamodules.tomo_rec import Kanji_TRecFITDM\n", + "from fit.utils.tomo_utils import get_polar_rfft_coords_2D, get_polar_rfft_coords_sinogram\n", + "from fit.utils import denormalize, convert2DFT\n", "from fit.modules import TRecTransformerModule\n", "\n", "from matplotlib import pyplot as plt\n", @@ -19,7 +18,10 @@ "import numpy as np\n", "\n", "from pytorch_lightning import Trainer, seed_everything\n", - "from pytorch_lightning.callbacks import ModelCheckpoint" + "from pytorch_lightning.callbacks import ModelCheckpoint\n", + "\n", + "import wget\n", + "from os.path import exists" ] }, { @@ -48,7 +50,11 @@ "metadata": {}, "outputs": [], "source": [ - "dm = KanjiFourierTargetDataModule(root_dir='/data/kkanji2/', batch_size=8, num_angles=33)\n", + "dm = Kanji_TRecFITDM(root_dir='./datamodules/data/Kanji', batch_size=8, num_angles=33)\n", + "# FIT: TRec + FBP vs FIT: TRec\n", + "with_fbp = True\n", + "\n", + "dm.prepare_data()\n", "dm.setup()" ] }, @@ -58,6 +64,7 @@ "metadata": {}, "outputs": [], "source": [ + "angles = dm.gt_ds.get_ray_trafo().geometry.angles\n", "det_len = dm.gt_ds.get_ray_trafo().geometry.detector.shape[0]" ] }, @@ -67,9 +74,7 @@ "metadata": {}, "outputs": [], "source": [ - "proj_xcoords, proj_ycoords, src_flatten = get_proj_coords(angles=dm.gt_ds.get_ray_trafo().geometry.angles, \n", - " det_len=det_len)\n", - "target_xcoords, target_ycoords, dst_flatten, order = get_img_coords(img_shape=dm.IMG_SHAPE, det_len=det_len)" + "img_shape = dm.gt_shape" ] }, { @@ -78,8 +83,9 @@ "metadata": {}, "outputs": [], "source": [ - "n_heads = 8\n", - "d_query = 32" + "proj_r, proj_phi, src_flatten = get_polar_rfft_coords_sinogram(angles=angles, \n", + " det_len=det_len)\n", + "target_r, target_phi, dst_flatten, order = get_polar_rfft_coords_2D(img_shape=img_shape)" ] }, { @@ -88,33 +94,61 @@ "metadata": {}, "outputs": [], "source": [ - "model = TRecTransformerModule(d_model=n_heads*d_query, y_coords_proj=proj_ycoords, x_coords_proj=proj_xcoords,\n", - " y_coords_img=target_ycoords, x_coords_img=target_xcoords, \n", - " src_flatten_coords=src_flatten, dst_flatten_coords=dst_flatten, \n", - " dst_order=order,\n", - " angles=dm.gt_ds.get_ray_trafo().geometry.angles, img_shape=dm.IMG_SHAPE,\n", - " detector_len=det_len,\n", - " init_bin_factor=1, bin_factor_cd=5, \n", - " lr=0.0001, weight_decay=0.01, attention_type='linear', n_layers=6,\n", - " n_heads=n_heads, d_query=d_query, dropout=0.1, attention_dropout=0.1)" + "n_heads = 8\n", + "d_query = 32\n", + "model = TRecTransformerModule(d_model=n_heads * d_query, \n", + " sinogram_coords=(proj_r, proj_phi),\n", + " target_coords=(target_r, target_phi),\n", + " src_flatten_coords=src_flatten, \n", + " dst_flatten_coords=dst_flatten, \n", + " dst_order=order,\n", + " angles=angles, \n", + " img_shape=img_shape,\n", + " detector_len=det_len,\n", + " loss='prod', \n", + " use_fbp=with_fbp, \n", + " init_bin_factor=1, \n", + " bin_factor_cd=5,\n", + " lr=0.0001, \n", + " weight_decay=0.01, \n", + " attention_type='linear', \n", + " n_layers=4,\n", + " n_heads=n_heads, \n", + " d_query=d_query, \n", + " dropout=0.1, \n", + " attention_dropout=0.1)" ] }, { "cell_type": "code", "execution_count": 8, - "metadata": {}, + "metadata": { + "scrolled": false + }, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "torch.Size([1, 1056, 128])\n" + "GPU available: True, used: True\n", + "TPU available: None, using: 0 TPU cores\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" ] } ], "source": [ - "proj_pe = model.trec.pos_embedding_input_projections.pe\n", - "print(proj_pe.shape)" + "trainer = Trainer(max_epochs=120, \n", + " gpus=1,\n", + " checkpoint_callback=ModelCheckpoint(\n", + " filepath=None,\n", + " save_top_k=1,\n", + " verbose=False,\n", + " save_last=True,\n", + " monitor='Train/avg_val_mse',\n", + " mode='min',\n", + " prefix='best_val_loss_'\n", + " ), \n", + " deterministic=True)" ] }, { @@ -123,72 +157,54 @@ "metadata": {}, "outputs": [], "source": [ - "img_pe = model.trec.pos_embedding_target.pe" + "# Uncomment the next line if you want to train your own model. \n", + "# trainer.fit(model, datamodule=dm);" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR8AAAI/CAYAAABOE93mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d3gUx7b2gf56psPMKGcRBAIkBEJkEAIhksg5ZzDJJBsb55wTzhEHgnHAOGNsbDA555xzFkFCCGVN7vtHS4NG0/L2Od+9n72/q/d59sGHpnqq1lu9unq9q1YJqqpShSpUoQr/t2H4pztQhSpU4f8/UeV8qlCFKvwjqHI+VahCFf4RVDmfKlShCv8IqpxPFapQhX8EVc6nClWowj8C8f/mj4WHh6uxsbH/N3+yClWowj+Iffv2ZauqGqF37f+q84mNjWXv3r3/N3+yClWowj8IQRAuVXat6rOrClWowj+CKudThSpU4R9BlfOpQhWq8I+gyvlUoQpV+EdQ5XyqUIUq/COocj5VqEIV/hFUOZ8qVKEK/wiqnE8VqlCFfwRVzqcKVajCP4Iq51OFKlThH0GV86lCFarwj6DK+VShClX4R1DlfKpQhSr8I6hyPlWoQhX+EVQ5nypUoQr/CKqcTxWqUIV/BFXOpwpVqMI/girnU4UqVOEfQZXzqUIVqvCPoMr5VKEKVfhHUOV8qlCFKvwjqHI+VahCFf4RVDmfKlShCv8IqpxPFapQhX8EVc6nClWowj+CKudThSpU4R9BlfOpQhWq8I+gyvlUoQpV+EdQ5XyqUIUq/COocj5VqEIV/hFUOZ8qVKEK/wiqnE8VqlCFfwRVzqcKVajCP4Iq51OFKlThH0GV86lCFarwj+Bf6XycDicFtwtRVVX3elFeEXabQ/ea3eagKK9It62qqhTmFuF0OHXb2kpsFBeU6F5zu90U3C7E5XLpXi8psmIttuleczldFNwuxO12614vyi/GbrXrXnPYHRTm/vV4HPZKbGG1U5RfrHtNVVVtPE798ViLbZQU6tvC5XL9tS0KSyq1xX8rtyVFVt1r/4nb4oKSSrl1Opz/T3H7P4X4/5W7/H8JLqeLBU98w/JPVuNyuggKC2DGexPpOKwtAEe2nOCdqZ9y/XwmBkEgsV0CTqeL29dvk5jagJICK7tX7MftdhMdG8kDn02jaadGAGz9ZRdz7/+c3Kx8jKKB3lO6MvXNcYiSSO7NPN6e/Al7Vx1EVaFO41o8suge6japDcBvn6ziy2e/o7jAimySGPnYQEY+PghBELh27gZvTpzLiZ1nAEhq34BHFt1DVO0I3G43X7/4Ez+/uxyHzYlfkIUpc8bQc2IXAE7vO8fbkz/h0vEMBINAmz4teHD+dAJDA7DbHHz64BesWrQBt8tNaPUQ7vtoCm36tARg7+pDvD9jHtkZtxCMBrqO6cA9H0xEMSsU5RXxztTP2P7rHlS3Ss361XhwwQwSU+oDsPabzcx7+CsKbhchSkYGzurFhJdGYjQayb56izcnfsyhTcdAhfqt6vHIopnEJNRAVVV+fHs5S179GVuxHZOfwrjnhjFoVm8EQeDS8Su8OfFjzh64gCBA8y6NeXjRTEKjQ3A5XSx8cgm/fbwKl9NFYFgAM969i07DUwE4uvUE70z9jGtnb2AwCLQfksLsT6diCTBjLbbxwT3z2fjddtxuN1G1Ipj92VSad2kMwLZlu/novs/JzczFKBrpNSWdaW+N93D7zpRP2fPnAQ+3Dy2cQVyzOgD8Pm8Ni576luKCEmRFYvijAxj95GAEQeD6+UzemDiXEztOA9AoNYFHFt1DdGwkbrebxS/9xE/vlHIbaGbya2PoNTkdgDP7z/PW5I+5dKyU296l3IYF4LA7+OTBLzVunS5Cq4Uw66MppPTVuN235hDvTZ/HzYxbGIwG0kence+HkzzcvjttHtuW7b7D7fzpJLZNAGDdki189vBXFOQUatze24sJL5dyey2HtybO5eDGUm5b1uXhRfdQq4HG7c/v/s7il3/SuLUojHtuKIPu66NxeyKDtybO5cz+CyBA8y5JPPz5PYRVC/lfP+9CZW+g/1+gVatW6t69eyu9/uGsBaxatAFb8Z03hWKRefHXx4mMCWN6i0ex/Q+8rmJRmLv7NfKyC3iy9yve9zXLpI/twOxPp3J34wfJOH3d601hCTTz5ZkP2bvqEO9N/6xCn7SHbsA9PRlXZyZ5twpQ3ZodDUYDIVFBfHVuLt++9gs/vvWbV58Vi8JjX82iYZs4JjWcTUnhnTeqKBmJTarFx3tfZ864D9j2y25sJd62eHPd80iyyOy0p736JJskknu34LmfHub+1Kc4s+88DvudVYDJT2H+kXe4dOwKL414x2c8A+7tyaSXRzE+7l6yr+bgdmlvckEQCAj146tzc1nz5UYWPrHE682nWBRmvHsXaUNSuCtuVunKRLtmFA1E1Y7g85Pv8+mDX7Jy4foKtpB54ZdHiYqNZEbzR7zuKykiie0SeGvd8zzd7zUOrDuC3erwavvRrjkU5BTyRM+Xve1klukyuj0PzJvO1KYPceXUNVyOctwGmPni9AccWHeEd6Z+5sPPmKeHMOi+3oyrew952fl3uDUIBEcF8/X5uXz/+jJ+eONXH1s8+sU9JLZL0Lgtt9ISJSO1G8Xwyb43eOOuj9jy804fbt9Y+xyKWeb+1Kd8uG3dsznPL32E2WnPcHrvWRw2b27nHX6bKyev8eKwt3y47T+zO5NfHcNd8bO4mXHLi1v/ED++PvcR677ZwrxHF/vYYvrb4+k0IpVx9e6hKNeb28haESw69T5Go5HKIAjCPlVVW+ld+9esfEoKS/hz4XqvCQZgK7bz9Ys/UqdRDM5KlqCVwWFz8NPby8m8nO1FCICtxM7arzfRtn8rsi5n+yxRSwqt3NvmSUoKSnzbFtv4bs4vBEcEYi2xeSYngNvlprighG1Ld/HzO8t9nKWt2MZXz31P6uA2Pp8IToeLjNPX2LfmEFuW7sJRwRb2EjvfvrYU2Sz72MludbDrj/3sX3uYc4cueTmesnv/OvdPDm88pjueXz/6k4TW9bRPCNedTwhVVbFbHWz8bhvfvLLUZ8ltK7ax+CXtbemwOSj/LnM53dzOymPXH/tZsWAd9pKKv6txW69ZrE9/HTYnJ3ee4cD6Iz6Op+z6D2/9Ss71XK+HGDRu132zhfaD2pB58aaX49Fs4WTl5+tZvWiDLj/fv7GMsOoh2IorcOtWKSksYcvPO/np7eW6tvjyue/pOLwdTh37Xz17g72rD7H5px2+/JXYWfLKz1gCLbrc7vnzAAfWHebsgfNejgfAaXfx60crObr1lC63v328msSU+uTnFPhw67A5WL9kK4tf+lnXFotf+gmX06XLbe7NPPatPkxyr+b8b/CvcT65WfkYjPohqBvnMxEEbcD/E7hdbi6duMqt6zm6142SkfOHL+l/c7tVMi9mVXrv4rxirp65jrXQdyVmL7Fz+dRVnweqDFlXsrl07IrPJAIQDAbO7r+AJIs+zkdVIePUNSRF8nooyiCbJE7vO4dR9LWj0+7k8vEMbly8qdsnVVW5fCwDp06frEU2Ms5cJzcrT7ft7Ru5XDl1zccJgMbZhSOXMRgE3bbXz2chSqJufEKURU7tOYekSD4PpNvl5sqJq+TezNe9r1ESOXfooi63dquDyycyyL6qPy9KCqxcPX3da1VaBluRjYxT1yqN49zMuMWl4xk4dOJWggBnD1xAlEWf8agqZJy5jsmi6HIrKRKn953HKPquMpwOJ5eOZ3Cjsvmqqlw8loHT7mtja5GNK6evcTsrV7fp7cw8rpy86uPUAFwOFzcuVP6M/Cf8awLOYTVCEQTfCSoIENeiLo3aJSAp/zNfKcpGEtvVJ6F1HILO5FfdKs06JVHpl6dOf8oQWj2E+Jb1MPubfK7JJpkGyfH4BZp128Ym1SKxbX0Us+xzzeV00bxrY92JYjAaaNAmnoYp9XUnocPmoFX3Zj5vXa1PEo1SE6jXrLZun2RFIjE1AVH2tbHZ30T9lvWoVjdKt22N+Go0SI7D5Kf49tkg0DitAQaD71QTBIhrXqdSbh02By27N9ENQIuS9lmW0LqeLrdul5tmnfW5NVkUElMSqNWwpu54QiKDqN9Kn1vFopCQHId/iL9u29hGMSSmxKNY9Lh106JrY5+VGJRymxxPo3YJlXLbomuTyrltl0C9ZrG6fRJlkaT2DTBKvvc1+5tIaBVH9XrRum2rx0WT0Doek44tDEYDdZvqz6e/g3+N85EVibHPDkWxeE9g2axw1wvDGTirN4pF0Z1oehAMAopZYegDfRn37DCfB12xKIx8fBCJbeuTlJqAbJJ0biKAzkOjWGTufmMc7fq3IrxmGFK5B1ZSRKrHRdO6ZzMmzxnjMx7FLHP3HC0waQ4we632ZLNMy25NSGgVx5AH+ni1FQSt7egnBzPisQEoZtnLNyoWhX4zehDXvA7tBrT2Gq/BIGDyN9FnajcmvTLat08WhYkvj6R5l8bUSqyJpNyxhSgZCYkKInVQMlPfHOfzUClmmalvjqfTiHYEhgd4TXDZJBHXog6N0xIZ99wwXW4nvjSSAff2RLEoXqsjxSLTcXg74pvXpceEzhVsIaBYZIZUwq3JojDisQE0TKlP47QGyOWuG0UjfsEWuo7rwN1vjNWZFzJ3vzmOlL4tiawV7uWMJUWkWt0oWvdsxpQ5Y3xtYZGZMmcsPSd1waLDbYv0xhq3D/XD5GMLmTFPDWbYw/1RLL7c9pnajfgWdUkd1MaXWz+FvtO7M+nlUTp9Upjw0giadmpEnaQYr3kuSkaCI4NIG5rC1DfG+drCLDPtzfF0GJZCcHggYjluJZNEvWaxNGqXwP8W/6qAM8Carzex5JWl5Ny4Tf1W9ZgyZywJreoBcO3cDRY8vph9a45gCTThH+RHxpnrSIqI6lZp1b0pp/edpzC3mGadG3H3G+OoGV8N0Ja78x/7mpO7zxISGcSoJwbTfUInBEHAbtW+t3/7ZDUFOYVaRwwGz0pMECAg1A97iYNqdSKZ8NJI2vbTYmiFuUUseuY7Nn63DUGALmPSmPDiSCwB2qpny9JdfPXc92Rdzia0egi1kmqT0Koe3celobpVFjzxDbv/2I9ilukzvRsjHxuIJEuoqsof89fywxu/kpedT6O2Cdz9xljqNNbeNJdOZDD/0a85suUEgaEBDH2oL/1n9kQQBFxOF9+/+SvLP15FSaG19GEZS1TtCACO7zzNgscWc+7QRcJrhDLu2WF0GqGpTiVFVr56/gfWfrUJl8tNh6FtmfTKKALDAgDYvfIAi57+lqtnbxBTvxqTXh1Ny25NAci9mcfCJ5ewbelujJKRHhM6aU7HrD1oaxdv5puXfybnxm3iW9bl7jljSWgdB8D185nMf3wx+1Yfxi/QzIB7ezL0oX4YjUbcbjfLPlzJz+/9QeHtIpp2SmTqG+OoWb+6xu3BC8x/dDEnd58hODKIUY8PosfEzhq3NgdLXvmZlQvXYbc6aNuvFZNfG+NRaQ5tPMaCJ77h0vEMomMjmPDSSNr1bw1osv+iZ75jw7fbQID00Wnc9eII/AItgKagflnKbWyjGKbMGUvjtIYAZF+9xYInlrDr930oZpne07ox6vE73K5YsJbvX9e4TUypz91vjPOoq5dPXmX+o19zePMJAkL9GPJAXwbc0xODwYDL6eLHt37j17l/UlJopVUPzRFGx0YCcGLXGRY8tpgzBy54uO08UuPWWmzjq+d/YM1Xm3A5XaQNSWHyq6M93O758wCfP6VxWzNe47ZVd43bvOx8Fj65hK0/78IoGel+l8ZtRSdaEf8VAecyNO6QSPvTN7h6PotmHRtSq0ENz7WImHDaD22HwWwmODyATkNTuHQiA2uhlfTR7cm9mc+KzzeQk5lHSu/mnocNoGb96qQNT8U/MoTo2AiadGrkcS6ySaZNv9bczilmw3fbsRWWoJbL25AUmS5jO5F9PZe6STEkJMd5rvkFWWg3MJkSqwtBgHYD2ngt1xumxNN2cFv+WLCezBv5XLt8kH3rjvLdW8t5/rvZtB/cFowilkAzbfq0QpK1N5MgCDTv0pir57PJyrhFq65JVI+r5rlvtTqRpA1PRQkKILx6CM27NvWMxygaSe7dkuwb+RTmFtGuXyvCa4R62tZOjCFteCrBNSOIiY8mMbWB55rZz0S7AckUFthxOly0G9SGgNA7nxj1W9aj/fBUzh26RP0WdYhrXtdzLTAsgNRBKThcArJJou2AZI/j8XA7/AZXz2XSNK0BMV7chmncmkwEhwfQuncLj4piMBho2b0ZN67kkJOZR5tezYisyO2IVPwjg4muXYFbRSKlX2tyc4opKbSSOjiZ4MggT9s6TWrTYXgqJ/aep05iTRKS4z3XLIEW2g5sQ3GJxm3bAcmel4rGbX3aD2/PpRNXSWwTR53GtTzXQqJDSB2cgmowYgkw06ZPSy9um3VpwtXz2WReuUXLLo2oHnfnsyc6NoK04anIgf6EVw+hZbdmns9Wo2ikde8W3LyRT8HtQtr1benFba2GNWk/PJWgGuHUjIumUTluTRaFtgOSKci34bQ7SR2c4sVtfMt6pI1oz9mDF4lvHkt8izvcBoT6025QCg6nFn9qOyD5Pzqe/4R/1crn8JaTPDPkHZwOJ06HC8UiExQWwEdbXsAcYOKRnq9x8XgG1iIbgiCgqiqSInoCeAZBwOVy43a5MfkpxNSvxturn8JWYue+js+Tk5mHrdiOKBkxSkZe+H42zTs34ru3lrPk9d+wWx2oqooggADIkoDbpWI0KbjcbuwlDmRFQlRE3l79JHWTavHuPZ+z8aedWIu0wLPJotDzrg7MeHMsZw5c4JFec7CV2DWVoYKtRVnru7XIhmAQkBWJiS8MY9DM7uz68yCvjJuL0+HE5XRjsihE1Azl/Y3PYTAIzE5/iRsXsrAW2zGKBkRJ5LGF00jt34o/Pt/AZ48twWFz4HarmPwU4pvHMmf5o+TnFHJv++cozCvGVmxHkkWMkpHXfnuUxDZxLHjme377bC32Ejuqqsm47fq24NEF07hy6jqz01/CYXNgtzqQTRKKWeb9Dc9SvV4Ur4yfy57Vhz38yGaJoff3YvxTgzmy9SRPD34Hp9OJ065xGxjqz0dbXsASaObRXq9x4ZjGrcFoQJJF7n13PN3HprHp5128PX0BDrvTw23N+GjeWfM0dquDWR2f5/aNXKzluH3uu/tp2SWJH975ncVzftW4LbVFk7QGvPDDbG5m5DCrw/NYi2zYSuxIiogkS7y1+knqNa7Fe7MWseGHHV7cdh/XnnveHs+Zgxd5pOdrOB1OHDYnilnG7G/iwy3PE1YthGeGvM2xHWe8uJ3w3FAG39uDPasP8dKYj3A6XbgcLkwWhfDqIXyw6TmMopHZ6S9x/XwW1mKbh9tH5k8lbWBrVi7ayCePfuNli7imtZnz+2MU3i7inrTnKMwt0ua5LCJKRl799REapcTz+XM/suyT1V7cpvRuzuOfTyfjzA1md34RezluZZPE+xueo0ZcFK/e9TG7Vx0q5Vb7TBwyqyd3PTPkL5/5v1r5/Gucj6qqjGv4IDczvBUIURbpO6ULtRtU57PHl2DVibpXBsUsM+WVEWRezmbZx2t8gnVh1UJ4f+MzTGzyqI/yJMoiwx/szblDl9mz6hDuCgpEw+R6zHhzLI/0es1HCZDNEh9ufJ45kz7hwrGMigO98986AW3ZJPHl8beZ1upJ8ss+AcuuKRIjHu6LbJL4+pVffBQTvyALnx98nXENH/S5ZrIo3P/hBA5uPsHab7b5qEs146N54YcHmNH2ad22r/76MIte+Imj205VGIJAy/QkhtzfixdGvu95UMsgKRIL9r/Go73nkHkp2+uaKBnpM7kzdRvX4uNHFvvYUbHIfH38be5KesRHeVLMMpNeHMat67n88tEqH2UxNDqIDzc/z4TGj/ooTyY/hSe+mMnqrzez4/f9PtzWb1mH+967i4e6v+qj4JU52zenzuPc4cte1wxGAx0GJ5M2sDVvTp3nYwvZJPHlsbeY3uZp8rILKthJZPiDfTD7m/nq5Z+xl1TgNtDM54ffYFwDfW5nvX8Xx7afZtXiLT4B7er1onj55weZnqLP7ctLH+TrV5dxeMsJH26bd27EiIf68tzwd3XHM3/va0THRlAZ/is+u25m5PgQAppEvH35Pm3F8z9wPKDle2z6aRe3rufqqgSFeUVs+HEnRtGokzvh5Lu3/8AgCD6TE+DU3vPs+vOgjxwO4Ha62fb7Pi6fuu7bKUHwWQGVh1E0sv677boyvd3mYPPS3cgmX+kZQHW7WfftNl0p11psY9PPuzm555yurJ15KZutv+7R7Zq1xMbOlQc4uv20z3VVVTm46Tg146N9JieAwSiweelubmf6yvROh4tty/dz5fQNXSnXaDSydsl2XZHBVmJn08+7yL1ZoGur4nwrG3/chSgZcFTolrXIxrZf97Jv3VFdbs8evMTOlQd17+t0utj++z4uVnypoClse1YdQhAEXVto3O7wyXcCLW9p89I9mP0VH8cDmp3XLfkrbndx5sBFXSXtZsYttv6q/9K3FtvYseIARyq8VMp+89DmE9ROrKGb3CsIsG/dUfpM7qx77/+Ef4/aZdLPXQEtYl+ZbP2fYAk060rAAG6XSkCwf6UKmtvp1nVaAAbRiNnfrCtfGiUjfgHmv1Lqte86vb8WICDYzysZrDzM/iZdCRjA5XLjH+Kn69wEQVsZ6UnAoE00S6BZN0dILB2rpCPDg7a6MfubdCVig8GAX6BF9yEHMFlkLIH641FVlYDQym1hCbRgroRbl8uNf7BFd3VpMBrwCzLrK5xoClJl4xFFLYZT2ZyRzTKWAJNuXpMggH+IBVdl4/E3YfHXn+dul0pAqL9u3pIggH+gBVOl3GorJ708OlEyYgn8K25FLP4KBj1ujUZMfvq/+Xfwr3E+wRGBNGhdz2fyKxaZ/lPT6TOlS6XGrQwmi0K/u9PpP62rz0NnMBqIa1qbLiPaIlTmCYxGMBp8SJMUkY6Dk+k8rI3+JFSh07AUkns29ZInyyDKIn5BFt3JbxCNdBnZjhpxUT4T2GRRGDC9K/2ndvVxqIIAETVCSR/ZDknnvrJZpvfETvSb0sVHUhUlI807N6LzsLa6k9tgNNBleFu6jGjnk48jKxLdxrQnfVSqruNCVek8PIVGKfG63Pabmk7fyV10naIlwEz6qHYERwT6+JDy3FYMfBqMBuo1jqHz8La6uWOSLNJ9XBo97+row4Eoi7Qf2IrOw1IqfXl0HtaWlN7NfXKiZLNE74md6DWho1e6Qvl+dRnRjpiE6jrcyvSf3pX+09J9xiMIAuE1Qugysh0mndww2SzTe1In+k5J9+HWKBlpmtaATsNSQMf/G4wG0ke0I32UL7eSItF1dCrpI1N1HbGqqqT0buF707+Jf43zAXjiy5lUrxvlebvLJon2/VvRZ0oXWnbR4gplb9nyD7UgCEgmCZOfgjlAayspEoPu6U5yj6b0vKsDHYe0QTZJnntXi43g6cX3oJhlXvr5Qd+EvzKpXTAQGh3sCSiaLAr1mtTmnrfHEV49lEfnT0WxaG87S4AJk5/Ck1/dQ3BEIA/MnUxso5qY/BRks4xRMhLbqCaPfz6d7y98xMQXhiGbJE9b/xA/XvnlISRZ5Lnv7iciJszTX6n0Ie88vC3tB7ai18RO3k5REMjLt3Pl9A1eXfYIgWH+WAJMmAO0tmMfH0BSu/oMntWT5J5NPbYw+SnUrF+Nhz+7m4AQP5779j7M/gqWADOWABOKWeaBuZOIjo1g+uujSWhZF8Wi2UKxyCSmxDH5peHE1K/GrPfu8hqPJcDM8z88gCXAzOOLplO9XjRmf8XDbWrflvSb2pXmnRsx/IE+Hm4tASaCIwJ55ZeHMBqNvLz0IUKjg724HTC9K216NqX7uDQ6DWvjaWv2NxFdO5ynFt+LYpZ5+ecH8QuyeGwhmySmvjaSukm1GPfUIJqkNajAbS3ue28CYdVCeGzhdC9uFYvMk1/OJDgykNkfTaJOKbdmfxOyWaJ5p0aMerQ/8c3rVODWjH+wH6/88jCyIvHct/cRWSvci9v0Uamkj2xHu34t6TOls9d4wqoH8+KPDyCKRl5Z9jBB4QFYAswebkc/2p/G7Rsw6J7utOndzIvbmPhoHp0/Df9gP5797r5S+97hdvZHE6lWJ5Kpr44ioVU9L24bJtfj7ldGUiMu2odbc4CJF76f/b/+IoG/GXAWBCEYWAAkofnPScAp4HsgFrgIDFdV9fZf3efv5PmoqsquPw9y6eR1kns0oU6idxZqVsYtNv68m7DoIEIig9iydDcG0UD6yFQSWtVl0y+7yc64TcfBrYiq5R0Iu3gig11/HiYmPpq2fZp7vRUzL2czscUTni0cZddMfgpPfj6NgCALh7aeokHrOjTrkOh136L8YtZ+q8Umuo1K9fos2rRsL2/N/BzQvvkNopGnPp9Ky07aPW5n5rHuh50EhlroPKyt1/LX7Xazffl+rp7Pol3f5sTE35Hat684yJy752MvtnmSIQVBIKJGCF8eeBWX08WGH3eRezOfLsNTfHYfnz18ib1rj1I3KYbW3Rp72cJabGPtt9tw2F10G52Kf5DFq+3hrac4vussSanxJJXulC9Dfk4Ba7/bgWKW6TqyrZfUXp7b1t0aUzcppgK3OWz6eSehUcF0GtrG623rcrnZ/MtubmbkkDawNdUqBDkvnbzKzpUHiYmv5sOt3eZg3fc7KM4vIX1EW4IjAr3anthzjkObT5LQsg7NOjb0altcUMKaJdsQBIFuo725VVWV/RuOc+bgRZp3SiShRR2v++Zm5bP2+x0EhFjoMlyH298PcPVcJu36NCOmNGepDNcuZLH1131E1Qqj/YBWGMu9aJwOJxt+2kVulj635w5fZs+aI9RJiiG5uz63dpuTbqNTCQj282p7eNspju88Q1Lb+iS18+a24HYha5Zs1zZlj2z7t6T2/2O1SxCEL4EtqqouEARBBizAk0COqqpzBEF4HAhRVfWxv7rPf3I+1iIbb9yziL0bjiNKIm6XmzEP9WbYvd0B2PTrXj585FvcLjcOuxNRMuJ0ugiNDGLAlM5sX3GQM4cuY5QMCIKBe14bTpehbQBY+uk6vn5jOYLBgNPhpHmHBjz2ySQs/iauXcjixYmfkXE2U3M+qorqcGKyyDRNa0CNhGr88cUWRMmIw+6k8+DWzHpjNKJk5NT+i7w6dQF5OYWgQkhEAE9/PpV6STFcPZ/F3e1fQK3wjS+bJBYfeo0Tey/w9n1f4rA5cbnc1KwXxbOLphFVK4zCvGJem7aQIzvOIEoiqqoy+ZlB9J3QAYDpHV7kUsWAtlvF7Kfw+PwpLH7rDy6duo7RaECUjDzw3jja9myKqqoseWclP364CmPpeFJ6NOGh98ejmGUunrjGS5Pncet6rhZLCLLwxLzJJLauh8vp4uMnv2ft9zsRZRGn3UXPsalMfXEoRqOBw9tP8/qMzykusKGqbiJrhPLMomnElAaj35z1BXvWHkNSRFxON6Mf7MXwWT0A2LJ8Hx88vASX043L5aZuo5o88/lUQqOCyM0u4JXJ8zl18CKiZEQQBGa+NoL0Um6XzV/Pl6/9dofbtAY8+slE/ALMXLt4kxcnfMb1izcxGA2YzDKPzJ1Ai44NUVWVhS/9wvLPN3m47TiwFfe/NQZRMnL64CVemTKf/JxCVCAkPICnFtxNXJNa2G0O3n/oG7Ys348kizgdLgZO7cyEJwYgCAJ71h3j7fu+xG514HK5qVE3kmcXTSO6djhF+SW8Nm0hh7ef9nA76amB9JvUEYDV327n02d+AjRH07BlXZ5aMIXAUH+yr+fy0sTPuHjiGkbRgFEyMvvtMaT2aY6qqnz77kp++OAOt226N+HhDzRuL528xkuT5pF9/TaCIOAXaObxzyaT1CYOl8vNJ09+z5rvdni47T66HdNfHobRaODIjjPMmf45xQUlqCpE1Ajhmc+nUqt+Nf4K/0fORxCEIOAgUFct948FQTgFdFJV9bogCNWAjaqq/mWu9X9yPq9OXcDOVYe9lCfFIvPQ++OJrhXOIwPfxqajBJT2BwS8gtaKWWbOz/dzOyuf12cu8lJUJFmkdXojnpw/hbtaPU1OZr5XvMNgNHDvayMoKbbx1eu/VyjZINFnQkdG3t+TCa2epriCDOwXaObrA6/wxLAPOLX/ondHVRVREhnzcG++e/9Pr/EYDAIRNUL5fNcLPDNqLod3nPba46WYZZ5ZNBVJFnl86PveAfrSvpstMv4h/tzKzPMK1CpmifdXPsaZw5f56LHvvMYjmyQ6DGjJvXNGMq7FUxTcLvLqsslPYdGuF/lt4UaWfrrWq8+KWWbk7J50G5HClHbPeymSggCBYf58vf9V3r7vK7avPOjD7YPvjqN63Uge7v+2V58MRgO16lfj4/VP8kCfNzl7+IqXSqeYZV778T7ycgqZM/1zH25bdGrIM4umMaHV09zKzPOZF59teoYdqw7xxau/+diiz11pjH6wN3e11Of2q/2v8MWrv7JqyXbvMh9mmbufH0zzDg2Y2cVbpjcYBMKrh7Bo94s8N+ZjDm475cPt0wvvxmRReHrUR15tjZKRBi1ieXPZg0zr8BJXz2dV4Fbm3RWPcOH4VT54eInPeNL6teC+N0czrsWT5OdU4Naicfv7F5v46eO1PqVJhs/qTs+xqUxOec6X21B/vtr/CrJOfOvOv/s/k9rrADeBRYIgNAX2AfcDUaqqlr16bwD6uw7/JoryS9j552EfedNWbOfHD1dTq340dp0d12VQVdUnoGa3Ovjls/VkZeT4SLkOu5M964+x9feDFBdafQKtqtvNpdM32Pr7fp2SDQ5WfLmZarXDdJULl8vNpmX7OHPoss81BAGn08X+TSdwVpBF3W6V/JxCtq84yJGdZ3w2l9pK7Pw0dw2y3q72Ugnf5XJTkFfsoxA57E6WL9rE4e1nfMZjtzrYtGwvTVPr61YCdLvcbFi6h98WbvRx/rYSO798tl7b1lHhN1VVu/fW3/ezfYWvdG0rtvPDh6uo06imTy6O2+XmxqWb7PjzMBdPXPVJD7Bb7Sz9bB05N/J0ud2/6QTbfj9AUUGJj61cThd/frONtT/u1LXFiq+2UqNulG51QpfLxeZl+3wcT5ktfpy7husXfUu0uN0qBblFbFtxkEPbT+ty++PcNVj8FJ8+uRwuzhy6zPYVh7hZrtZS+fEu/3wTx/ec0x3P5t/20bxDA93UAbfbzbqfdvLrgg26pUmWzd+AKIv63Noc7Fl7lNQ+/7uSGn8n4CwCLYBPVFVtDhQBj3t3RFXRjaWDIAhTBUHYKwjC3ps39cs5ABTcLqq0pEbOzXyyrt2uVIqvDKqqknU1h9uVlIIwikauX7qpe19VhZXfbKPgtn6pSrvVQbZOLRnQdiBnX7tdmYYGaEpCZSVCrl24iSjpvxeyr+eSfT1X/6aCQPt+LXRlXrdLJSsjh7xbvrlUZcjKyNHdTW+3auMpytcvvVmUV0z2tdu6JULcTjc3Lt/CYNS3xu2bBdoDpcOBwWgg49yNSpQWuHn1Njk6+UOgSeIat77XnA4XWVdzfFZ4ZXDYNG6tOtzarU5uXr9daYnS/JxCsq7m+LxYtE7D9b/g9tb1XG5Wwq0oGbl2IUv3GXG73GRl5JCrkycH2ldB5pVbun0qm8d/xe2t67m63Locbm5n6Zc0+Tv4O84nA8hQVXVX6f//E5ozyiz93KL0T93CHqqqzlNVtZWqqq0iIirPhIyoEYKsU1ZBMAg0aRdPy06JleZlVAZJEWnVOZGm7RN0STMaDaT0bKI/UbS+E1FTv0xk9TqRNGlXXzeHSJJFmqUlEBodpNMSImuG0r5Pc1152el00a5XM13J2ygaadGxIc06NNCVtWWTxJiH++q+4RSzRMvOiSS1idOVnwOCLLTolKhrJ5OfQpN29amTWMPnGkC9xjE0SdW3BUBy1yTd8iGG/8Ctw+4krW8LXX4kRaRlp0SapenbQjAYSOnRRHf1YrLItOjYkPrNY3X7G107nCap8ZjMvuORFYmmqfUJqxas27Zhyzq07NRQNy3E5XTRtldT3Twso2ikeccGtOzUUDfnxuVwkdq3WaXctuqcSFKbeN3UD0uAiVZdGumWNbnDrX55kbpJMTRpF6/LrWAQSEyup9vu7+A/Oh9VVW8AVwRBKIvnpAPHgd+Au0r/7i7g1/91L9CMP/1l7/IIRtGAxd/EuEf70eeuNIJC/StNhjKKBq83pCiLBIb40X9SJ0Y/2BtLhaQxxSwz9YUhxCZUp26SvuEddhfxzWIxWWTPakIQBBSzxMzXRtAsLYH4JjFefVbMMo2S69GoTRz3zhnp9VAJguYgnvtqOp2HJBNeLdgrt8Jkkek+sh0146KY9NTACrYw4hdoIn14Clv/PILL5T2BFbPM+Mf7Ub1OBH0ndvSa/JIsEhIZRPdRbZnw5ABMfrKXk1HMMjNeHUGDFrE079DAq8+KSSK2QXVapTdixivDUcySZ4IbDAKKWWb6y8No27MpNetFere1yLTp0YR6STGl3N65ZhQNmPxMjHusH73HpxEU5s2tySIzZHo61WIjGDW7l5ctRNlIQLCFAVM6MeqBXpj9fLm9+4XB1E6oTqeBrbxsISsiUTFhpPVvwdQXhmrcltpC41bWuG2fQP3mtb36rJhlElvXpXHbeO55baRmi9Jn3WA0YPJTmPLcYDoNak1E9RAfbrsOTyEmLprJzw7y4dYSYGLEfT0ZNC0dvyCzVyqJYpYZ+2hfqsdG0n9yJx9ugyMC6T66HROe7I/ZT/Hhduarw6nfrDYtOyd6/a5skqhdvxrJ3Roz49XhWpmWsnleyu2MV4aR0qMJMXFRPtwmd21E3Ub6z87fwd9Vu5qhSe0ycB6YiOa4fgBqAZfQpHb90nCl+DtS++Htp/nhw9VkXrlF47bxjJjVg6haYYC2pP35k7Xs+PMwAHk5heTnFOIXYGbIjHRq1a/GsvkbyLtVSHK3xgyd2ZXgcK1cQFZGDj98tJpDW08RWSOUYbO606y95k/3bDjOSxPn4SirTicIIGg1cGa+NJT6zWrz/Qd/cubgZWolRDPy/l7EN9V2MNttDlZ8uYU13+9AEAR6jEml19j2WIvtvP3wEvasO4rb7sQgQJN28cx8dQQ162nhsaKCEpbNW8+W3/Zj9jfRb1JHOg9u7VmZ7NtwnB/nruHWjVxadGzI8FndeWX6F5w6dBm30wUuF7jdCEYjfSakcc8rwwFtxbb51338unAjRXnFpPZpxuDpXT2S+bWLN/n+/T85vuc81WIjGHFfDxol1+PqhZs8O2kemRezcZeWrO0ytDX3vT7aM/HOHb3Cd++v4uLxq9RLqsmI2T2p01BbEVmL7fy2cAMblu5BkkV6j0+j28i2Hpn4yI4zfP/BKjKv3CIpJZ6R93lzu/TTdWxfeYiAED8G3t2Z9n3vSOY7Vx1m6afryM0uILlrEkNndiM4QuP25tUcvv9Q4zaiegjDZnWneZq2m9vtdrPux938/sUmbCV2Og5oxcCpnTH7aZL55dPX+e59jduY+tGMvL8n9UsLrjnsTv74cjNrvtsBgkCPUW3pPb6DxzGc3H+B79//k4xzWSQ0r83I+3tRM64Sbid2oPOQ5DvcbjzOT3PXkH09l+YdGjB8Vg/CS1dTt2/m8+NHq9m7/jghEQEMnt6VNt0be7jd8tt+fl2wgcK8YlJ7N2PQ9K4EBGvcXr+Uzffv/8mxXeeoVieC4bO6k9RGq8LgcrlZ9c02Vi7ehtPhpMvQNvSf1NHjkM4fy+C79/7kwvGr1GlUg1Gze3pWRNZiO8s/38j6n3cjySK9xrWn+6h2XikAevg/3tulqupBQO8G6X+n/f8EkllBCfJHzrejBPphLPc2NIhG5AALcnAAFn8TSR0T8Q8w0axdPM1S4zmw9QxykD+yS0AJsHhtfRBlEdlfaysH+yOZ7rwBWnRIICgyiOybBVrkyu1GQMXir5DWvwU5mfnIAX7IwQEoQf6I5aL7BoMB2d+MHByg7eT201Lvn5s8n9OHLuNyA5KEC4FD+y6Tee22x/kYjVpbKSgA2V9BtnhvM5AsCqZgf2SrCznAQv7tYs4ey9ACjoIAsjYGFdiz8ZRXW9nPhBzkj0MwIvv7eb0NRUnUxhMUgFJqC5fLzeOj5pKdmQ+qALK2zN74xxGGTL9JnYZaHoqoSCiBFuRgf+Qgf69MXoPRoPETFICsiJotyn0FSGYZJVjjVg6wYCjHj1E0IpXyowRZUPxMXp+HkkXRuHWCXIFboyyilM4LJTgAyVSh8Ji/CSU4AFW2IweYEcp9fmjj8fdw6zUeg4Dib0EO1jKsFX+L93hMMkpwAHJQCXKgP2K5lY6xzBbBAch+ClIFbmVL6TwvcSEH+nmt3IyiESXQTxtvUAByhUJqZdzKghEpwOLLbaA2V+VAP695Lgh47GRwOFEqFDwTFQk5yA852L90npcrWma8M88lSUTx/w/bh/4G/jW72gG2rDjE2w9/h720WLVRMmK2yHz0+wP4B1q4t+875GTl+6heJotMSEQAOVn5HjVGUkRCwgKYu+JBSops3Nv3HYoLbZ74gWKWuO/VoXQZ0JIPn/qJdcv23VFyVBW/QBMfLn+AkiI7Dw37CLvNgdulYjAISIrIi59PoXFyXZ6eMJ9jey942ipmmQbNa3Fizzmtn0IpuYIAqIiikbkrHiI6JpT7B7zPtUu3PGVCTWaZXqNTmPpUf/78fhefvrjMc19RNmKxKFgLi7FbndrWD899Ncx8YRD9xqXyxVsr+HXRVk/AVFZEImuE8OFvs8nJKuC+Ae9hLbHjcrq1yWwSGTGjCz9+uo6SIjsglLuvSlhUEF9te5pTBy/z5Lh52O2ltjAakBWR15fMoF5idR4Z+THnj1/DZr0znva9m/DQmyPZ+udh3nrwW19ulz9AQLCFe/q+y63MPE9gUzHLDJ/emdGzuvHzgk18/e6fXtwGh/kz948HsZU4uKfP297cmiRmvTKE9EGt+OiZn1n3yz6PTCybJGLqRfLuz7PIOJfFg8M+8uRZlXH7woLJNEmpxzOTFnB09/ly3Eo0axfPc/MmcmDrGV6ctgi73YnqVjGKBmRF4t2ls6hWK5z7B77PtUvZHkXMZJbpObIN054ZwOofd/Px87/c4VYy4h9oZu6KBxFFIzN7v03+7SIc9jtzdeIjfRgwoT1fvbOSXxZu8eI2onowHy1/gJybGre2EgdOh0vjVhF5/IOxpHRtxOv3L2bn2uOetopJIr5xTeYsmcHpw1d4YuxnOCpwO+eb6cQl1eTRkR9z7thVL25Teybx8NujK32eten5X7Cr3eVyM/fZpZ7BgRZkKy608s17mtR++2aBrtxuLbZz/dItr79z2Jzk3irg96+3k3XtNkUFVi91yVbi4NMXfiW+cQxrl+71vq8g4HKpnD6cwcpvd3rlN7jdKrYSBx8/u5QZzw/i+L6LXvKzrcTO8b0XtRiRYKiwsVHA6XSzcM7vpPZozI0rOV71ia0ldn5fvJ2+Y1OZ9/JvXvd12l0UqzZEUQSD29PP8vh8zh+07tSApQs3e6kTdpuTm9dzWfvLPg7vOEtx0Z1TGVRVG8/ShZtL7SP49Pl2diH7t5zmi7dWeilAbpcba7GdT19cxtCpnblw8roXf9YSO5v/OMTgKR2Z+4wOtwVWvn53FXUbVud2Vr5Xn20ldr7/eB3pg1vy1Tt/esnaDpuTvFuF/P71dm5l5vlya9W4rd+0Fmt+2uPFrd3q4OqFm2z78wirf9yty+3cZ5dy78tDOLbnQgVuHRzacZbj+y7y0bM/e4/H6cbqsrHwtd9J69OUG1duefXZWmLnjyU76Dculc9e+tWbW4eLgvwSfvx0A2Y/hfzbxR7HU/a7i978gzbpDflp/iYfbrNv5LHm570c23OBkkKbRzlUVRWb1cGHT/9MeLUgdqw55tVnm9XB2WNX2bfpJIvfX+2l3Hq4fWEZI2amc/7ENR9ut6w8wtCp14lN+OtEw8rwr3E+N6/d1pU23S6V/dvOkJlx22vwfwd2m5PdG46Tk5WvK2s77E62/3lE95q12M7eTSc5UTFJsBSXz2VxYNsZ3TIfbpcbZyUnWAIc3XMBWZF0xyuKRrauPKS7pHU6XIREBGOz5urmNRiMApv/OIQk+5YIsZU42L3uOKcOX9FNLbCVroT04Ha5ObDtDOePX9W9fvrQFQ5sPV1pyZOda49RolOSwe1WObDtDNk38nS5FWWRzb8fQpKMvsfJ2JzsWn+cvJwi3X47nS62rzqiq95p3J7g+L6Luv29euEmB7ad1k2jsNsc7N96mqyrvjuJVFXj1uyn6NpC4/awbtkSl8PFno0nMVlkXUXLKBrZsuIwkqTP7a51xzl77KpuykJhXjF7NpzArfPD1mI7B7af4exR3xIhAKcPX+HAtkq4VeHo7vP/a+fzr9lY6hdorrR0QnCoH2HRgboS8V9BECAsKoigMP2TBlxON27USkscGEUD/pVsnJMVkbCIABQdiVhSRJJa16n09IuAIAvh0UGVBuuiaobiqET+9wswEdtAn2ynw0W1WmG6zsVgFAiLDiKwwl6eOxBolhqv22dJEQmNDKi0fIUlwERoZCCirFNexGggsnpIpdwGhfkRHh1Y6QkU1WqF4dTJqdG4DSTkL7iNqql/IoooGQmLCsI/SJ9bSRYJjQjUlf9lRSIsMrBS7gKCLYRFB+nv8AeiYkJ1xwPa1pywyEDda2Xc6udDCYRHBxEUos+tqkJ4tWBEnXwpjdtALJWUabEEmAiNCNRVmY2iodJn6+/gX+N8AoIstO7UEKnCBDaZJYZO68yACWnIpsoXappA5T3RZJPEoEkdGDa1s5dkCloMpXlqPG5X5TGvgGA/Bk7q4NNWNkn0HJFCx/7NdR8ag0Hg2XkTSWzhe6yIYpYYMqUjvUal+JTbEAQB/yAzab2b0LB5bd1yHNev3uZahu9b1ygaiGtUk/a9mhAcFuCTaChJIv3GpTJ0akef8UiykdiG1Wjavr5+mQ+DgS4DWtJnbDsfZ6uYJAZMaE/XIa10H0hRMpLWuynJXRJ9JrBilhg2tTP9xrdHrnDNYBSIrB5Mas/GxNSL9Lm3xm1Hhkzt5MutZKRp2zjSejXBVOEkCNAcYo8RbSrhVqT78GQ69W+u67gMBoGO/ZqTPqilz3xUzBKDp3Sk96gUnwddEAT8Aky079WERi1jfbhVzDJD7+7E4Cm+/BhFA3UaVCO1Z2NCIwP1uR2fypC79bgVSe3ZmA59muk6RINBIH1QS/pWwm3/u9qTPriVbpKoKBlpk57o8/d/F/8a5wPw4JsjaZISh6yIWAJMyIrIkKmd6di3GQlNa3HPi4Mx+ymemiaCAAbRgGKWadmxAfUaVUcxSVj8FUwWmenPDiSxZSztezVhxMx0T0kAWRFJalWHR94djV+AWbf+jVgapB1yd0e6Dm6FpIj4BZiQFJG23Rox6bE+BIb48dKiuwmJ0FYFZotMWHQQ4x/qxVN3f8HljNsEhvohSkb8Sn+396gU+o5rR624KB55ZxR+gSYs/gqKWaZm3QjmLJ6OwWDgqbnjadCsNrIi3cnrMAjYbC5sNieUTkCLv4JskqjfJIZnPr0LQRB4bfE0YuKiUMyaLSz+Jma/Ppy6DavTfVgy/ce399jYKBpwulUunr/J4o/W4zYa8As0YbLImP0UgkL9eGHBJEIiAhj/QE/a92qCJN+xRaf+zRk5M52IasE8++lEAkO0Al8mi0xUzVBeXzIDWRF58I0RNG1bz5vbKR3p1L85CU1rce/LQzD7KZotTBKxCdV4+YupCILACwsmU69RDY2/Um6nPd2fpNZ1SO3RmFH3dvXitlGrOjz2/hiMopHXl8ygWu1wrWyGn4J/kJknPhxH9drhDJ7cgW5DWyOX57ZrElOe6EdAkIVXvpzq4dZkkQmLCuSVr6biF2Bi+nMDSe6c6GkrKyK9RqbQb1w7ataN5NH3xuAXaPZwW6NOOHO+mY7RaODJj8bTsHltzRb+JhSTxNj7u9MmPZGmbeOY/HhfTGbZw21cUk2enzcRQRB49eup1IqPLsetwuw5w6mXWINuQ1trL+lyNm7ePp77XhmKYpKY8810ImuEeHH7/PxJhEYEMnZ2D9L6NPXitmO/5oy+tyvh0UE899lEAkP8ynEbwuvfTP/LfV3/Cf8qtQu0INmezae4eCaTNp0aUDvOe8tYdmYuG/84RECQBXuJnYK8Elq2r09C01q43W42rzxCdmYuHXo1JbJCFurlc1nsWn+cmvUiSemslU7IycpnYvrr2vd92RvFraKYZb7c+ATBpcvKU4evcGjXORo0jaFJhazOkmIba37Zr1UL9DfxwfPLvGIYomSg64Dm9BmZQlyFLOHcnELW/bqfgGALXfo280q9V1WV7WuPseyrbRzbe9Hnc0oxS7TrnkTb9ETad0/yelO7XG42/H6QvJxCuvRrTkhpvlMZzp+6zuaVR/hp4SafmIkoGxk2uQNBIX50HdQSvwpL8mP7LnBs/yWSWtUhsbn36q4wv5g1yw6gmCS6DmyOLN+ZnOW5Te6QQGx974PqsjPz2fjHAUIjAunUp6lXRq7b7WbLn0fIup5Lx15Niawe7NX2yvksdq7z5rYMToeTdb8eoKjQSvqAFj6fJ6ePXOHgjnMkNI2haRsdbpfu08qlDGrhk/V8YMdZzhzJoHlqPPGNvLnNyykq5dZMZx1ud6w7TsbFbFK7NqJGbLhX2xsZOWxZdYSoGiGk9Wjsw+3G3w+Se6uQzv2aEVqhRMiF09fZs+kUdRpUo1X7+t7lRewO1i7dj93uoNugVvgFVOB2/0WO7buoz21BCWt/2YesSHQd1MKL28rwX1FAHiD3ViFPTlvEtcs5GIwCDruLrv2bM+uZ/hgMBn5YuInFn6zHYBCwWZ2oqorRKNAkuS5jZ3Th9cd+pCCvGMEg4LS7GDm1E6OndUZVVea+spxVv+xDko24XSpRNYJ5bf4kQsMD+GH+Rj7/YI1XXwaOTmH6E/1wOJy8+vB37Nt2BlEy4nK6SUiqyQtzx2G2KOzadJI5j36vfX6p2mRVnSqasI5nbWkoLW3RtnNDHn1tGEbRyB8/7OKzN1YgikZUQFFEXv50AnENq3PzRh5P3P05t7Lycdi10zxwq1D2mWgQQNTkUIPRQEiYP6/Nn0R0jRAunsnkyamLKCmxIwAOh4vJD3Rn4NhUXC437z6zlM2rjqCiBd1xq+Au7bOg3VuSRSRZxO128/ArQ2nfLQlriZ0X7l/M8QOXtRWTw0XT5Lo88+5oZEViw4pDvPfcL9ryXtXG/NTbIwkJC8AoCsx59AeuXsrGYDDgcLjo0rcp9z83EIPBwI+LNvPVR+uQZCOqquLnb+K1eZOIqRvBtSu3eHzK5xTkatw67C5GTOnA2BnpqKrKJ6/9zsqf92rculWiqgXz6vyJhEUEcupoBs/M+NIjw7tcbmY+2Y8eg1ricDiZ88j37Nl62sNtfKMavDh3PBY/hV2bTzLnke/vfFqr8OTbo2iVGk9RgZVnZn7JuZPXPbZo07EBj80ZjigZWfHjbj59/Q/t80rVYisvf3IX8Yk1yM7M4/G7Pyc7Mx9D6Xj6jkhm6iO9EQSBLz9cw09fbEWSNFsEhfoxZ/4komuGcvFsKbfFGrdOp4sJ93dj8Lj2GrfPatyKonbeWUydSF75bAKBwRYO77nAC/cv9rzEXG43D788lLTuSdisDl64fzHH9l/yjKdJqzo8+/4YZEVi05+HeeeZpZ7PX4NB4PkPx5HUMvYvn/n/Gufz+JSFHNl30etNrJgkpj3amxq1w3n23q90S2oIgjbR3S7Va0+UYpJ47v2xZGfl8/Grv2Et19ZoNNCwWS1e/WwCozrPoajAu3SCrIh89MM9rP/9IEu/2uYl10qySKfeTZhwXzcm9X7HV6lRVShVrbX/3XnzKCaJUVM70ap9fR4aP8+nbVCIhW/WPc4D4z7j3Mnr3oFatdT5qCqI3jK+wSBQq14kc3+8l3Fd3yCnwiZDxSQxZ8EkThy6wpcfrvH+3bKKAG4VjBWlds0WC5Y/wPcLNrF62X4vNUaWRfqObEPfEW2YPvgD3VQIk0X2KEflp5tikrj74V7UqhvJMzO/9OqTIEBEdDCLVj7I1AHvc+1yjhe3JrPE0++OIfdWIR+9/KsPtwlNYpizYBKjO8+hsMKmScUk8f63M9i08jA/f7m1ArdGOvZowuQHezKh11s+/Cgmia9WP8LHry1n+9rjXsKAYpIYcXdH2nRI4MFxvtwGBFv4dv3jPDR+HmdOXPPi1mSWmP3CYExmiTmPfu81HsEgUKtOBB//PIvx3d7g1k1fbl+bP5FTR6/yxfurvVfdopEW7eJ47PXhjEl/3Ue1UkwS8369n58WbWXVL94pJ7Ii0ntYawaMbse0Qe/7cGv2k1my/nHMf1FU7L8izyfvdhHHDlzy+QSwWR38+s0OYupGVFrLR1XRlVttVge/fbuDrOt5XmSC9gY8dSSDBe+u8nE8oN1v9S/7WL1sv4/RHXYnG1ccJjYuqvKd9jqOp6xPv3+3i5s38nQlVYfdxYYVh7h0NtNXIRKE0pWUr4Nwu1WuX8lhwx8HKdGViJ388cNuju6/6OssSxMgK9uG73arrP/jIGt/O+DTZ7vdyZ9L92Iyy5WqhpVJ8Darg1+X7KBOfJRPn1QVCvKK2bjiMLeyCnw22lpLHPy2ZAc52QW63J45dpWNKw7pqmwOh5PVv+xj3e8Hdbh1senPw9RtGK27uRdg48pDbFt73GfDaxm3OZWcqOFyuNiw4iAXztzw6Ze1xMGyxdsxW2Sf8ahulRtXb7NxxSGKdVIWyrg9ceiKjx2dThf7d5xl48rDuvS6XG7WLT/Iml/3+djCbnOy6pd9+AeY9YUZFXZuOEnnPk117vyf8a9xPtYSe6VSenGRjYI8/S3//wn5ecUUF/k6F9BWC398v1v3mlYXp6TS3CKX00VhQYm+JP4fjscpKY1V6cmmKlqsoDIp1+yvIIoGCvJ9x2Q0GsjNKdJV+FVVpSCvuDSDWQdljk2nsdPhoijfWmk9JZvVQWFBSaV5Qn+Fkr/gVjAI5N4qrLQcR0Fese6LAzRb5OUU6ToQt0uzhV4eD2jcF+VbdXfTOx0uCvOtlb50rCV2CvMr41Yl73bl3BYVWCtP+zAauH2rUPcZUVWV/NxiSnSO6wFNaSvILdavPeV0UZhfookYOrBbnRQWlOimB7jc7kqfrb+Df43aFVktmMBgi8/fi6KBlM4Nad+tkW5OzV9BMUl06N6Ytl0a6srW2re8/iSSZJGUzg1p1qaurpxer2F1ktMSdOV/o9GAokiVSrWtUuNpl56oexKB0+Gic++mujVsAMKigxgwtp1u+REESO/XTPehMZkl2ndLIrlDfd3JHxBkpv+oNrr5HCazROu0BBKb1fK5JgjQpFUdkjs00B3PX8EoGkjpVDm3LqebLv2a6z7IskkkrXtj2nVJ1OXWZJbo2KsJTh2HaLLItO2cSLOUOF1u6yZUI7lDgq4tRMlISqcGxNTxLQ9jMAi0bBdPu86JuiU1nA43nXo10+2vJBtJ7ZpIWrdGutyqQHrfyrlN65ZE6w4JunJ6WGQA7SqRxBWTRJuODWhUIbgMGrdJLWNJTquEWxWat43z/fu/iX+N8xEEgQdfHIJikjwGlBWJoFA/xkzrTPeBLakZG647SWVFpFa9SBST5MmBUEwS1WJC6TmkFSOndCIkzN/T1mg0oJgkmrep51OaogzRNUJI7pDAtEf74Odv8pRHEEv3JN337AAaNIkhtYu3ExElI6FRgaQPacnMp/tjMkuenA9ZEfEPNDPpgR6079qIuMTqmMxl53drfR43swthUYE8+OJg3ezczOt5FBfZiawW7BmPwSCgmCTuf24gIWEBTJrdHcV0x/kpZonY+Cg69W7C+Hu7eT1wZaNPaFabmU8NoPew1p4+gbaHp1X7+jRuFcu9T2slG6TSh0eSRSx+JmY+0Y8WbevRNLnO33ZAiiISFOLHmOld6DagBTF1Ijw5KkLpeKY+0ouQMH/ufaqfN7dmiWo1Quk9tDUjpnQkJNyX2wdeGkxktWBGTOlQaouy8Ug0bBJDm04NmPpIL11u739uIPWTatK+WyMfW3Tq3YR6Daoz+4VBmCyyx5FokruZyQ/2JLVrIvUb1fDhduyMzoRHBfLgS0N85mpoRCBD7kqj36gUoqqH+HB737MDCAkPYMqDPb24NZklasdF0alPU+66tyuBQRaP8zKKBhSzxIMvDqFW3Uh6D0v2GU/LdvE0aV2He5/qj8W/PLdGjdsn+9G8bT2apdT14tZklug3MoXqMWF/i289/KsCzgAZF7P5bckOrmfk0DS5Lj0Ht/JkGdttDtb/cYjNpZLr7VuFmC0yPQa3YsSUjlw6m8nv3+/idnYhbTo1oGu/5h4Siwqt/PnzXg7uOkd0zVD6j0wh89ptXn74Oy0mUc4ORsnI3B/uIbZU5r+dXcjvP+zi1JEr1ImPpv/oFCKigwFNAt616RSrlu7lwO7zuFRwOF0YRAOSJDLjoZ5knMvi8oWbNGxaiz7Dkz1Sr9PhYtOfR9iy+gh+ASZ6DW1NUotYQFtK90t+AWfZZ19pmQ8EgYAgM1+vfIg1v+5n95ZThEcF0W9kG+qWS3M/fvAyK37cTUFeMe27JdGpdxMkSeTgngs8e9832Movlw1artT7X91NbFwk+7afZc2yfaWKVDPadWnokb2zM/NY/t0uzp28RnxiDfqObENYqdTrcrnZtvYYG1YcwuV0c2j3eRwOpydeIMkiSS1rI4pGmrSuS68h3txuWKHFUoJC/eg7og0J5eosnT1xjeXf7dS47ZhA1/4tdLmNqh5C/9Ep1Kob6Wl7eM8FVv68h5IiGx17NaFD9yTPyjL3lsbtycNXiI2Lov/otp4UDVVV2bXpJGt/O4AgCHQd0JzktATPg5957Ta/LdnJ5fNZNGgSQ5/hbQgOvcPt5lVH2LzqCBZ/E72HtvZShi6ezeT373aRee02LdrG0WNwKyylGeTWErvG7eZThEUG0n9Uihe3Jw9f4Y8fdpGfW0xqV43bsiTNgrwSVv60m8N7L1AzNpz+o9pSvbRsiaqq7N9xltW/lHLbpynt0hM93N7Kymf5dzs5e+IacQ2r029Uihe329cdZ8MKbftOj4GtaN623n/cdfBfEXAuw/mzmRw+epVbWfmokkiL1PqeCZp7u5hDBy5z5vxNVBVCa4aR3F4jTpKMnDp+nSNHrlJYaMUc7EfL1PpEl+aD3LyRz6FDVzh5JousnGIatcqkQ9dEGjaJ4fjBy1gdLjBqClL12mFeeTHXruZw6NAVLp3LosDqpNnFWx7nYy1xcPRwBgcPZ2B1ozkxQcDtUrG5HHz23ipq1o4g83oudgRatK/vcT75eSUcOnSZE6cytdVJg6s0bFILo2jA5XLjcKlQlsRVqnQJaJPz1q1CDh26wqkzWVy/WUjCyevUqR/tqaV84vhVjh67RkmxnYCIyzRvG0d4ZCD7d5zV4liSeCfA7Fa1/Vu7z1M9JpRjRzI4elxT2iJirtCsTT38S/NBMi5rtrh6+RYlTpUWqfU9EzQvt5jlS/dy7HAGBoNAs3bxBPlJnDh0hcjqISS2jGX75tPluI2vwO0VTp7JxOKnEJekOTeDQUBVVU4ev8aRo9coLCjBFGTRuK2hVZm8mZnP4fLcnsn0OB+n08XxYxkcO34Nm81JSPUrNG8bR3ApB1czbnPo4BUunssiv8RJs4vZHudTUmznyOEMjp+8AUB0nQiatr6zArh0IZvDRzK4cfU2dhVatq/vcT4F+SUcPnSFE6cztaTJo1dp2FTjVlVVzp6+waHDGVoMyKLQMi2BWqXOJ+dWIYdLuQ3IKiDhhDe3x49e5chRjVv/8Mu0aKdxC5B5I5dDh65w+kwWOfk2GidneZyPw+7i2JEMjp24jsvpJiImjGYpcR5ur1y+xaFDGWRcyqbY4aZFao6H2+IiG0cOXeHEyRsYRQM14zJIahmr//n/N/GvWvks+24Xn89d5wnyli1X3/98CsGhftw9fC4FBd7BPkHQlo/J7eLZufW0p63BIODnb+Kz72dQVGhj1vj52Kx2zwJHMUmMn9aJQSPbcO+4eVw4l+W5JooGQsMDmP/DTE4fv8bTs5d4BZ4VReSRFwfRrmMD7hk3j4xL2Xd2IZfdpOzPCqUrFZPE6x+Pp1adCO4ePpfcnCJPIFAxibRpX5+nXhvG4vmbWDx/450FWel/CC43Sc1jOX8hi+IiuyegqpgkBo5sw6R70nnzuWVsWX/c02ejUSAgyML8H+7hm3kbWPbDHo+TLLu3aDRw/5P9+HP5Qc6cuIa9VK0RJSPVaoTw6bfT2bfzHK88/qNXcFIxiTz31kgSG8cwvNubnnZlCAv3Z8nKh/jth90s+HCtN7eKxHuLJhMS5s/dwz6msOBOoFYxSXTp2ZjZT/Xjs3dX8cfSfV5t/fxNzPt+JsVFGrfWCtyOndKR4Xel8txD37J/13lPsFwUDYSEB7Dgh5mcOXmdp2YtrjAeiYefG0Bq54bcO24eV8pxK8lG6tSL4v0vprBx9VHee2W597wwScyZO47YepFMGVaBW0WidWocz7w+nCULN/PdF1u9xmMyy3z8zTRE0cj0UZ9SUmzzskX/4a2ZMqsbb72wjM1r73BrMAoEBJpZ8MM9ZGXm8eCURT59mv5AD3oNasEj077k1LGrXtxGVw/m029ncHD3eV567AdvWygiz745giYtY5k+8hMyb+R5Yk6yItKwcU1e/3j8X65+/itWPg6Hiy8/3eBlOFXVlJSv5m2gdt1ISkrsPiqDqmpvqM3rjnkJTG63irXEzrLvdpF5LddTR6YMNquDr+dtZP/eC5w/611+2ul0k59XzIZVR/lj6V4fxctmczLv3dUYjQZuXL3tVf7AS+nSIcVmdbDwo7Wkdm5IYQV1w2Z1snPLac6eus4PX271FsxK72WURcKrB3H8xFUvJcdmdfDLtzvp2C2JzWuPeTkBl0uluMjGyl/2ca5srOX7Jgg43SpBYX6cO33dq63T4SI7K5/tG0/yxcfrfVQRm1WzRbPkOj6OB+BWdiHrVx3hi0/W+3Jrc/DlpxuoVz+akhKbV2DZZnWwdsUhBoxow/Kf9npJ16oKVquDpUt2cutmPjYdbr9ZuIlmrWM5UM7xgMZtQV4x61YeZtVvB3XG42Dee6uRZZHrFbh12F1cuZTN/l3nmP/eat95YXWw8MO1dOjayJdbm4M9285w9uR1L8fjsYXVwZKFm7XTK6x2H1v8+t1u0ns1YePqo159crtUSort/PHLPo4euKzfp7lrqVk7nDMnr/lwe+tmAds2nODreRt9bWFzMu+91YycmMat7EKvYLfd5uTUsaucOnaVBpWUIf5P+Nc4n+zMfN1i36oKJ49eJT+3xPsh1/l3FeFwuDiy/xK3bhboKiZWq4N9O8+i4pviYi1xcPTAZS6d0z9xIzsrn1NHr1JSSQ4LUOmu9nOnbhAYZNGV8Y1GA3t3nNWC7jrKaUT1YC6dv6kra4uikT3btWzdio7AbnNyeP8lLp7TrfOPKBk5U7ocr4iSYjsnjmRw9Yp+ldzLF25WmhMDsHH1UV3VSVXh1LGrFBfadLmVZZHd204jy0afvBmnw8WRAxfJvV2sy60gCOzbdV5XzSrj9sLZTN3+3rpZwMlj+tzarA6OHbpCfp7+qSbnTt8gJMxfl1tDGbd6J1C4VY4fuoLJLOvaSpKN7Np6GkkSfWxltzk5sv8SZyseIlnu+uEDF3Wl9jJuMyrUwyrD5YvZnDh8pdJyN6ePX/tfO59/jdoVFGKpVHmKqh5Mzdiw/1gvtiIMBoGatcM8sQEfqOgerQIa2TVqh1ZassFskalWM8RLPfBAEJBkY6VlJsMjA4iJDdOVXFVVq91SXEk+TkxsONVjQnXv7XC4iEuopuvEjaKBa9duU1hZXoxBIKa2fp8Uk0T1mFDdVAiAkDB/T8xBt8+1wip1TlHVgqlZO0w3l8fpdBOfUE03l0rjNpxqlXDrdLqIrRep+0kgyyI1a4cRWmG/WxlMZplqNUJ0lTvFJFEjJrTS42/CIgKIqR3mU50BNG7r1o/GoXM2GkD1mFBq1ArT59buol5CNV0HYhQN1KwdRkSU/mkpAhBTO1y3pEYZt0EhlXAb4kf1mFAUnQ2kRtFAVIU9dv8T/Gucj8VPoWvvJigVAliKSWLM5A4M1ilBUQZJMhIS5u+RCT1/L4sMGdOWMZM7+Ej0BoOgycx3tu14QRSN9OzfgjFTfNsqJomhY9vRsVsSkixWLPyHxU/hlY/GMXx8qm7bMVM60mdwK5/JYBQNRFUL4uvPN6MKvn2SFZGRE9IYPj7VZzexLBtp2aYurdrGUatOhM+9XU43167n4hIEn/sqJoneg1uS2qUhFj/Fq2SDIGj27dKzMSPuaq87npET0pg8qyt6EASBsXd3olufppVyO3BUClKFh1mUjMQlRNMipR5JzWrpcjt0bDtG63ArKyId0hvRpn19wiICMFZwbEbRQM+BlXM7ZExbOnZrhFyBW0HQZO+09EQGjWpTKbe9B7fCaPTlNrp6MK3bxdGuYwOfQK1ikhg5MY3hd/lyK8lGmrWuQ+u2ccTWi0SskMsjSUYGjGjD2CkddfvUc2ALUjs3wM/f5FOOQ5SMpPdqwsiJaT5tTaV9Su/dFFHy/s2yWFOrlP8H8nwA7nm0N937NdOKjysiQcEWZj3W2/NAvfD2SCKjgzxvs7I6swmNavDhl3fTtmMCkmREko1ERgfx7BvDqRMXRbPWdZj9VD+CQizIsogsi9RLiEYyieW2LNx52KOqBfPGJ3cRGu5P937NGD+9M37+CrIiYjJLDBmTwsiJaZgtMu8smER41J23viAI2FDJzSvhrhld6D+sNYpJ0nJ8AkzcfV9XOnVPIjI6iNc+GkvNWmFIklHbg5Ncl95DSmNzBkE7/rlcv9K6JdKoaQwJjWrw5CtDCIsI0DaASkbad0nkiVeGAPDKB2Np1bYeomREkowEBpsxmiXcqnZf1XDHAUmySO9BLbj7vu6IopF3F06iYZMYRFHbCFs3Ppq3503Ez9/EkDEpDL8rFbNF1so2+MmMntyBuMRq5OQUMeW+rl6TW5SMvPzeaMwWmZmP9KJ7/+YebgODLdz7WG9ap8ZTKzacF98ZRXT1YM0WkpHk1HhefFerDzx8QnvcFRx832GtqRsfRdOWsTz4TH+CQ/083Hbp1YTZT/fDYBB489MJNGlZB1HU7lurTjivfzyesPAAuvdtxoSZXby4HTwqhdGTO2Ayy7yzYCLxDat72iY0qs47CyZp+VhTOzFgRLKHWz9/hcn3dqVLz8ZERAUyZ+44atbSVpKiaKR56zqe4OzDzw2kU/ckJFmbqyFh/jzy/ECSmtUivkE1nnptKOERAdp1yUj7zg156rWhALz8/hhatYvzcFutRggvvTuaGjGhtO2YwMyHexEQZPbYudfAFkyb3cPDbWJ5butH8fa8CfgHmBg0sg0jJ7T3cGu2yIyalEb/4a0JDDLz1ryJ1ImPKh2PgUZNavH2/ImVFk37O/hXqV2gfTps2XiSq1dyaN6qNo0ax3gtnS+cz2L7ltPk5hYR6G+iTdt46idqJyuUFNvZuOE4OdmFtE2Np265chyqqnL82FUO7L1AteohJDWpydTRn3q+61U0bx4U4sd7n02geo1QT1u3W2Xf3vOcOHaVevHRpLSN83wCXrqYzYyJ88vFWAQEtKX9N0tnERBgZvu201w8f5OkJjE0a1HbazxXrtxi66aT+PmZ6NK1Eat+P8jnn6zH4XB5rcxQVUaNb8+kGV08bc+cvs6ubWcJjwqkU5dETOXeXIWFVjasPUZBvpUjBy+xd+f5O7Yo/b+SLNJnQHOmz+rmtVK6fbuIDWuP4XS46JTeiMhyztXlcrNr51nOnbpBaEQA3365jfy8Eq2SgMPFkJHJFBZYMZkkho9u65G0y7jduukkGZdzaNayNklNvLm9eCGLbZtPExziR+euiVgsCnabk+H936Ww0ObpOar2Vv540RRq1Q5HVVVOHL/G/j3nia4eTIdODb2Kk+Xnl7B+zVFKim10TG9E9ep3PtVUVWX/ngscO5ZBvbgoUtrFe33eZ2cXsGHtMQRBoHN6ImHlPtVcTreH20aNa9K8ZazXeK5m5LB54wksFoX0bkkeSRu0OMymjSfIvJ5Lq+R6NCidwxW5DYsMoHN6Iy9ui4psbFh7jPy8ElI71Kd27J1sa1VVOXzoMocOXKJWrXDad0zQ5dZhd9KpayOiyn2qlee2fsPqtG5Tz+tlknkjj43rjiErIl26JhFUyWd4efzX7Gq/mpHD7Hu/wmrVqu8bjQYaNqrBq2+MRBQNvPvWCtauOuoVTJVlI/c/1ItatcN57MElqCo4XS4MgkDHzok88kRfXC43zzz+A0cOX8HlciNJRmRZZPZDvfhm4SbOn7uJy1Ba9kI0AAIjx7Rl/MQOFBXZeHDW11y7ehun04UoGQkJ8eP9ueMJCfXnyUe+Zfeu894RbxXMisTYSR34ddk+CgpKcDpciKKB2nUiePPdMZjNMvM/Wc8vP+8BNMenqjB9Rhfmvb8Gq82JKnorUo2SavLOh+O0olIv/sKObWdwu7UTMYxGA2+9P4a4+GgOHrjE0499D4IWFHS53KguN25nmfyPZ9OrokgEBJp4f+5dREUHsW7NUd5+/Q9Pfo2qqkya2pmhw9uQl1vM7Hu/Iju7AKfDhdPp0mJmpXtSy0qISJLWH1VVeeyp/nTo1JBrV28z+54vKSnHbYPE6rz6xkgkycj776xkzZ9HtJhX6c76194cSW5OEXNeXIa1QsBZEASGjWjDpGmdefbJHzl88DIulxuxlNt3PxxHrdrh7NxxhpeeXYpgELTAtArDR6UwYXJHiottPHTfYjKu5Hi4DQ628P7cuwgN8+f3X/fz8YdrtE8vQUB1q8ya3YNefZuRnV3A/TO/JD//Dre1aofz1ntjMVtkFny2nqU/lnJbutJ8/uUhtE6ux8ULN3lw1tc4nC6cDhcGo4EWLWN5/qWhCAaB115axvatp3GrKqJRs+Wb744mPqEahw6WcoumYiJAr95NuXd2Dxx2F489tIQzZ27gcmq2sFhk3p97F9HVgtmw7hhvzvkdg1DGLUyY0pHhI1PIyytm9j1fkX2zwGOLyMhA3v1oPIGBZr5fsoMvP9/sqRjqVlUee7IfHTv/dSXD/xrnM2PKQs6eyfQui6GIjLsrjZjaYbz20q9YdVQESTJgMss+my1NJolHnujHzax8Fi3wlhIFAaKig2nTLo7fl+33CeQpJom33xvDqpWH+XPFIa+gp1E00KZNHNPv7crEsZ/4BspVFUU0ElkjhKsZ3ueQS7KRgYNakZIaz1OPfu8zHrNZpl1KPdZvOKHZoUI5jhn3dEWWRT5490+ftpFRQSxaPI3hg96nqFBHKnOVdz7e5TgSk2ry3EtDGDPsIx+lTJZFPlkwma+/2MLWzSe91Ri13J9lO/nL21ER+fbn+3ji4W85feqGD7djxrcntk4Er764zGc8gYFm7p7WibffXOk7FlWlWfPatOuQwMLPNvhwWzs2nA8+mcDwge/73FcxSbz57hjWrj7Cyt8PenNrNNC6TT3uua87k8d/pmuLL76ZwTtv/sH+vRe8uZWM9B/UkvZpCTz+yHc+ipfZLPPDsvuZMWUhVzNyfMqLTJuZjsUi895bK336HBEZyJdLZjB84Hulq8A7MJkknn1xMCeOX+P7JTu8+mwwCDRMrMELrw5l9LCPfDYHy4rIJ/Mn8c1X29i88YQXt6JooHN6IsNGtmXW9EU+Urwsi3z78yyCgipfAf1X5Pnk3Crkoo5ka7M5WbniIDG1wnQdD4DD4cbt9lWHrFYHK34/wM2sAh/DqSrcuJ7Lsp/36pYasNucrFl9hPVrj/moLS6ntjxtkFiNcu98Lzhdbq5dve0jAzvsLtasPkJ+fgk2m/54giMDtYJOOuVFVvx+AEkSdW2Rn1fM6j8PV6rgBQSZKSiw+jgIt1vl5PGrrF9zzHPMmNd4XW42rj/m63jgzvArUfYMBoH1a45y/lyWPrd/HKROnQjd8TidLnIrq2YgCOQXWFmx3DdXR1Xh2tVc1qw66hNghVJuVx1hw9qjvty63OzZdY6N64/rSvigsnH9MQ7su+jLrcPF2lVHKS6yeR2JVK7LrF11hJtZ+T6pITargz+WH8BilnVtUVhQwqqVhypNGflzxSFOHr/m4yzdbpVTJ6+zfu0xDDoymsvpYv3aY2ze5Mut0+lm04aThEcEVqo47tx+hh69/nclNf41AWeXy11ppqTL6dbNfSiPylZwToe70jIFaoU/K151Od26snXZ72n31WktCLRMrltpX10uFafTrZubVFJi57dl+yodr9NZ+XgEQYu7IOiPyCAaCK5EUkUQtLIJemVb1DJb/M9XyaqqPZSVpR24XJVz63KrFBbZdCVi0FTF/2QLPRtr43FVOp4ybvXmlKryl3PR5XbjdOlzC2W2+It5Xsl4EATNAVRiR6fTjauSuSoI2u/qlhdxl87FSmzhdrtL56peiZC/tsV/wr/G+YRHBHgFNssgyUa6dEuiW/fGlZbUkCSD7gQ1mSS692pMevckn9MR/hMURaJTl0TatU/wyS8yGASaNqtNWseG+seRSEbufaAn9ROifR46UTTQsVMDunT1DiKWQUUr0KU3FRRFpFuPxnTroW8LRRHp3rOJbuEnFSgotCIYBJ1TMyA2NpxO6Ym6D40kGUnr2IBWyXV1VxKeH9C55Ha7Se+WRLVqvvk4kmykS9dGdO3RWNcWNquDpb/s1X0BmEwSPXo1qZTbkFALXXsk6Tonk0miU3oiqWm+3AqCQOMmMaR19L0G2o77Dp0a0qBhdV1uO3RsoAWIdfK/nC433Xs2JkDnOCZFEenWs3JuZVmkR6+mutyazBJduyfRqUuiT0oCaHlWXdIb6ToQWRbp0KmBT3AZtHnepm08HTo10C0Ur7pV2vy/UlLjqecGYfFTPPkgZrNMTEwYI8e0pVN6Is2a1/bJcRBFAxGRQTz57AAUk+Qxvsks0ahxTbp2a8ywEW2oHRuOuTRpzCvHp9Tg5WlRTBKduzaiafPaTL8nnbDwAE9bk0kiMNDMA4/2xs/fhKXCRBJFA+MnplG9RgiPPtmfgACzZzKZzRKRUUFMvLsTySn1SE1L8Hro7vTJoEni5e5rNsvUrRfFgEGt6N2vOQkJ1TwTXJZFTCaJp18YjJ+/iUef6ueZSOWlepdbpbDETni58SgmCT8/hcee6k9UVBCT7u6EoogYjYJnb92AQa2IT6jG/Q/1ws//Th6Qtn9OoX1afVq2iqVp01ooipYbo9U0Epl2T1dCw/x54tkB+HlxK1GjRiijx6XSsXNDmreI9bGFahCw2124DYIn36iM28SkmnTr0Zihw9tQu0445jJbKCIWi8xTzw0iKMjCfQ/2RJZFbd4IpY6nSyLNW8QydWY64REBnrYmk0RgkJmHHutL7dgIho9KQVFEDAZBK22hiIwZl0rNmFAeeaIvAQFmT5/NZpmIyEAmT+1M6+S6tC/jVtDmhKyIPPhIH/wDzDz93CDMZtnjNM1miTr1Ihk4uBW9+jSjQcPqd8YjGzVunxvk4UlRRM9Lz2SSaNW6Lu07NGDchDSqVQ+5w60i4u+v8PjTA4iIDGTKtC6l3BpK99aJ9BvYkoQG1bnvgZ4Eh/iVG49ESKgfs2Z3p2FiDXr3bVZao6r0HHpF5O4ZXQivJFHz7+BfFXAGTRZdt+YomddzadQ4hnap9T25BKqqcmD/RX5dupeL528iyyKd0hMZMLgV/v4msrMLWLf6KLm5RbRsVZcWrep4HhSX083OHWc4cvgKVqud1auPescKVE16HjSoJWkdGtCwUQ3P8thuc7J50wnOnL5B7dhwOnfR3myTJi/kypVbWknM0jesbJL4aO5dxJXK/GWyaEZGDvUTqtG+Q4Jn0qmqytEjGezcfoalP+/B7nB5b8lQVQyCQN++zWjTNo7Wbep53sZut8qeXec4sO8CYeEBdO2eREjonWzsGdMXcerENe0LrOyNJgj4+Sk8/cwAiotsnDx+leo1Q+nStRH+5U6ouHQxm43rjuF0uejQsSHxpeUc9uw5zzPP/4y9xKHVezYIyGaJV18eRovmsQCcPHGNrZtPIski6V0bUbNcvZeCAo3bG9dySUyKoV37eM9DpKoqB/df4v13/+RKxq07JURKocgifXo3xWg00LJ1HVq2qqvLbWRkIOndk7yCoNeu3mbtmiNYSxy0T0vw4XbLppOcPnWdWrHhdElvhLlcIbDz5zLZtP4ECNCpSyJ1ypXqKC62sX7tMTKu5BBfP5q0jg28uD12NIMd285gNkukd2tMtXLZwLm5Raxbc5Sbmfk0aVabNuXSN9xulb27z7F/7wVCwwPo2i2J0HKZ9lmZ+axdc4TCAivJKXE0bVbLMx6n08W2Lac5fjSD6jVDSO/qLfFfvpTN+rXHcDpddOjUkPrlSnVYrQ42rj/OhXNZ1I2LpGNn7/SNUyc1bkVJpEt6I2Jq/edaPv8VAWfQjL58xUG+/2k3BQVWah28hMlfoXXLOgCcPZfFvC82c+r0DQQBgoIshEQG4OenYLc7+eHn3fy+8hBWq4ODJ68REGwmob5m3INHLrPg661cvJRNgL+JOvWjOHfqBgLaW82uunGJBn5Yvp/Tl7N5cFYPapSm7m/beYaFi7dyIzOf0FA/XIJA/bgoMjPzcJUVXS99iGyqyrff7eSZpwegqiqr1hxh8bc7uJ1bTLVqwUhmibTU+gBcvnKLz7/ewqEjGQiigIoByp18oRoFVNHAstWHOXL2OuYAE00bxwBw4uQ1Fi7eytlzmZjNMreLrEy6Kw1RNGK1OlCNBlSTqC21VRBcKoKq1S8uKLbyxeJtZFy9TVCQGavTxbAhrREEgby8Yr5aso3N205rpR+u5DB7VneiIgP56OO12OyuO8XrVRWb3cUnn65n/meTuH4jl88Xb2Xf/osYDQYysvKYNaMrgYHmUm4P8f2Pu8gvsFLr4EVM/jLJrbTY2LnzWSz8eguXbuaBbAQ3CO47tnAKKr+tOYLD4eTgyav4B5pp2EDLjTl89AoLFm/l4sVs/P0VCu0Oxoxsi9FooKjIxtff7WDdhuNa3e5LN5l9b3diamp5XNt3nWXB4q3cyMwjNMQPpwD9+zRDEASybxXw+dfb2Ln7HAJw4dptZt/bjdBQf43btUf5+pvtXtx2aJ8AwJUrOSz8eiuHDl9BkozcyClk5rQuWCxanOqX3/azdNk+Cots7DlyBUugiWZNtEqRJ09dY8HXpdyaNG4nl+N2yQ87+XPNEex2J0fOXGd2UHfqlTrFvfsvsuDrLRq3gWasLjfDy7jNL+HLJdvZvPUUbrfK2Su3mD2rO9GluT4bN59k4eKtZN8qJCIiACQjPbomAXDjRh6fL97G3n0XMBgMXMnM476ZGrf/W/yrVj7zFm7kl1/3Yy2nFCiKyJuvjSAiLICJ0xb6KAEGg0C/3s24nVfMzl3nvKL9ZpPE/E8mkp9fwgOPfutTLqBVi1gS6kWyYs0xbt0qxFFap1YQBPz9Fb5ZNI2Dhy/zyuvLfdr26JrEujXHKLKVqmzlylPIisQfv8zmp1/28uXX23zG88IzA6kfH824SfMpLrZ5xVkEFQSHG7dR0JxaOSiKyEfvjkMUDcyY9ZXPfTt1aMDjD/fh4Se+5/CRK3cUitIfMBmMtO9Qny07z3qNx6SIjBqRwpiRbZk4dSHXb+R6AokGg0BwkIXFi6bSu/87vkXxVRVBEFi+dDZjJn5GQYHVE8gVRQMxNcNY+OlEFn6xmZ9/2efL7asjiIgIYNK0hZSUL5xe6jQNLlWzRYV4hMkkMf/jCRQW2pj9yBIffvr2aso909OZef/XnDuf5bGFIIC/n4nFi6Zy+GgGL8/5zdsWJompkzrSp1dTxk6aR05OoSeVwmg0EBEewNef383SZftY9PVWr/moKCLPPTWQhgnVGDd5HkVFd7iVJCMJ8dF8+O5Y3v1gFavWHvXp84fvjEWRRabN+tLnvh3aJ/Dko3159KkfOHT4itc8t5hlvpg/mavXcnn8mR8rcCsxYlgy48ekMnHqQq5dv+3FbVCQhW++mMrmLad598NVPn166P6epLaNY8zEeeSXq00tigZq1ghl4aeTKo8D8l+y8rFaHSz9dZ/utv4vv95KbO1w3ZINbrfKHysPIpSeBVUedoeLH37eTWZmvu59t+04y84951DdeCkfqqpqpzKsPsLvK3XKLticbNxyCqu9XJXBMpQmcG3fcZbF3+7wetjK2i78Ygvt29XHYXf6BHgNokCNaqFkZObhrnDRbnex+NvtyLKI3eHbp/UbT9CnZxNvx1Ouf63a1OValq8trDYn3/24m7h6kWTfKvRSMNxuleISO5u2nEIoTYT0giAgGATWrD+Gzeb0sqPT6eZGZi579l7gp1/26tpx0VdbiKsX6Svllp6o4QYfxwPaCu6Hn/aQfavAZ17YbE6WrzhEu5Q4Ll7K9rq3qoLd4WTl6iOsXHXY1xZWB18s3kpgoInCQptXDpfL5SYvv4StO87w9bfbfV6EGreb6dQhAbvdW2lzOFycPZfFwcOXS1ctFeaq3cnib7djMcu649m4+SR9ezflcAXHA1rlzGXL93P4aIYOtw5++Gk39eOjuZld4MNtSYmd9RtP8OXX23T5WfjlZqxWO1arw4fbzKw8Dhy6RMvST+7/Kf41zifndlGlEuSly7dw/IXUK5QGBCvC5XJz9lwWt24V6rbTpEJVV7202ZycPZ/Jjcw83baFhVYaNqjOsZPXfK65XW7OXciqNI/n6rXbnD2XqcV4fPqsEtewGtn5xRRXKOmgqirnL95EFo36RdUlkffmrtY/UQOwO11kZOiXxXC53Jw5k6nb1mp1cO5CVqXysaqqXLhwUzc/xeVSOXn6RuXcXrnFpSu3dCVbg9FATM1gMm8V+tzb5VI5cy6T3Nxi3X6JRgPHT+qXmLDZnJw9l8mNG5Vxa+PipWzdI4hsNgfnz+uPFeDa9ducPZel+6IUDALHjl9FFI0+zkdV4fyFm5hMkj63ssiRo1cRRQO2Ct1yOFycPpvJlUq4dasqZ87e0D2Bwmp1cOHCTW5WOOetDFlZBZz/C24vX8n5Xzuff43aFRbqV2muTp3YcBLioyrNFTEYBP1SA0YD9eOiqVsnotK2oJ/noygi8XHRVKtw5HIZggLNDBrYElmndIKsiMTVi9KVjwFiaoZSPz5KVyJWgc3bTus6AUEQiKsbSXxclK6ztdocXM7I1R2PJBlJqB9N7VrhOle1hzUhoZquVKsoIvmFVgIDTTotoVp0MHH1InXHazQKNGxQTafVnX7l5hXr9lkUjTz6SB/ds7eMRgP146OoV1efW6fLTeMKxxeXQRAgK7uAyErKgAQGmKlbJ9KjOJWHoojExUV6FKWKqFkjlPrx0Sg63Lrdbhon1dR1tIIgUO8vuLXbnTRrGqNf66f0k64ybg0GAw3qV/NRikELTdSrG0lUJbaIjgqsdC4bDQKxfyPoXBn+Nc5HUSSGD03GVCGfQFFEJoxPY8ig1ro1RQDCwwLp2D7Bp2SDLBsZPrQ1d41r7/Og/1Wky2AQMCkSPbslMXVSJ99SEIpIcnJdPv1ik88bTBQNhIX60y4ljglj2+uOZ8qEDvTt1QyxQh5JeUm8evUQ39+VjYwb3Y5Rw1N8xqMoIn5+iiduVXF8kmhkQN8WTJ7Ywee+JkVkzKi2JLeqS1RkoM8ktdmdrN96kmKdlZyiiNw9qSNduzTCbJa9HhxJMlKjeiitWsQyYmgyJh073s4r0YL2On1u07ouiQ1r0CFNh1vJyIihbbhrrC+3iiIyqH8LmjSOIa5upJdDVdGEuiOnrpJ1u1C37aS70mjfrj5BgRavXB+j0UBIsB+pKfFMHFcJtxM70KdXU2RF9FrtSZKRhgnVaJIUQ7/evuVF5P/AbXrnRBo1rEGL5rW9rguCZouB/Vsw+a40HW4lRo9oQ+tWdYmOCvbi1mAQsPgpdO7YkCk686KM2y6dG2KpyK1opEaNEJo19T1O6e/iXxVwVlWVn3/Zy5IfdpGXV0ydOhHcOy3dM8DzF27yypzfOH8xG9DSYeLqRfHSs4MJDfXji6+38tvvBykusZHYsAb3zexKXD1N8j585AoffbqOs+cyPacDA57tAQaDgCKLOJ0uWrWow/33dCM6WlMBtm4/w2cLNnDtei7h4QE0axrDxu2nsdqcWsDVrQWKRdFIpw4J3Ds9naAgC6qq8sfKQ3z1zXZu5RRSs0YoM6Z2JiW5HgC//n6ADz5e4703rDSgm9yqDk0Sa/DT0r0UFFqpHx/NrBnpJDbU3uanTl/ng7lrOXXmOn4WhcEDW7Fu0wkuZ+TgPUBtbK+8MIS2pb+7Z98FPp63nsuXbxES4sfYkW0Z0K+5drhcgZWPP1vHhtKtFG5UXJTbY+ZSEUv/OzoqiLsndaRThwYAZGXl88HHa9m15zyiaKBLx4bMmNYFfz9F43bZXr79fhe5ecXUiQ1nxt1dePjpH7TPpgp9Fgyw+reHkSQjTqeLLxdv49flBygusdGwQXXum9mN+NJ0hiNHM/jwk7WcO59FYKCZ4UOSGTE0GYNBoKTEzifzNrB8xUFPHpVaurfNYBBonhRDdlYBV6/dJjzMn4nj0+jZvTEAt3OL+OiTdWzdfhoQ6NC+vhe3K/48zJffbOPWrUJq1ghh+t1daNtGs/HVq7f54OO17D9wEUkW6dEtiWmTO3k+q779YSc/Ld1DfoGV+LgoZs3oSqPEUm7P3ODDuWs4efo6FovCoP4tGD8mFaPRgN2uxZX+WHkIq81J08Yx3HdPV8+qZ9/+i8z9bB2XLt8iJNjCmFFtGdivBYIgUFhoZe5n69mw6QRut0pKcj1mzexKRGmuzvqNx1mwaDOZWflERQVx98QOdO7YEICbNzVud+4+j9Eo0KVTQ2ZOS8ffr/KjkuG/JOAM2tKza3ojHKhcy8yjaaOaHkIAYmuHM2VKJ1asO0JhoZX0tAb06d7U84bp17c5okXidm4xbVrUoU65UgMNG1RnxMgUdh+4wKZNJ3HYnJ6SoSazRO+eTTD5yVhtTjqkxBNVLtu6VctYcotSOHU2kzq1wjSVoyw4Jwi4jYABAoJMDB2a7MkxEQSBjh0aYHW5uJSRQ2JCNZqXe1Okto3jg3nrcBu0fgil2fOKItI2uZ4myYsGbt4qoHmTWtSvf+fzpV69KEaOSmHvwYuEhfrTKz0JwSiw+LsdWrDT85BBgL+J1i3qeNo2aRzDyJEpHD15jZrVQ+jcqaHHhgEBJoYObU1QhD/rN5/gxo380iIhGlSjALKBtslxJLeoQ3LrO9tIIiICGD48magYrS5P946JnskpCAJduzTCCVy9kUuTxBo0blyT2rXCuHjpFmppXSXVAKjQoF6UZ8Uiikb69mmG0SxyO7eY5Oax1K1TnttqjByVwsGjV4iKCKRHepLnLW02y6R1SGD5+sOeXe1lu/DdbpVLV3OYND6Nk2duUKdWGO1L0yAAQoL9GDY0mdCoAARBIL1DQy9uO6QlUOJ0atzWr0aLcocqVq8ezPARyVSPDcVilunZ+U5Gu8Eg0KN7Y1RR4GZ2Ac0b1yKhfrSnbVzdSEaMSmHvAY3bnl2SPCswWRYZ0L8Fir9MfqGVdq3qEVPzzqdP48Y1GTkqhSMnrlGzWjBdOiV6uPX3NzF0SGuCwv1wOl10Sk3wOB6AlOQ4Cqx2zl64SVydCNqUvqwAwsNLua0ZjFiB2/8t/lUrnxNnrvPAMz/gdLmw212YTRKR4QF8+uZYFEXioed+5NDRK14qUEz1EOa/M56DR6/w3Ju/4Xa5cTjdmE0SDeKjefv5YdjtLmY+/g3XM/MosTqQJCOqWyU8wEJUeCCxdSP4c6OWeOVWVRRZomO7eJ68vze3bhcx9eGvKSyyYbU6UBQRm9XpOcam7AEHtBIVssjowclMHJXKxcvZzHx8CQ6HC5vdidkkERRoZt5b4wgMMPPcm7+xbddZbT9P6ZhEBKpHBjNrZjrPvK6Nx+7QbFGrRigfvjYKQRCY/cz3nL940zMeo0Hg2Yf7seiLLVy6egu76tY6JmgTtlXT2rzyxECKim1Me3gxOblFlFgdKKXZvx++Ooq4OpEs/nkXX363HUfZ3qeyPCF36cLEiGcVZDJJWEwSn701jsjwAN76eDVrNp3AZncgCAKSaGTquDSG9W/FyTM3mP3M9zhdbux2JyZFIizEj3sndeKFV3/D6nZ5yfiSZOTZh/rSsW19duw9z7Nv/OrFbf16UbzzwnAcThf3PL6EazdyKbE6kEvLebz1/DAaN6zBr38e5MMFGzR10HOyCFAaOhEVrVCY1erApIjIksgnb4whpkYon321iZ9+3+8JHsuyyMgBrZk8pj0Xr9zinse/we5wYbNp3AYGmJn31liCAi288NZyduw9j9XmQDQaMBoNzJ7WlT5dG3PoWAaPvPiTdjxSKbcxNUL56LVRGAwCs5/+nnPluDUYBF55YiDJzeuwfutJXnt/pbYnzqXZollSDK8+OYjiEjvTHlnMrZxCL24/eGUk8XWjWLJ0N4u+3YbDqe3zUmSJXl0a8cD0blzPzGPaI4uxWh1YbQ5MioTFfIfbdz5dw6oNx724nTKmPSMGtv7LZ/6vVj7/mpiPqqq8+PbvFJfYPXGUEquDa5l5LP5xJ2s3Hefw8Ss+8vOVa7f5YP5aXnrnd2w2J47S1UyJ1cGJ09f5c8Mxvl22m4xrtykpjdg7HC6cLje3ikro3acJKzccxWZ34nJrNU6sNgebdpxh36FLfPT5Bm7fLvJE+202Z+kWiHLbIcpl49rsTr5ZupsrV3N49f2VFBXbsJVO3hKrg5u3Cvns683s2HuOXfsu3NlIWHoPVTTw5svDee0DrWRGmSJWYnVw8cotfv59P8tXHeLshSyv8VhtTp59/VcaN4/BLZb2p9Qp2u1O9h+5zOadZ/h8yTYys/M9bW12J0XFdl5+dwXXM/P44ttt2OzlJPPS+6jgM1usVge5+SW8P38dh49fZc2mE1hLT5Jwu1VsdieffbWZm7cKeOndP0q51WxhtTm4eiOXF9/9gy5dEjGUJS6WwuFw8ep7KygstOpye+rsDVauP8r3y/Zw5WqOZzx2h4sSq4MX3/6dzKw8Pliw/k5aglDOLoJWGsXldnu4tdqcFBRZef2jPzl/6SY/Ld+PzaalQ2inbTj5btkeLmXcYs4HKykssnnk6RKrg+ycQj79ajO79p9nx77znjQLp8uNze7k3c/WkpdfwgtvLcdqdXhEhTJuf1q+j+WrDnOmArc2m5MX3/6dgiIbcz5Yic3u9MybEquDg0evsHH7aT7/dhuZWfrcZt7M5/MlWz3cls3zFeuPcvzUNd75dA35BSWePlttDnLzSnj3s7UcPXmNVRuO+3A7f/EWsipRyf4O/jWfXVnZBdy85TsQh8PFuq0niakeWmmB+VUbT+iqC1abk9Ubj5F9q0hX1rY7XLzx0WrdUgNWq4MN206xfc85T0DUCwZB/8gMtA13G3ec5oyOPO1yudmy4wwXLmX75ACBto1gy+4z+jKv3cmaTceRZdEnJwPA4XTzy4qDujuUrVYHazcf59jJ67qKyeWrt1i/9YR3zlIZBAEMqm6+jdutsmv/BaIjg7DZfcdjMAis23ySzCx9Wbu4xMHKjcd0+2wwCKxcf0y/jEQpt7dzi3W5zc4pZOT0Bfq73gUBgxEtq9zpfW9VhaMnr7F5xxndHeYut5tNO05z6uwNXW637jyD2+XWlaZFo4HVG49RVOxba8leyq3ZJOty63S6+XPdEd3NriWl3J48c8MjOJRHxrXbrNtyQjfdwW53snnHGfYe9C0R4lZVdh+4QEz1EN20EcEgsGv/efp1b+pz7e/gX7PykSRjpXkkomjUlYDL4Ha7K1WvZEnUlRjL4HS5dQkzGAStbSUnZhgMAiaTvu/W2lbeXxU4ee5GpX02KZLPCq8MsiQiVVJiAjRn8L+1hSKLujlPBoNAQiUSMIDRYECWjLqTWxC0DZl/9XVf2ae/qmpKXGXXZUmsdF6UfZbotRQEgd7dmmCuJBVCEAREyaD7UjII2ryoLHfDKBp9DxUo32dZrDRf7a/muaqqKIpUqR01bitpi4osibrHCBkMBiTZiKGSeW40GDyffj5tBaHS3/w7+Nc4n9BgP+rFRvgMUlFE+nVvQr/uTXQnA0DLprWx6ORkmBSJfj2a0r+Hr7T5nyJdkmikZ5dGdO/oW6ZAELSjc5KaxPiculB27/T2DWnZpBbGCuORJSMBASb91RTaJOveKZGo8ECfCWxSRPr3bMqAnk19ZN7/NB6TItGna2N6d23sI+UaDQJJDWrQpX1Dn8xp0Bza4/f1okv7BjpVBYykd2hAt46Juk7R7Vbp2qEh8XUjfcZT1me1VG2sCEky0qNLkm5g06RI9O/RlH7dfbn13LtSB2CkX48mdO/UyIdbo9FA21Z16ZrWUPdhRYD0tAa0blbbZxUiS0Z6dWlEry5JuitxgJ6dGxEdqc/tgJ7N6N/Dl1vQco96dWmku/IxKRJ9ujWmT9fGPr9rNAgk1q9Ot46JuqtL0Wiga4eGdG6X4HsqhmikS5rGrZ6TcbtV2if/P1BSA+D5R/oRFuKHxSyjyCImRaR5Ui2G9WtJu9b16Foq+5WHn0XmoendmPPUYPz9FCxmCaX0FIPunRLpkBLPwN7Nad0sVqtdS4UHtfTbX5FFzCapNOho5K6R7UiIi2bq+A7E14nEbJI8qxkVKCixsefwJdwG7ahhs0nS/o0s8ti9PQgP8+fx+3oRHRnkGY8WBK+mJagJ3iUvyvo0dXwHTIrEy08MJCjQ4mmryCLtkuPo1SWJrh0S6dSuvmeiVRxPGcwmCUXRbDGod3NaNYtl7NA2NG5QHZOi2clilokID+DpB/pw7tJNjJLRq08qYJQMnL54k9lT06lVI1S7b+l46tYK456JnakXG8HdY9OQJSMmRfL8m+ce7keAv4nnHu5HaLCf15jLIMtGkhrWQC4dp8Us4WeRef3pwciSkdeeHkyAv8nLFt06NqRju/oM6NWMNs3reP7eYpYrxOK8f0+WjIwflkLD+GrcPTbNw23Z79aIDubRe3oQHRnEA9O6auMpx+0jM3sQERbAY7N6Eh0Z6MVtQlw0E0el0rhhDUYNSi61hdYnk0nilScHoigSrzwxiOAK3LZtVY8+XRuTntaQzu0TvMYTGGBiztODkCSROU8PxmKWtbal3A7s1YzWzWIZPSSZxg1reHEbHhbAMw/2ISjQzNMP9ik3zyVk2ciMCR2pXTOM+6emU7tmmBe3tWNCmTW5C3VqhTN1XAcfbp99qC8B/vqJp38H/yq1C7TPoC07T3P56m1aN4slsb53duzxU9f4/NttFBTZaJ9cjwE9mxEYoO2stdkcrNt6kuzbRXRoE09sjHf25S8r9vPBwg04nG7tGS2tEZPcLJZnHujD6k3HKbHaSW/fkKiIO1K7qqrsP3KZed9s4cS5G9qyudyry88kM2FoCqLRQLdOiQQH3inn4HK52bH3HOcu3aRpYk2aNorh068388PyfT4V4hRZZPmX92ApzZ51OFxs3H6Ka5l5tGtdl/g6d07jADh/6SYffb6BA0evaHGc0i6JRgMtm9SiY7v65OWV0Dk1gRrlinmpqsqRk9c4cOQSsTHhtE/Wyjn8sHwfn3y9GYfjzp6zsuLpI/u35N4JnVFVld0HLnLizHUS61endTPv0zhu3ipg7eYTyIpI9w6JnslZUGTFaBB4/JVfOHwiQ9vWImhJmaHBfnz1wURycovYsP00oUEWunZo6LUCKEt0zL5VSPs2cdSpkM178uwNdu2/QM1qISz4disZ13PvXFS1T9HwEH8+e300UZFBPtweOXGV+LqRtG3pXVTrdm4RqzefwAA+3LrdKtv3nuXcxTvclrfF9cxc1m89hb+/Qre0RCzlSnV4uM3KpV3LusTXvSO1A5y/eJOte84SGR5Al/YNtE+9UpRY7azdfILc/BI6t6tPzeqhXm2PnLzKvkMat2lt4rxWSwWFVlZtOobD7qJ7p0TCQu6U6vDmthqtm8V6jSf7ViFrNh/34fav8F9TQN7ucPLWgnWs3noCgyDw/+HuraPruK4/3s/QBTEzM5qZmSExBR0nDjWctGnTJM0vTdu0abiBhpnZiZmZmWUZZFuSLWa6OO+PubrS1Z3rpH3rrZW+vZZjR6MzM+d8z+w5s/f3fLeiSNxz42hmjddIX1v3nuHPr65wR/PDgv148bE5ZKVG09zawd9eX8WuQ+cRRYEAPyN/vHMiw/trXIXlm47xykeb6LDYsNmdyICkwtB+adx502ieeWsNJ85oUh1R4YH8371TKciKQ1VVPlmyh49+2K1JVXSmntVu6s2SgCSLCAikJobzlwemkxQXht3h5NWPN/HT+qNazFYUuW3+UCaPyGXRgx/R2NKOTeh6yuOjgnnzb9cRHuJPe4eNZ95aw6bdpxFFAbNR4aFbxjFxhEbo27irmOffXU9bhxWrzY6ggp+orcyio4IIDgvgaPElBEEgNMjM4/dMYUCBxkP5btVB3vxyGw6Htl9u+tgCHrp5LHuPXOBPz/1Eu83usYIyyTK/u208U8cW8M7X2/lq+X46f+HGWQO4Zd5QBEGg6Fwlf35lORXVmkZxdloUN84axFtfbuPipTpXHEtAclWSCDAoTB2dx03zh3KqpIp/vLmaphZtV/yAwiSevG8qQQFmWtos/PX1lew6qMk5+PsZ+OMdkxgxQMN22cZjvPzBBqyuckO9suIoOnnJ/f8aD0tAlkWiI4L4v3unUujC9tMf9/LR97vQWAUqcyb15u4bRyGJIiVltTz5r+VcuFQHKqQkhPGXB2eQ7ML29U82s2TdETe2i+cN4fqZWur5cFEZf3ltFbX1LagqFGbH8ef7pxERGkCHRcN2467TLja9zEO3jGPSCG1lv3nPaZ59Zx1t7VrN9uH903j87in4mw00NLXx51dXcvB4KYIgEBJk5vG7JjOwVzIA368+xBtfbHVjO21MPg/dMg5FlrhU1cj/vbyM0+erQYD4qGCevH8a2anRqKrKO1/t4Mvl+9zYXj9zALfO17A95cL2sgvbrNQo/vLAdGK7OXI9+59xPk+/sYp120+5U9OgfQv/9aGZxEQEsej3H3sFYiVRYPm7d/PH53/kePEldzoWwGSQefNv11Hf2Majz/3oUX5FkkRG9E/j6d/OYsED71FZ3eQRhzGbFL58eTHbD5x1OS1P4bFOB9TJlu00QYDgQDM//Pt23vlqB9+tPuTVn/tuGk2wv5knX13hkY2RRIHE2FA+e/FmHn3+J3YdKvHI5JgMMi88NhdFFrn3qa89jkmiQFpiBH+4bQLPvreOktJaj2yNySjz0bM3cfpCNX97faVHf4wGmRljC7jnxlFMWPSqJtXZ2SXXIu+HN25n9dYiPvhup0dbk1HmzmtHMGlkLvPve4+2blk6URB8Bs47+/OXB2cQFx3MrY9+5jFOsiSSnRbNO09fz71Pfc3RU5c8EgNGg8ybf72Wqtpm/vjcj16B2PzMWEyCyMHTl7zuwWxU+PJft7Dz4Hle/nCDV3+umzGAG2YPZM7d79Dc0uH+ZBMECArQsH3v2518t/Kgx5wyGWV+f9sE+uQlcsNvP/TIZkqiQEJMKJ+/dDOPv7iUHQfO6WA7B6NB5p4/f+0xFoos0S8/kRcfm8PiP37K2Ys1ntgaZD54diElpbX85bUVXthOG5PPgzePZc4971DX0Oax2vY3G/ju9dtYuuEY732zw2ss7rhmOFNG5TFPB9vwUH++e+22Kwad/ycYzq3tVtZuK/JKm3ZY7Hz43S4iQv11J7LDqfLqx5s5eabCw/GAlkr/ctl+KqqbvOo+ORxONu85w/drDtHQ2OYVAHY4nCzbcJSfNhz1dDzglntQ3f/uMlXV0pcbdhbz/RpPx9PZn+feWY8kCV7UAYdTpbK2mR0Hznk5HoAOq51PluzW+DI9qy44VUrKamlsbafscoNXmthmd/DtqoMcPF7q1R+L1c6P645QWduELIlYnd3lOLRP0617z/LZT3u92nZY7Hz6417sDm9h+ys5ns7+fPj9LjKSI712XNsdTs5eqGbnwRKOn77slZG02hx8vnQfh0+W6WaATpy5zN8fns2Jbivl7uf+af1RVmw6rtufr5bvJzoiqKtwo8s65Tg27Czm+1WHvOZUh8XOh9/vZuylOq+xcDhVquqa2bb/rJfj6RyLj77fjb+OpIbN7uDgiVJ2HirhwqU6fWxXHuTIqXJdbFdsOk7f3ATaO1fuPcZi1ZaTfPqjPraf/LgX8N647VRVWtut7Dp03r0C/U/tV+N8GpraEEUR8E57V9U206LDjei0k2cuo+hIDThVlbKKemrq9CU1AD7+YTd6iSerzUFZZQP1jW36DQUBUXATZT3MYrVTXuntALqbL86SAJwtrUGRJV3+yqWqJiqq9TkzDqeTsxdrfMiLqJRVNFBdrz8WdoeTrfvP6Ra+sNocXKpqpKmlw/sgGnaXKhu9HO0vsaraZkxGRTf7J8kiZy5U68pIqKpKeUUDNfWtuudVVTh1rkI3DWizOyiraKDOB7YdVjsV1Y2063BbLFY75VUNuvQMgNr6Fsou6x8XgJLSWk1SQwfby9VNmIyKT1WCcxdqkETvHJHD6cL2CvP84uV63XuyWO1crmqkqUW/RFFjczvllQ262NrtDip1uHm/1H412a7o8ECtUmUPEwSBgqw4eufoyyMA9MlP0AWzc7na6wpt65vadKsjmI0KfXMTyEiO1GkFIUFm/nDHRF2uiMEg0zs3geCA/1xi0u5wMqxvmq7jkkSBPrnxun0F7YEb1i9Nd5IZDTL98hPJTY/Radkt7a1zzGxSKMiKI6lbmeHulpoYQa+ceMw+VAd8mSBon0f98hN1eVE2m4MR/dN05UUUWaR/fiKKD34KwID8ZN3Vl9mo0DfPN7ZRYYHkZ8XqYisKAoeLy31yhLLSoumXn+i1gx/A7lAZ2jdVd76JLmz75SfocstsNgdD+6VeEdu8jBhddoHRINO/IBFZx3GZTQqF2XEk9Qhad1pqQriGrd5YiKLP+fRL7FfjfGRZ4q7rRnqAJghaMO72BcO449rhXpwZ0GIDt8wdytzJfTzaSqKAn1lhwdR+LJ431CfpS5JE+uUnevAjFFkiLMSPiSNyuP+mMZh0OBtNHRbsqCTFhno8OEZFJiMpkgEFSdy/aIxPvoeemYwyYwZnkpEcyS1zh3j0RxQETCaFRVcPJiRY36kZDTLpSZFMHpnr0VaWRAL9jcwaX8hd12tj7KGECu4tB+7/d5lBkYiNDGbkgHQevHmcV3+MBpn7F41h7JBMIsMDULpxRQwGCVkWdVdigqDxU+64dgRzJvXG38/o8fIxGWVmjiskNTGC+dP6eY6FKGA2GVgwvT9TRumX642JCKRfQSJDXWn4TlNkkdBgPyaNyOX+m0Z7y3wYZB64eQxD+qSSHBfm5RTtTif7TpTSbrd5CliixV7uvXEUU0bnERLo58GbMRllRg/KIDMlilvmDvXC1mxSWDRnCNfPHIDZ5ClfYTIqXD9zAOlJkUwdlec5zyWRAD8jsyf04jfXjcTkqjDR/br3LhxFr+x48rNiPcdCkYiJDGLUwAwevHmsLrYPLBrDmMGZRIcHevC4jAaZXjlx5GX8987nVxVwBti67wwffrebqtpmCrNjuf2aEaS6du2eL6/l98/8QLlLXTA2Mohnfj+bzJQoTb5i4zG+XL6fppYOBvdO4bYFw4iO0FLmz76zlh/XHfGMDwiaZ//o2Zv4esUBlqw9jNXmYOyQLG6ZO5gg18pl2aZj/OPN1ThdezVVERC1B/OLf97M8o3HWLX1JAIwfWwBN8wagNGgvSn2HDnP+9/spKyygYZODdxuwVwEbdJGhQcyd1If5kzp415ar9tRxCdL9lDX2Ea/vERuv2YYCTGhfLPqIK9/6qklpCgid147gutnDsTpVFmy9jDfrDpIW7uVEf3TWTx/KOEuns2ZC9W8/dV2jhdfpqG5DWc3x9NJilEkkfAQfyYNz+GmOUPwd6X/D50s472vd3C+vI60xHBuu2Y4hVmakHtzawdPvrKcPYcv4HCqmPwUFs4ayMWyOnYePI8oakxcp1OlICuW268ZTlqiljKvrmvhvW92sOPAOQL8TVwzrS+zxvdCcMnSrtx8gi+W7aOuoRWDSabFYiU02J95E/vw4+rDXLiklaUWBC2I+v4zC0mICcHucPLNygP8sEbDdszgTG6ZO4RgFz3jxJkK3vlqO2cuVJMQE8KtC4a5s4LtHTY+/XEPKzYfp7K2WRunbhuJDZJIVHAgFoudrNQo7rhmONlpGh2ioamN97/dxeY9pzGbFOZM6sPcbtiu33GKT5bsobaxlb65Cdx+zXASXXSIy1WNvPP1DvYdvUBwoJnrZw1kykhNecDpVPlx3RG+WXmAVh1sz17UsD1xuoKYyCBunjuE4f005QGrzc4XS/exdOMxHA4nE4fnsOjqwfj7aSTOw0VlvPv1Ds6X1ZGaEM7t1wyjMFv7amhps/DR97tYt/0Usiwya3wvrp3R/4pse/gfCTh3WnxMCOmZURiDDGRkRBMW0sWriA4PZNiQdLYcOEuA2cgdc4eRmaKp9guCQHJSOGkZUdQ1tZGREe3m/wDcPGcIWw6epbalDadDxSxJGCSZp+6fjiyJpKVEkJoRSbvFRkZaJH6mLk7GiZLL2DtXna6HU0B7A+89foH0tChSLlUjCgJpKREenIzY6GDSM6MQ/WTSBIGjJ8qwWFxi5pKAYpDIzIwhLNiP1JQIj2/6xLgwMjKjqahtIiMjipAgPyxWO6MHZVDb0MpnK/Zid5XXmTYqn+tmaBiLokBqcgRpGZE0tVrISI8kwK+LJRwe6k9GRhQtDhvW81W0dKtxrwpaMb/4uFCiIwJJS4vyeNNGRwaRnhmFwyCQkRpNVDdJhu2HzrHnVCk2BUCgzW7no6V7eODGMfz5/umcK6/lq9UHKK1sICMjyv3AAAQGGMlIj6K8oYngQDMpSRFujokgCCQlhhGbGMLZ6joclg5Qobndyr+/2srMMQXk5sRy8FQZ0WGB3HvtKBJiQgBc2EaSlhFFm8VKRnqU25ECREUEkJEZhUV0kp4QQWw3RT+jQSYtNZLwU4FUtraiuhIanX7a4nDSjp3k1HAyMqKI6Fa6yN9P68/5mnr8zQZSk3tgGx9KemYU/rVNZGREE9qt1E9QoJmMjCiqWlqJCPUnOSHMPRaiKJCSHE6qC9t0L2wDyMyIptluIzkmlHjXOIC2ok9PjSL1YiQ2u4P0NE/1yeiIIDIyonAoAhkpUURFdI2FyagpHp6uqMUgS6SmRPjcevRL7Ve18tlxuIRHX12Kze7A4VQxKBIBfkY++euNmI0KMx54h7YOz8jjvAl9+P1N4/hh4xFe/mwTFhdBzmiQiQkP4sOnrqfDamfhnz6hqbUDq82BgLZc/fOdU5g4JIfXv97KN2sPuQOMJqNCfloMrz4yl7LKBm54/JOuUrWd4+UEs0EmJTGc85fr3W3NRoWxAzJ58s4pHDpVzgPPfefujyKLyJJEcngwTc0dtKkO2q02dzDPZJS5afpAbr1qKOt2n+Kv76zGauuU+ZCRRBG7Q3NcNrvD9f9amWmDIvHozROYOiKPT1fs5Z3vd7qzMSaDTEpcGO88cS31Te0sfOIT2i3ajvnOdLhJFFEdWokaVejKVJmNCgPyEnnuwdmcvljNnU9/hdWlCqDIEgZF4p0nriU1Lpwxt7+q9aX7KgoID/Tj/34zhUde+QmrS6rDoEj4mzVsA/2MLH7qC8qrGuiw2jVNI4PMPQtGsGBSP37cfJQXP9nYlV3qGaByrUKtNoe2r06W+Mtd0xjdP4M3vtnGl2sOutPeJqNMbmo0rz0yn0tVjdzy1OdYrC7ulySiyBKv/XEe+Wkx/Onfy9l+qKQr8NydYuG6rlsCRNbYzB/++QZiwgO56x/fUHyhqgsDo8yNUwdw+5xhrN9TzFNvr8LWia0iExJk5pO/3Igkiyz6v8+orm/BYrVre+MUiT8sGs/0kfl8tmIfb3+/A4urqq3JIJMUG8a7T1xLQ0s7Nz3xqYv75UASNemL5x+6ioH5STz70XpWbDvhMVf75STwwm+v4nRpDXf+7Us3trIkYlBk3nniGtLiI/jtiz9w6FR5t2dEZubIAh6+aZzP5xn+RyQ1nE6Vp99bQ4dL2gK0LEtjSwfvL9nN8x9v8HI8AN+uO0RFTRMvf7aJjm7VICxWOxU1TSzZdJQPf9pNXVPX7mcVLbD7wqcbuVTVyJerD3hkNjosNk6cq2DbwXO8/Plm7YHvptmDS/jK7nRScqnOo227xcaGvcWcOl/F399f69Efm91Ju8VGRXMrN1w9CIvN7pFF6LDY+XDpHqpqm3jmg3V0WO1uJ2Cx2t2TyuqqQd4ZlFZVTeLg2Y83UF3fzFvf7fBIA3dY7Vy4XM/qnUW88e02txOGbk7G38j8KX0QZdEjSNtusbHvRCn7T5by7Efraeuwua9rsztobbfy4qcb2XX0PJYe5MTOf9c2tfE3F7bObtg2tbTz7pKdLNt63O14OvHpsNp57att1Da08tKnmzzT2jrXcPfHqdJhtfP399dyuaaRz1d5luvpsNgpKqli64Gz/OuLTbS2W9wUDbtDw+eZD9axasdJNu0745nx6ikv0l0CxO6gpc3Ka19tYcO+05y+WO2JgcXOx8v3UlnXzDMfrNWkLTqxtdmpa2zj05X7+HbtIarqmt3zQlW1/jz/yQZq6lt487vt2jzvhu3FijpW7zzJW99up7kbtg7XWDz93hrOldWwbMtxr7l6oKiMfSdKef5jT2ztDidtHVZe+GQje45d8HA8nf35afMxLlbU89/ar+azq6K2iWaddLrD4WTrobO68hOd9tGyPbob7iw2Oxv3nqa0ol53J3Fzq4V1u0+5lsOeWYR2i40tB86y/2Sp/k5iQWBonzS2HjrrdcjucLL14FnKqxp077ehuZ3Xvt6qm8qVJZHVu07h0MmI/JwJwKodRbpp+naLjY37TnPoVLlufxpbO/APMOlmSzosNnYcKeHYWf1qEAdPlZPiI1sC4G9WdNP0DqfK9kMllFc2enFmQNt6sXLHSf3d9D4SCJ1msdpZu6v4itjuO6GP7ZmL1fzl3dW6ddERBGRZwK7TUFVV9hy/iCxJPrFds/OkbibTZnewef8ZzEZFN5spCAKrdpzUxbbDYmfD3tOcOl+lS1mobWxl8/4z6OkdtFtsbD98jiOnvauwABwqLifzSIlufwD2Hr9IUox+FvTn7Fez8vE3GXxKDQT6ma7IogwJ9PPZNjTQTKvOigk0JxES5KcrBSGJAiGBZp/pY0WW6JeboBtwk2WJkECzz3IxKlrwz9cu/YgQ/ytyhHyZ3ekkMiRAV4JCEARCA/10d62DtmII9DfqOnFZlggJMGPU2cEP2vI9OMCsm41EgPGDs30SDgP8jIQEmXV9idOpEhxg8smp0fql/3OHw0l4sG9sQ4PMmE36FShUNF6ULt9Glpg0NMdnvMPPZCAkyOxTfiQiJMAntkH+Jp/0DIfDSUSoL2whNNDPI5bl0R8VQoP8dO9ZkUVCAsyYDPrzvBNbvXkuSQKB/y+kVH81zic40Ey/HG+Og8kgc+3kvswd11u3nSgI3DJrEJGhAV4TzWSQWTCpb9dSuZt1ppeH9U5F1uEXybLErNEFjB+U5XVMkkSmDc9l0tAcfQ0bYNLQHMYOyPQpIyFLki6vyWhQmDgkh8ykSP2H2YeJokByTCiThuYQYDZ6PcwGRWLOuF6Ioqg7FoIAgwtSdB9mURSYPCyXWaMLvFLPkihgcdj5YMUeXbKm0SDzu4VjGZCXqI/tpL7MG9/HK80rCFrbf3623qfzkUWRXhlxXlQIWRLJz4j16SRkWWLmqALmTejtdd1O5QNfKytJEnnwxjFMGJzl9UAaDTLzJ/ThqjGFug+rUZGZOCSH7OQoL2xNRpnrpvTn2sn9vNL/oiiQEB3CpCE5BPh5Y2tUZOZO6K217dEfRRYZWpjCpKE5uv0RRZGpw/N0sTUqMrPHFDJ1eK4PuoTAyL7/HbsZfkXOB+Avd00jKzkSk0HG32zAoGiTZOaoAhbPHkKOK7PVaQLw5zunaMXyHr6a+MhgzEbF3fa2q4cyIC+JnBQt/al2+wMQHGAmLMiPV/4wj7AgP/xMBvzNBkwGmccXTyIxOpTNR85qYuzd2jpVJ1OG5xIe7M8/75+Jv9ng/hPoZ+T5h2YT5G/ikVvGkxAd4nHtTlOB264aitHVVz+TQkSIP689MhdZEvnn/bNIiQtz90eWRF1nZDYqmI0KSTGhPP/QVYiiwCt/mEtUWCB+Jq2tUZF58PrR5KfHUpAZqzsW/n5G4qOCeel3cwjyN7n742dSePqe6USHBXLPNSMZmJ+EUZEJMBu0YDVgsTuwO504XPRoP5OCv8lASKCZ1/84D5NR4ak7p5KdHNWFrSwxfWQ+s8cU0ic7nrvmj8CoaMfMRoWIkABarFYsNgcOsdu9CpojvWXWINa/cw9vPXENc8b3dgWwNezSEsJ5+p7pKLLEq4/MJSzYzz0WJoPMo7dMJDU+nJtnDGJ0v3QtseGStwgJMndxnnrIcZiNCs8/OJvgADN/WDSBXplxGA3aWBgUiXEDM7lh2gAyEiP5w6JxXti+8sg8ZEnkmftnkhof3jVXZYkFE/sybmAmw3qnsmjGIHd/zEaFxOgQXnBh++of5hEd7ontfdeOoiA9ljnjejNlWK67rdEgk5MSzRN3TMbPZODlh+cQHGDC39SF7V/vmkZ0eCD3LBjJ4IJkjJ1jocgMKUzmrnnDiYsM5qk7p7rv199kIDjAxL8envMfE0s9nt9fU7ar07YfPsfZshpG9kknNd5TFmP7wXN8sfYAseFB3LtgBMGBXSlKVVVZu+cUlXXNTBqcQ3SYlgY+euYS9/zzW9o79ZdVMBtlHlk0nukj8gGwOxys2H6ClnYrM0fkE+hv4lBxOQ+8/D1tHTZXeRdA0N5E04fm8uRtUwBo67CyfNtxBEFg5sh8N8cHtG/qq37/nsancbjIdQaZEX3S+Ps9M6hvbmPl9pMEBZiYOjTX47NHVVU27j/N3hOlpMSF4WdU+G7dYS7XNJGZFMn8CX24UFlPfEQw4wZmeqzCHA4na3YVUdfcxtRhuYQFaWntEyUV/ObvX3uNxYPXj2HO2F6Atjdt2fbj2OxOZozIw9/subQ+fLqcrYfO8dnqfdh7LHdEEfpmxDNlSC7Thud7vU23HynhTFkNo/qkkhrnKYtR09DCyp0niQgJ4NjZS3y36UhXDMOVYTLIEk8snsjUoZ7kwosVdWw6cJaU2DBG9Xgba9iepKXdwvTheV6fNit3nmD74RIG5ycTHuzPo68vc8c4XBvxUSSB5S/fSWi3+Qaw9+RFTpRUMiQ/mexkz5djfXMbK3acJNhfH9stB89yoaKecf0z3S+pTrtc08i6vcXERgQzfoBvbKcM1V6C3e1sWQ3bDp8jKymKoYUpHsesNgfLth/DanUwc2S+N7bF5Rw6U07frAR6ZcR5HGtts7B0+3GMisx0HWz17H9mV3tzWwcPv/4Tx85VoMgiVruD6yf04545I1BV+O2rS9h2tMT9+xHB/nzw2HXEhgdRUdfMg6/8QFlVA5KoCYM/MG8U88f1QVVV/vbhGn7acRzVxdFJjQ3nnUcWEBxg5kx5DQ+9soSGlnZ3HOapW6cgCgJPvL2CVp1g29C8ZF793Vz2FZXyyJtL3Z8GJoPCc3fPondGHO0WG4+8sZS9RaWgqtgcTgKMBu6YOYQFE/uxYX8xf/t4LQJaujs8yI+XH7ialJgw6pvbuPel7yi+WN2VURYFZg7P5/GFE/l87X7eWLIDWRZxOJykxITx8gNXExHsT1lVA/f/63uq61sRRe3cM4bnUdvUjskgU1Pfwt6ii+6xyEyI4J0/Xou/ycDxkgp+99qPtHVYEQQBSRL5+x3TGZKfjM3u4P/eW8nmQ2cRBUELEnfjPXWuTERRwGSQCfAz8uJ9V5GTFEVLm4WH//0TR89edmN77fh+3Dd3BIIgsGTrUZ7/YqMbO0kUaW2zepwX19+KJPLggtFcM76vJgXx004+XLUXRZaw253kJEfxwr2zCQkwc7a8hgd7YPvkLZMZ1z+TprYO5j3+AXXNXfuaQgPNDMlJYvP+s1hsdhyu58uoyPiZDDx390z6ZMbTYbHx6FvL2X3yAgZXEHjm8HweuWE8oiiwdu8p/vbRWkDLKIYF+vHy/VeRGhdOQ3M7D726hOLSahRZxGZ3sHj6YG6dMQSAz9fu5/Xvt7uxTY4J41/3X0VESABl1Q088K8fqKxr0aRJVJU/XD+WmcMLUFWVl7/ezDebDmOQJWx2B30y43n27ln4mwycOF/Bb1/VsEXQJFL/ced0huSnYLM7ePL9VWw6cMZNWxjXP5M/3zIZWZbYfrSEP72zwiU+r+JvNvDSfVeRk+ypMdXT/mecz0OvLGHXifNeshiPLZzA/qJSftx+3KtNZLA/y5+7neue+oTzl+s8ov0mg8yrD86h6GIVL3+9xSODJEsiA3OTePHe2Ux9+G0aemysMxlk3vnDAm5++gvtnD2+eAZkJ/DMb2Yy85F3ae8hnO5nUlj2zO3c8dzXnCmv8TrvPXNGMCg3iZv+9rmWnnaZgBZsXvbs7fzmuW84eLrcq7+KLDJ/TG++33LUUyJEFMhJjuaDR69j9qPvUVHX5JXJcb3Edc4pMbZvOk/cPJmpD79FSw/xepNBZsnfF/PJmv18u/Gwxz17fJd0Z0q7LMjPyMoX7uSxt5az42gJth5SEH+8cQIpMaH85vlvPPrjEg6gswKQ+/zd2v7rgaupb27nz++v8mgrSyL9sxL41wNXM/X3b1Pf7Imt0SDzxZMLeeyt5RRdrPIaj8zESB6cN4oHXvnBKzjsZ1RY/tztvPz1FlbuPukli3HXVcMZVpDCjX/zlAgRgHDXXL3rhW85cuaSlyzG326fhtmo8LvXfvTCNjspio8ev57Zj77H5dpmj8CzNlevoehiJS986UlLUGSJ0X3S+fMtk5ny8Nu0tHtmlE0GmR/+vpjP1x7g6w2HPLA1KjLXT+zHvDG9mfunD7wykoF+RlY+f4fPYDX8jzCcm1o72HXigpcsRofVzier93HuUq1uu5rGVtbvK6a8utErzdhhtfP20p3sKyrTlRLYX1TKun3FugFNu8PJ+gNnMBpk3TLBR89VsGrPSd0sjqrCE++t9HI8nff0+doDlFU1uAmD7nZAa4eNtXuLOV5Sodtfm93Jkq3HvCVCnCpnympYu/cUjS3tuo6n8++eDshmd7Dx4FkG553SzRo6VZWVu4v4YfMRT8dDt5P5eIc5nNqn8I5j5z0cD2hj8enqfWQkRHidV1Vx1YcStHY9brrDaueLdQeoaWj1Ggu7w8nB0+Ws3XcKi07a2uFw8sOWo7qOB+B0aTXnK+qQJdHL+ajA6j1FrNx1EmuPedNhtfP5ugNU1DV5SYSoQJvFxtq9pzh27rLXeTusdj5dsx8/o6KL7blLtazbV0xDc7vXXLbaHHyz6RBHzlzyamuzO9hy6Cxr9p7S3dDqdKos33GC73WwtdjsfLPxMCajrEv9cDidbD18jokDs72O/RL71QScW9otPrM7DS0dvgXXgct1LT5Tn8dLKn2meSVJpLKuWfe43eGktrHV53Vtdgf1jW26qWur3cHuExd8iro3t3VQ2+StIdRpVfXNuinv7tfWM1kSqaxv9pmBu5IJQE1ji24a2GpzUNfU6pPr0T1A29McTifVDS0+U8+Nre3UNrXp8m0kUWB4r1REnawgaC+eeh9SEJIkUlnfopuatjuc1DTqS3F0Wn1zu7ejRaNI1DW24fAxp1raLL7njapp+viaq/VNbdQ168t8SJLI5ZomXWydqkpNQytNvmRnBC2eZtdxIFa7g7rmNtp6apa4rM1ipb6p3WtRAJoTb/Qhs/JL7FfjfGLCgvAzevMUJFFgaEEyfj6i6oIAkwdl6Q6OUZHdn0R6U8UgS4zrl6nr1c1GhXabHZtT/0FPiwtnUH6ybqUBRRJ1ge60/tmJjChM1d0tb7c7GN8/yycHSBAgJyUag141AVVl4sBsbA7ve+6ZaetpoYF+jOydpuskzEaFPpkJSD7K7vTOiOO5e2bqZj5UFUb3ySBAh1MjiQKD85LJStSXtrA7nMwZ00u3r0ZFYlTvdIYXpPjgr0iM94Gt0SAzvDCFAB+8GD+jwuC8JN3PCUWWGVqQQny3fU+dJgjQLyuB4b3SdMfC7nAyfoA+trIkMqJXKiN7pelj61SZNEgfW5NBZlTvNAblJOmeOyTAzMje6bqOy2xUGJyXTF6K/u70gtQYBucl+8hqCfTPTtBt90vsV+N8RFHg0YXjMRlk9yApsiYXcMesYTx4zWjdt/fc0b2IDgvinjkjPB5moyIREeKvbbpzNey5JeiPN44nKSaUq0cVegyuySAT6Gdk89Gz2F28UHfQVxBcsYrx9MtKoH92gsckNRsVhhemEhES6L5W9+uKosD980YxaVA2ydGhHjwTs0H7xo6PDOYP14/TnYRRoQH8ZfEUQgP93Mc75RweWjCa2PAgbpk6SNex6Vlnfx5fNIGsxCjG98/EbPAci8K0WKobWxAk0as/APPG9mZUn3RykqI8rms2KkwbkktafDiP3TTRG1uzkd/MHube3OjlIEU4VVbNfXNHepzXoEiEB/uzYGwfFk8fTJCfyc2r6cwm/vGGcSRGhzJ3dG+P/oD2tn/2m01cN6m/7pg8vmgifTLjGZiTiNkDH4VhBckUpMXy2MIJmAyy21nLkoif0cADC0YxaaCGrakHtvPH9SEuIpg/XO+a5539kSWCA8wsmjqI6yb0IyzIzyOTZDLIPDB/FDHhQSyePrjHPJeJiwhixrB87p4zHH+zAUWSPLB9bOEEMhMjmTggy2ueF6TFMDQ/hUduGIfZqLi/PiSXbvgfrh/HsMIU8lKivbCdMjiH1DjPbPR/Yr+qgDPAyfOVfLpmP2XVDQzISeS6Cf2IcKUSV+8p4qWvNlHX1E6An5HbZgzm+oldE2hf0UW+WHeQ2qZWRvfJYP6Y3ny2/gAfr96nbc9wdVUUBSYNzOLp26cDWtpz08EzfLf5CO0WG5MGZfPqj9u7Yj2qiuAEVC3I9uGj15ESq20nsDucrNp1kqXbjyMIMHtkIZMH5bB2XzF/+WiNl47vP+6cwfj+mQB0WG0s2XKMNXtPEWA2MH9sH0b0SuVyXTM/7TrO6dJqLlc1UtvQSoCfkVnDC5g/tjd+JgNNrR18teEg24+UEBkawPUT+tE3q+sttP1oCR+v3ktTSwcJUaFsO3oORe6aPCMLUyirbiQpOpSFkwe4Vx9Op8rafadYsvUodoeT6UPzmDE0j799uo6fdp7oGguXGY0yf7h+HFcNL8Bmd/DT9mOs3FWEQZaYM7oX4/t3pYmLLlTyyWpvbL/YcJB/fbcFq9XhVlJURY1w+eDckVwztg/7ikr5cv0BahpbGdU7nQVj+7h3c9c3t/HFugPsOXGR2PAgbpjUn4K0WDe26/ef5vF3V2hFBN2yGNqD+c/F03hn6S5KqxpIiAjm4evH0duVYnY4nazcVcTSbcdAgNkjCpg8OMe9O/1seQ2frN5HyeU6CtNjuXFif2LCg7ywtdhsVDS1Ut/aRoCfiVsmDaB/egKfr91PRV0zQ/KTuXZ8P0JcKgxNrR18s/EQW4+cIzI4gOsm9qNfN2x3HjvPVxsO0tTawbj+mcwZ1cutwlDd0MLnaw9w4FQpSTGh3DhpANlJUe6xWLu3mB+2HsFud2E7rKsm18XKej5dvY9TF6vISY5m4eQBJESFANqn/tLtx1mx66Qutr7s/3XAWRCE80Az2iYZu6qqAwRBCAO+AlKA88ACVVX/+11mLmts76CqrZVaSztVLa0emSTZIGEOMiE77QQEmQgJ9kNVVbfmS11rO1VtbTRYOqhqaaXDZufWaYOpqG1ixd4inALYVSfB/mYmD+lifDpVldrWdqrb2+iw2bnU0IzF3vW9rwoCqgwI0OK00dTR9W3tcDqpbm2j2tKOIEB1SysOp5NRvdP4661TeG3JdkrrGhAlkT5pcR57oKx2B5UtrdRY2mnDTm1rG1uOnuOP763A4VSxObRd2rIkMjQnjUmDs92TrMNmp6q1jVprB2qbSH1b17f35bomnv5qPRX1msTl2bp6Hr52FJFBgRgVmajQAN5bs4daSzvmNgNN7V1tHarTNRbtWt9aWrE5tVS+UZHosDlQFdy5dVUUiI8IBrQJWt3SRk1HOwZZoqZFi2t1MsgbumFb2dJCa4eVkAAzkwZk8cp3W1FlQXMOruWVqqpM7J+FqqrUt7VT2QPbADTn0261UdnSSq21A6ldpqFbf1QV9py+iF1ScYpdS2ABV+mbkxeIig6iztpBULi/x7eA3aH1v9rSjgBUt7bhcDjdzqep3UJVW5s2V1tbae0WN7HZHVS1tlLW3ERNY6uLLyTQ3G7h7ZW7Gdu7lsp2Db+q1jbarDZCMLuxrWxppdbSgdouUt/WFddSVZXa1jaq2tposVipamnFYnfQyT5qs9ioatXGwtTa5jFX7U4nta0aPnaHk+pWDVsZzfk0d1iobNPuqbK1lebubR3aPK+1tCPbRS9s/xv7RSsfl/MZoKpqTbefPQvUqar6jCAIfwRCVVV95Ern+bmVz487j/PM1xvcEXtR0JZ+nz1yPd9uOcynGw96/L4oCCwc358Hrx7Jv5fu4NMN+2l3tZUlkWA/E18/vpADZ8r404ersDoc7sCmySDz8NzRzB3Ri0c/WMGmI2fd1zXIEnaHE2dnHe/OCekaZ5Mi8/ztMxmam8zil76iqLTaHZw0KhIGWRO7UlXVQ4VDFASMiswHv11AUlQoC/7+CVUNLe6sickgY7c7PYO+Qud4Q6DZyNePLUQUBRY8/Qkt7VZ3bMlkkLl96mBumTiQUb//t1e6HOCjh6/B32Tkpue+8Ngxb1JknrxxEpP7Z3HfG0vYf7rMPRZGRSItNpxX7pzNzCc+oMNh77ovVbuvdx6cT6+0WG745+dcqKp3p59NBplhuSm8cMdMlu4+wd+/WE+Ha5y683fyk2O4UFnndc/jeqXzwp2zeHP5Tj5at899T7IkEuRn4pvHF9JhtXHtPz6jzWJ1B3lNBpnfzhnF/JG9efzDlaw9UNyVaevxzSjJAqqKx1g8d/sMhuWmcOtLX3OytKobtjKFKTG8/cA8Nh89x6Pvr3D3pxPb93+7gOToUK75+6dU1Dd3JQd6PmbdnllJFPAzGvj68YUoksj8pz+hqc3ijleZDTKLJw/mtimDePabjSzZccw9zxVJJCzIj28fv4mqxhYWPvsFHbYu9QCTIvN/N0xk6sAc7n9jCXuLSz2xjQnn499fx6Gz5dz37yWaJI3r9owGmdfvuZrC1FgWPvsFJRV1HnN1SE4yL905y2ueeXTz/6NU+2xgjOvfHwGbgCs6nyuZ3eHkxe83e6QKnapKu8XGi99vYduxEq82TlXls40HuGpYPh+v3+eRVrU7nDS1W1jw90+ob2n3SiF3WO28/MNWClNj2Xj4rEdmw2p3oEgSkqxic+qkeW12nv1mI48sGMvp8hqPthabA0uPqgce/bHaeHnJVsb1yaCmqdUjXeu1s7vbdVUV2jpsvL9mL0ZZorXD6hHU7rDaeXvFbuLCgnUdD8CL320hJMBMu9XmkV3qsNl57ttNxIUFcaCb4+nsz8mLVdzx2ncEBhrpaPSUtlCBF77fzM0TBlBW0+jBe+mw2tlx4jwnLlbywreb3Q8qdIuFqXD8vD6tYNuJ81ysquPDtXu9sG1pt/DFpoNUN7Z6OJ7O6/5ryTYyYsNZf+i0Z4rf7fVAlARveobNzj+/3sjj146nuLy6B7Z2jl+sZF9xKf/8eqNHfzqxfemHLUzql0VNY4tnVrLbdXuaw6nSZrHy3uo9+JsMtLRbPALl7VY7767azfg+GXy37ajHnLG5Mk4/7DjGwbPlPrFNiAz2cDxafxxcqKpny9FzvLl8pxc+HVY7z32zicWTB1Fa3eA1V3cVXaCotIqcRE9m9y+1X+p8VGCNIAgq8Jaqqm8D0aqqdmosVABXpjr+jFV2f0t0M6eqcvBMua4cQKdtOnIORZK8OB02u0NL46KfanaqKluPluhmCGwOB/0z4jlwplz3ymU1jRw4U6bLAfq5teSx8xUEmI26MhJXMrvTyZ5TFzHIshdnBrQVwbbj53y2v1jdwIWqet20dku7hV1FF3xm6c5drvOZri8uq2b/mXLdVLyKyo4T5z0+Yzut2xeW7rkNssT6Q2d1sbXaHewqukh9sz5loa3Dyq3/+kYjKepcWNtAqo/Updom9p8p81m9Yt/pMmqa9FP1R0su09Rmca9Mfqk5nCp7T5ViNiq62CqSyKYjZzVJjZ78IpudXScvcLK0ShfbNouNnScv6HK42iw29p8p48wlb04aQHF5je95rsKRksv/tfP5pdmuEaqq9gOmAvcIgjDK8ybcO5+8TBCEOwRB2CcIwr7q6mqfFwjyN/nkvQT7m3ymngFSY0J9yhRcyRHYHU6So0PRo6CIAhSVV/vkZJgMMjGhQR7ZkF9qoYF+xIUH6Z77576gY0KDiA0L1D1mszsYmJXos21KdBjhQf4+j8dHBLszJd2tZ3arpwX7mYgJDdTNzsmiRGJEiE/Jk57X6G52p5O02DDdh1EQIC4siOhQ/bFwAk6n73semJ1AVLB+W6MiExMaqJsxNBlkYsICdStBgLZKOXVJn7zYdfP6P44ODSA2NFD3sM3hJDUmTHccJVEgLjyICB/YqqpKQkSILrZGRSY2LJAgP/3Sx0H+JmJCgzDq7OOSRIHIYN/z6efsFzkfVVXLXX9XAT8Ag4BKQRBiAVx/6464qqpvq6o6QFXVAZGR+nwO0OIZ4/tkem1WMxlk7pk5XHfgAJKjQhldmE5WwpU1ZXtCZpAlRhemMbZ3OgFmo5dzc6rQbLFi0VkJmAwy147uw+QB2bp1lK50XZNBZvGkgcwb0cvrfkVRICo0gCCzUZdvYzLI3DJpAIsmDMDUQ1tHkUT6pMcxa0g+wf7eE0kAHp47iluneKfhjYrM9EG5TOibiVGR9Z8NHw+MySCzcEJ/Zg7O8xoLQdA2rY7rm8HEfpleE7j72PQ8vSQKpLiwzUmM9BoroyyzcHx/bpk00Ks/7vP2oFh0mtmgxbhumTzAq61JkVkwqjeT+2fraxtJIlP65zBnRKEXBgBOARyqrzcxxIQGkhUf4eWoNWwHctPEAV4yH4okUpgSw+jCNOIjgrzIuIokce2Yvj6xnTowhwl9MjAoku44TxuYyw3jvOU4TAaZheP6MWNwrj62BoUR+al6Pf1F9rPORxAEf0EQAjv/DUwCjgE/AYtcv7YI+PG/vguXPXHDBMYUpmOQJfyMCn5GhftmDWfKgGxev/dqL7BTo0N5+4F5ALz8m6volxGPQZY0ASQ/E8nRodoeoR6TUBBgZEEqTy2cjCSKvPfQArISIjHIkhtYZ2eVAkGbUKCRzwyyxMzBedw1YxiBZiNvPzCPhIhgjIqMUZFRZAlZFtzXFLu1NRlkbp44kNlD80mMDOHFO2YRHuSH2SC7NHMlBIPI7JEFPHrNODLjI1AkET+jQoDJwCPzxzIoO4m+GfE8ft0EAs1G9z3lJ8fg529g/rOfMigvkbjwILfiq9kg88yt08lLjmHqgBzumDoEs0Fxt53QN4M/LhiLUZF576EFpMWGe3wSdWcwi5KmKexnVDAqMgtG9uam8QOICPbn3/de7V4xGBWJjLgI3n1oAaqqMrJXGulxWn88HL1rI6qfScPMbNDuqXdaHK/fO0fD9s7Z9M9McGMb5GfkzwsnUZASw4j8VB66ehT+JoMnEVWHdW1UJKKC/fnXXVcRGxbEgpG9uXFcP0yK7OqPxIzBedw7azgBZiPvPDCfxMgQN7bJUaG88+B8zEaFB68eydSBOe65KgpCVxUQQaMKdM43RRIpSI5hxV9vZeXTt/H+b69haG6yu62/ycDv545hSE4yfdLi+FMPbAdkJfLCHTMRBIE37p1LYUqsNhYGhdAAM/+8dTrpseFM7p/NndM8sR3fJ4NHrxmHwRUMT4sNx6hImAwysWFBvHHfXMIC/bh18iDmjijshq3E/JG9uHniQMKD/Pn3vXOIDQvEpGjYpsdG8N5DC362esWV7GezXYIgpKGtdkCLEX2uqurTgiCEA18DScAFtFR73ZXO9Ut4Pk6nysZjZyiprGNEXio58V3fk42tHXy6aT9nK+oYmpvMVYPyPTpvczhYfaCYqqYWJvTOxG53sOiFr7Da7VhsDhRZRJJEfjtnFHOHFnp483arjeX7TvLyT9toarV4iWoZFYl5I3oxIjeFodnJHvyGxrZ2lu8tAgFG5KTy5eaDrNx/ClVVmdwvi37ZCZRWNzAoM4leKbEe561saOF3HyylqKwKq8OJgLYqiwoO4MuHb2BH0XnKahsZW5BOWownoet8VR3rD5+h3Wrj4437sTmcOFUVSRQwSBI3j9feolP6ZhMb6snIPXaxgl3FF8mMjWBkbqrHSqu1w8oz325kxf6T2G2qeyxMiszc4QWMLEjj6MVK+qbG0j89wWMs6prbWLrvJGaDzIwBeZTXNXLr699gszuxOxw4nE6yYiJIiQpl+7ELWO12huYk8/t5Y0CA1QeLCQ/0Y1q/HC9s1xwsprKxhQm9MkmKDPHoT/GlaraeKGH78fMcPFfuEetR0SRZfzN1CFcNzicyOMCj7cFz5ew7W05eYhTDdLBdtu8kIgLTB+R6fJ6oqsr2k+cpKq9i5b5TnLnsuf9QVTVC5E1j+3HH5CEeKwuH08m6w2coq2lgdEEaGbGe8iLnq+pZf/g0sWFBTOqT5bHys9rtrNh/ivrWNl1sj1+sZMepC2TGhjMqL80L22X7tH1pMwbkEBrgKUmz90wph89X0DslloEZ3tgu31+kOekBubo7Enra/8yu9oqGZha//g11LW2ggkNVGZ2Xyj8XTuOr7Yd5bslm954aURAIMBl49+555MRHUXyphtvf+Bar3YGqqtidTq4d3pvF4wby/Y6jfLvrGFXNLSiyiCAIhPiZ+eDe+cSGBrHndCkPvK8t3No7Rc6deFYpEHEzZZMjQ3j3rnkE+ZlYsb+IJ79ei6qq2OxalsukyPxm8hBmD8zj9je+41J9E7jSuf3S4nnl1lkYZJn31+/l9VU7Ncp8t8CKgDZpDYqMU9UkDBxOJ9P65fDkgokIAvz9uw38sOc4sijSbrNpD5uqL21hdzi5dfxA7po8FJvDwe8+XMbO4otILkH0qKAA3r9nPifLq/jX8m2cvlSDJIkIaLEGAyISAtMG5FJUWc25yq53THZcJG/eeTV+RgPf7DjCs0s2udpqcg9mRdHw7G6CthoYnZ/Gswu10kWvLN/Gx5sPILvaypLI27+ZS25CFGcqarjt399qWUQXtguG9eLhWaP4fOshXlmxjQ5XJQ5F0uQ6hE5+qACqrF1PcVEoHpw+ghtH96PDaufed5dw5OJlRDQFw6QIDdtgfxMrD5zi/75a44rvqDicKk9fP4UhWUm8sWoHX+44gsNV6QG0vU7OTpkkN5kR/I0GEOD1266iX1o8ZbUN3PL6N7S0W93YTumbzVPXTEIQ4B8/bOT7XceQRW2umgwy7989n9ToMI6XVnDnm9/jcKqoqNgdThaPG8jdUzRsH/5oOTtPXdBWlwJEBvnz/j3ziQwKYOvJEh7+aBmiIKKi4nA4eWzuOK4eXEBrh5U73/qO024HqpIVF8lbd87Bz2jg251HeeaHja4KsRq2L948g+E5KVd85v9nnM9Nr37F0QuXPWUxFJlZA/P4Yc8x3f1bkUH+rP7TbUz7+/tUNHjWje6ccK0Wm9e3rigI5CVG897d8xj35Fvemj0qGqXS5Xh6nnd8YQa/nTmKmc98qLsB0ahIxIUGUVrb6BEMNyoSi8YMYGRuKre/8a1HetN93c70T4+bNhtkHp87HoMs8eRXaz2lPLpHhX20ff22qzl0/hJvr93tcV1JFEgID6GivgmLTsbRIEt8/uB1fLL5ACsOnPLYX2SQJa4alM/1I/twzYuf646Fr+COSZG5b9ow0mMieOiDpV7SJBGBfqz5v9uY/vcPuFzvia3ZoDA8J5lNx856CZoJAvgbDAh2lRaHzTvupsh8dN81rDhQxJfbDnn0WZFExhak8/Ds0cz8hze2RlkiKjiQsroGr8ySAEgI2O2qbh450GRk41/u4PqXvuBMRa3HhmazQeaxOdoWhye+WOMxFgKQEB7MkkcWMeGpd6hv9dxMazbIvHrrVRy9WMFba3Z5YTsgPYEXFs1gwlPveM03oyLz3cMLeW/DHpbtP+nxjBlkiVkD81g4uh8LXvjMayxMisz6P99BoNm3jvP/hKRGbXMbJ0ordXkXP+09oet4AFo6rCzdf8KDpdtpNocTq48smFNVKb5UzbL9J9GNpgpoVQp0Qoc2h5N1R8+Qmxitu2saNA5FSZU34dtic/D97mPUNrfqpp+7X7+ntVvtfLVdE4rq+aBeiUcCGi/ju11HOVBS7jUBHU6VC9W+yelOVWXD0bOsPHjKa2Oj1e5g2b6TBJlNXhIhP9enDpudr3ccITMmwrs/QJvVxtJ9J2ls9ca23Wpj/dEzuqllVdU+0/44ZyzP/7TZ68VitTv4ce9xVuwv8nK2NoeTDcfOUpAUo4utQ1W5XO+tlQTa8JvNBmKCAjhTWesFh1NVWbrvJBdqGryUFNqtdr7cfhg/o+I1FipQ09zG0v3eMh6dbb/ddYSjFyp0sT1wrpwVB4p0M8YOp5PlB05qL5Uez5jV7mD5/pOEBZh1sRUFgU3HzzJzgH7J6p+zX83GUqvd7rMSwc9Vcmhut1wxFe/LREGgtcPik+/RPzNBN6MBWmyqzWL9r6pMWG12Wi1W/ZI8P2PtVpvug/pzpgKtFqtuWZafM4fDSbvVd19tDgdtVuvPptP1rMNm11WKBA2f5nYLgg85DuEKxARBFGjusPgke7ZZrLoPMmjYtlttOHT663A4r6hYoKoqWfGRutdVUWnpsGifuzrWbrX5lC0RBYGWdu9YZKe1WWz6q040XaQWiw2HDunJ4XDSZrH6lGmx2Z20Wew+dZ7+U65ad/vVOJ+YkEDCA705A4okkh0f6RMwUJk1ME9f1MvHvzst2N/E9H65Ph+qA+fLSQgP9nJsAtArOZaxBem63JZO03OIkigwJj+dyb2zvXZbd5481N+kK0FhlCWm9M1mar9s/TI2AvgbZN1Vk9mgMKVvNmML03U5Kldy3SaDzLjCDAakJ3hNflEQGJqdzLiCDF0JClkUMUii7gUUSWRir0ym9cvW5Us5nE6uGpSne2++yvh0WpDZyIz+ObrY+hkUJvbKYkRuii62BUkxjC1I1y8XI4o+KR2iIDAmP41JfbJ0sXU4nMzsn6c7TkZZYmrfbKb2y9HtmyQKzBqYp9sfs0Fhat9sxhVm6GIbFxbElD5Zug9BJ7aDMhO9xkIUBIZkJTGuMF33np2q+rMxnyvZr8b5CILAP26Ygp9BcQW1tEGNDgnkHzdMIcTfu6CdLIk8OX8iIf5m/nrtJEyKfMVyM12pTwmzQeYf108lMjiA+6cN93AinWEXq93J+dp6gvyM7hWQUZbwNxl4csEE8hKimT0oX9cBmRSZW8cPxN9kcB83G2TCAvx4YMZwCpKjvXgVBlnizomD2fjX3/D8ohmYFNljLBIjQrhxVF/mD+2l65wenj2Kt+6exx+vHqONhWsymQ0KvZNjmdQ7i3unDiMiyN/9sBtkCX+jQnZ8pPtaPe9pcp9seiXH8qd54wk0dY2FSZEJ8jPyx6vHMDAjgdz4SI/xA0CEf985h6sG5iOLojvDaDYoRAUHcOfEIUzrl0NuQrT7gZVEQduTNH8CQX5mnrpmksY/ckErCBAWYGbGgByMelo/ssTfr59KRFAAD0wfgalbW7NBYUh2EsNzUnh41mhC/M1d2Cpd2ObERzEmP83r3EOzkzD44JyFBfjx4IyRjM5LY1BGgrs/oqD157ezRhEW6MczN07BZPDENiE8mBtH9WP+0F6kRYe528qSiEmR+dv1kwnxN/PY3HFe2BYmxTC5TzZ3TxlKZLAntn5Ghb9dN5mE8GAWjx+ISZHdTsZsUJjYO4s+KXE8PnccgWZPbAPNRh6dM5b+afGML0z36s/tEwYTF+ata/RL7VcVcAYt4/X9rqOU1jYyMD2Rqf20FUJdSxsfbdjP6sPF2B0OeqfGce+UYaRGd+0SP19Vz/e7j1Lb3IaKyppDp72CiQPSE+idHMvcIYXEdGPH/v6TZaw6eFr7n07/5SJSPTh1OKqqpaczYiOYM7iAUFcFBFVV2Xe2jA827uPYxQpaO2zEhgZy9+QhTOufS21zK9/tOkZJVR29kmKZNTAPk0Fm5rMfUV7XgMMJgtMVJDUbWPun2wgwaQG88rpGvtt5lIqGZoZmJzO5TxYGWWb9sTM88vkKOixdEhSCBOkxEfzwu4UAnL5cww+7j9PU3sG4gnRG56e5H/w2i42f9h5n2YEiqptbiAoN5Kr+eazYV8SRC5cRBAG7w0Fhcix3TR7K4MxEd8q1sbWDH3Yf49SlanITorhqUD5BfiacTpVxf3mL2uZ2D01nURQYX5jBizfNoLKhhe93H+ViTQMD0hKY1j/HPaHtDicbj51l0/GzhAaYmTO4gLRojVpgcziY+8InXKiq11jLAhgNEsOykkmPDOPzrZr2sNmoMDovjQdnjPBIP58sq2LJnuO0WaxM6p3F8JwUd/q5ud3C0r0nOHqxgvSYcOYMKSAswI8Om52xf3mL5narW0JEFTXS5D+vncqzSzZT29yKzeEk0GzkuhF9WDSmP/6ul4LTqbL1ZAnrjpwmwGTgqkEFZMd3kWzL6xr5ftcxLtc3MTgriSl9ulazNruDNYdPs72ohMigAOYOKfSgFpyp0LBtbOtgbH46Ywo8sV2+/yQHzpWTHBnKnCEFRHWjFhy5cJmf9p7A7nAypW8WgzOTPLHdc4xT5dXkJERy9aACN7VAVVV2FV9k9aFiFFli1oA8CpP1Bci62/9EwBm0Dm47dZ4lh05S29JGaWMTabFh9EmO42xVHfvLL1FjacPqcLD7fCkZx4q5PWIQsqRVPFhz7DQ/HS6ipcNC/9QEbp0wkO93HaOmqY3o0ACMZoX9ZZcoqa8nPMSfa4b0QhAE2q02ShuacHaOhqql2TuTRhVNLWw/fYHzNfUcragkITKYyb2yaLVYeer7daw8fAqnqr2xJ/TO5M9zxxNk1kDbdeYiSw6doLKxhTO1daTFhWOzOahpacWuAqI2qQHabDZ+3HeCG0ZoVRk2nDjHj4dP0tDWweWWFjJiI8iNj+Lz7YdotzlA6rbCUOFiTT0lVXXEhwWz6kgxS4+cpN1mp8FqISMugqTwEACOlVXw0prttFisoEJZYzNFl6qYUJDBV/Nu5N/rdrL99AWKqmv46dBJMuMiCHfxQfafL+f7g8cpr2/iZHU1ydGhjM5No7allaZ2Sxc503VPnc5ZVVW2FZ/nh4MnqG1p42JDI2mx4fRN0bRzyuoa+eHAcfacLcXPaMDfz8BtEYNQJIn1R89wsa4Re7fMY4fdwc7TF7l70lDGFWbw7PItnLxUxf6yS2wqOse1Q3ojCAIdNjvLDxex7GgRVruDNqedzLgIYlxib0dKK/ju4HHOV9cTU1FJYlQIk3tlsfH4WRxOp0YW7CGzUVJTz8o/LebTbQf5dMdBaprb2Fh8jn4Z8QzJSAKgorGZJQdPsO3UeYyyjMGkkBIVilGRNf2ok+dYcugkDW3tlDc3kxkXQV68tj2ypLqeHw4c5+CFSwSZjQQHmbh55ABEUcDmcLiwLaLNaqPB2kFmfBe2Jy9V8v2B4xRX1BBR7k9MeCCz++chCAKtFitLD51k+bFTOJwqFhxkxkV2YXvBhW1dJ7ZhjMnVVn81LW38ePAEG06cQxZFREUgLSZMoxH8l/arWvm8vWEPb2/YTXu3wJlJkblz3CDeXL/bKzNhlCUmFmbyz2un8qdvVrPycLGHZIMsiQxISyAnNpIvdh72yASYFZlbRg/gnolDufmtbzh04ZKX7ILgBIMigih6ZKZMisyTV0/g692HOXjBu355SmQoP/32Jr7dc5Rnl23xuK5JkZk7IJ9vdx3t2rrR7WGNCw1k7aO38fzyLXy587DHWJgNCl/fdz0PfbyUM1V1Xm0VUeSTu6/h3U172Vpc4t6MKQoCgSYjSx9eRGltA7e89S3W7tkLV39NskRcWDBl9Y3uYKwsikQFB7D84UVsPHGOx75e7dWf566fRp/EWEb+7S3PXaKu82ZEhDFzYC5vrvfG9qPfzCcqKIBZL3zkkiHpOjYuP53nrpvGrBc+4mxlndd5jaLEojH9+WTbAc9xUmRuGtmf+ycPY/Hb33LowiX33BEFgVB/Myt+fzNHLlZw38c/efXniavG0dxu4Z/LNrvrdnW/7o3D+5ARE8EzSzd5tf33LVeRExvJ9Oc/pLGtwx2LNMoyA9LiefvWOby4Yiuf7TjkOR8NMl/eez1GWWLuvz71CMKbFJmr+ufzxNXjeOjTZWwpKvGQ8ggwGVj6u0WU1zWx+J1vve7pvknDWDSyH9e8+gWnK2rc2EuiSHSQP8sevpnNRSU8+tUqr7bPXjeV4VkpTH/uA2qaW920BoMskR0bwRf3XHdFQbH/iZWPxWbn7Y17PCZR589fX7dLN9BmsTtYc/Q0N43oy/JDpzyyFypa2nTn6YvsPlPqndq02Xl/8z6GZCRyrLTCW3YBjRUbERxAeX2TR9sOm51nl2+mRSe9D9qSemvReV5ZvcMr9dlhs7PrbCnuq3XHTYDq5laOXLjE5zsOeTlbi83O2xt2a3t/euItgE11Ync62HrqvEdbp6rSYbPx9a4j7D5b6ul4Ou/BlZ4urWv0SKfbnU4aWttZc/QM/1q9Xbc/z/y0iZtH9UcSe0hUuO5xbEE6b23wxrbDZufVNTvJiY2kw2b3koJYd+wMx8sqOV9T7zVOqODEye6zF+noQVlot9n5aOt+RmQnc/jiZa+xaLVY+XH/Sb7fe0y3P/9Yuok7xgzq2lrSoz/+JoPPsXhp5Vam9Mqi3WrzmHMWu539JeUcvnCZT7cf1MHWwVsbduNvMOie99s9R7l6YD6bT57TwdbOV7uOsF+HRtFhs/PG+l1kxkZQUl3ngb3D6aShrYPVR4t5fe0u3bYvrNhKU7uFpnaLB5/KandwtrKOA+fL6Z/63+k4/2oCzlVNLbo/V7lyqt0gS+w8fVE38NhpvqpXiKLAvnPl+MpfTuyVSXWzvnRCQ2u7bm1y0Jze0bIKD2W77lbR2KJp6eplgGSJ3WfLdDfSOlWVY2WVPlPEJkVmX0k5io7Qu8Xu4PDFy5yu0JdOAO0t6tRJx7ZZbZwoq9CY2jpWXt/EP5Zu0lUlkEURo0H2SUE6damaIxcv6+5cdzid/GPpJoyyfmZPBaqbfVe+2HeuTDfj2GGzc6T0subUdKylw8onOw74uGPtut1V/rrb2co6jlz05tuANr67z5Yi+8D2eFklx8oqdMfR7nTyxY5Duhk4q93BoQuXKfaBrd3h5MiFy7oUgTarjeNllZTVNeq2La1t5HhZJW069A6H08mpy77n08/Zr8b5hAf6++SJXCkNbLM76J0c5/OBvJI5HE7yEqJ0yWSyKJAbH0WMD9kFf5PBJ+dCkUQyosIx6D00QKi/mVE6aV7QCHIFidHeqxOXlTc0cbGuQfeYU1XplRSr66wVSSIzJoLEsGD9mwZEUdR90M0GhbTocCJ6lAr2uLYP7IyKRE5cpE8yZlJECBkx4bopYrtT5XDZJd2JDzA2P520yDDdY3aHk7x4fZ0ZoyyRGR3hE1uA+tZ23ayWn0EhMzrcJ/8rLjSIjGjvXeugOa2CxGjdChQCkBYV5o7d6NmJS1U+sBXJivWNrSBAVmyEbjbTbJBJjwonUofmAtoOgvSoMMx66X9JvOL9/pz9apyPn0FhwWBvmQKTIjM4I1HjivQwWRQZmJbIwLQEhmYmXXH109NMiszVAwoYnJ6oyat2O6aiTfy0qDDumzRU957unjCUfimetaw7LdTfzPiCDBaPHqALWnVrK+uLznmtyBRJJCM6nCEZSUztna07wS0OBx06k9coy0zIT2dweiL5CdFeE02WRE25T1B16Qh+Bpn37phLWIDZ43hnWnVq72zuGj/E50On94aQRZHIoABG56RxzZBeXmNhUmTumTiUhSP6eb3RO0emU56i5+nNrljGXRMG6+Izu38+w7NSSAoPQenm2Do37s4ZmM/9k4f55GnZXXunur8gREEg0GxkQkEmt44eqNuf+ycPY/6QQi/HpUgi6VFhDM1IYnofb2wNsswdYwcxs1+u7v2ARhItTIzxumdFkrhhWB/unTRMdyxuGNaXMblphAX4IffA1ijLTO+bw90TvbE1KTL3ThzKjL65HlQHcMUCA/0Zlpns835/zn41zgfg9zNGcdPIfvgZNImCuNAgnrtuKq8tms2YvHRt06FrACRRYHb/PF5aOAOAF26Ywax+ed4OyJWyMsgiIX6aKJnZoHDDsD48OmsM+86XYzRqg96Tn7L6WDHT+uTw+OyxhAf4IQkCQWYj900axk0j+vLG4jlcPSDPgwDZPzWeL++9XuPsjBvEneMHE2jq0gtSBehw2Gmz2VAljYnbuSFyYmEm79w6B0EQ+POcCW5nLAgCgkumobtkgyaZoTmHuYPyeXrBZADeuOUqpvbORpEkREEgMyYco1Hikx0HOX65CqfQtTnXbJCZP6iAnX++h74p8Xx697WMzE5BEjXpi/6p8Xx+z7X4Gw1cM6QXv506gpCewlPd7qvzvLIoMionlU9+swBRFPjdtJHcNLI//i75ibiQQP557RQGpyeSFB7C+7fPJdu1s7s7Bp1/q4LmNERBID0qjLduvZr06HD6JMfx0o0zSAgLdmN7/bA+PD57LIIg8N4d8xhXoM0dURDolRTLJ3ddg7/RwKTCTBaP0imf4+rLoPQEhmQkIomCVj8uM4nP774Wgyxx+9iB3DVhCIEmI5IgEBnoz5/nTGB8fgaRgf58fNcCChNjtLGQRCYWZPDObRq2T86ZwDVDenk87HbRyR+/X01ogBmTjnCXIMCA1ARev3m2B7a5cZG8f8c84kKDGJ6VzD8WTCYmOABJEPA3Glg8egAPTB6OJIp8etc1jMhOdWPbLyWOz++5Dn+jgfmDCnl42khC/ExIrqD8H2aMZs7AAgLNRj6/51r6pcQjCgKSKDIyJ4WP77rGZzHIX2K/qmwXaN595dFiyhsa6ZsUx4gMjZOh/fwURZerkUSRhLBgpvfKJsy/61OgvrWd5UdPUVbXyIZjZ6hrbkMURWwOB9N7ZzO5dzYHLl4iLjiQqYVZBJiMbDh5lj9+vYrmHvEZARifl86rN87C5nCw4eRZTl6uIj0ynOjgQJ5bvYUTl6oIMhmZ2SuHUH8zoigytTCLpLAQ93narTZWHz/N0kMn2XOuFLtT9XiLGxWZoRlJDExJYHrvbKICuzgZTe0drDx6ipVHTrG3pJzuJeM7URuQGs/UXllM75VDsLnLKVQ3t7LiSBFNHVbOVNaw8eQ59ze/6vqPv0nh0eljmFqYjV83BmtZfSMrjxZjdzqZlJdBelSXlIfVbmfdiTP8Y/lmapva3GPVaYnhwczql4dBkZhWmE1cSBffptViZdWxYsrqG7XsWGaXlIeqqhwqvczi97+lw+rwOq8iiTw8bST1rR0My0iif3K8O8vidKrsPHeRfefLiAkOZHphtpsrBVrae8XRYtosVqqbW1l+7BTtVhsxwYE8PGkEf1mynsZu1T4FtJXVKwtnERsaxOpjxQgCTCnIJrnbZ0aHzc7q48Wcr6knPy6aMdlpHuzn45cq2VR0Dj+Dgem9sokK6sK2vrWdyS++r2X4ul3X32jgzhEDeX3Drq4MHdpG2W/uv4Gk8BBqWlpZcfQUjW0WRmenUhgf7R4Lh9PJluISDpdeJjEsxAvb8vpGVhw9hd3hZGJ+Jhk62BZX1pIdE8H43AyPVdbpyhrWnTiDIktMLcwmPuTnCYb/M7vaiytrWPje19jsTtptNvwMChlR4Swa2pfHf1iDzel0B+MUSWPLvn7DLIalJ7OnpJTffPIjKioWmx2DLJMcFsxNQ/rRPyWOx35Yw6nKGtqtNkyKgiyJfLx4PvGhQQx7+g3sPcZBFgSenT+VIRlJXPf2l1Q3t9JmtWFSZN1gooC2FBVFgd9OHMFNw/pRWtfAdW9/RbvNpsUtuu8872wkdH0KgMBz86YwMT+To2UV3PLhdzidzq4skQruNFk3Pk0na/XdRXPomxTHplPneOir5ZrMh0vjx2NZ141EaVJkzIrMZ7dfS2pEKF/tOcI/Vm5ySXlo6djbRg7gN6MH88Oh4/xzxWbXht2uqgyCw3U7soAgiThVJ5KgrVL/b+Z45vTL50xVLTe++zVWu8ONbVpEGM/Mnczq48UsO3KKSw3ddtW7+tpJmXCKKoooYbHbMSkKQ9MTeeW6mZqkxIffUVRR7cJWRpYkPlo8j9zYKFYcOcVjP6x2bzbtOdsFtM+Wzv4IgAGR20YNwmSSeW3DLhyqE0HVYmIPThjGzcP7U1bfyHVvf0mbVcPW36AQExzI57dfQ6DJyF+WbmDJoRPY7A6XQxJ4dt4UJuVncry8khvf+1qbRz1uyChJxIcFUe4aCwEtMfLcvKlMLcxmS3EJD3y5zI2tUZaYkJfBP+dOoc1qY+F7X3OhtoE2qzbGBkni89uvITUyjG/2HuXpFRvd2MqiyC0j+nP/+GFUN7dyzVtf0Nje4e5PiJ+ZL++8logAf15au42PdhzE7nQgCQKCIPDEjHHM7V/g/SB3H9//Fecz69WPOV3lKchkkCQcTqfP2tiBJiObf387455/16NeU6fJkkC/pHgOl172Sm+mRoTyxR3XMuKZt7wyAaIg8MHNc1ly6ARLDxddcTNhTzPKEsvvX8Qj363m4MVLnrGd7g5IT/pCkdnyhzuY/donXGr0lJHwciA92kYG+rPqwVsY9c+3aO0ZpO1s283xdJogQEFcDK9dP5NJL72vy6eKCQ6ktL7RK7AsACZJJjcmkmOVVV6Bf6MsseHh27jlg+84XVnj8azJouje1OtLv9uIiEPEa/zNisyTs8ZT3dTKaxt3eSkEJIWF8PWd1zL6uXevrB7QwwRBYEBSHE9dNZGrX/9EdyyW3b+Ix75fzf4Lntgqksi8/oVMyEvn3s+W0m6z9Wgrs+qBRdz43jeUN/TIHHbrvqRTVSMiwI81Dy1mpA62fgaFZ+dN5VDpZT7eecADA0GAvNho/n3jLCa96I2tSZb5/I5reGPTbjYUnfW4riwKTMjL5LYRA7qcZY+xWPe7W4kI8K3j/D/B86lqauGCThbHV9an05yqyvcHjmslbnTM7lDZW1Kmm+q91NDMT4dOaHW6rJ7tVVRWHitmzYkz/5HjAS1jtfJYMYdLL3un+TulL3ScB2hvuSUHT3gUivNoK/hWz2i1WPn+wDF90pcOX6X7/RZVVLHsyCndtla7g4u1DT52aoNTUOmdHMvBcm/CpSSKLD1cxPmaeq/2PzeuJkXmlmH9+XjXQew9PovbbXa+23+cutY2XedS1dzCT4eLkEUB/aS4vqmqyoHSS6w+Vqz7wlNVWHm0mAM9XypoFIsVR0/RYbN5OR7QuD7jX3rPpTTWw1ygij25Ui5rs9r4/uBxXXzarDaWHDzO0XJvGoaqQnFlNSuOnNLNrlodDlYePcXGonNe17U7VTacPEt8SCBWnTEWBYFNp0qY9zOrH1/2qwo4X7HUxBXs50q2+j6tyopjxT5TuYJwJdGGK90PXIkgIEtapsBHawRB8MlNyowKJz/Od5WiK0mLiIJPSpP7uJ55BOJ1TXAHxfWP/ncmiaKW3vdx8SvCrsL52npd/tAvMUHAvW/O84DrmI9eXemeVMDh9M07EwR8blp1XfoK9/szc1XwjaGAb+xw99VHf690zZ+xX43ziQoKICUi1KszBkm6gpwGSILA1X3zrgga6A+SUZE5UVmlC4pJlpnZO4fJ+Vm6/Iifs2mFWfRJitW97pD0RP4xb7JuGt7pVJndJ9fnqiAjOpwFAwt12wYYDVzdN1+3rQA8PmMcE3IzvPojCgJ5sVFM65Wty8e50gSTRJEJeelMLczS5TU5nE5m9s4lLTLsP56okiAwp2++btkWsyIzt18Bc/rlY9K7rurku8PHfnbl3NNEQWBIWhJTCrJ1MzkCMLUgi/7JcV6OXpG0IPusPrmYFR25FJf5cgKDUxP4/ZSRutj6u7DVa2s2KFzdN49ZfXK90vCCADkxUUwvzNHF1iBJTOuVzbicdI80PGifxRNy05lamK1LSXCqKmOyvXf+/1L71TgfgBcXTCPYbHKn2v0MCvlxUVw7qBemHp2XRAGzovDKdTMxGxReuW6GR1S/uymSSExwoMd5g0xG2u127RtY6Hq7d34RXTeoN32T4nh48kgSQ0Pwd7X1NyiE+ZvJiNIeJoOkVbxQJBGDLGGUJf4wZRRxIUFcM7CXx3k7/+y+WEZ+XBRX983XAqSiiEmWMSkyLyyYSnVLG6Is6rY9X1fP1X3zGZyWiFlRkAQBsyLjbzTwynUzteoCRtmrHSJUNDXxj7mTyYqO8BiLUD8z/5w3lajAAB6fPhajLGGQJBRJIx0OTUvU1ZgRBUgICeKxaWMoiI/h5mH9McoyiihidI3FU7MnEOpv5oUF0wg0GTFIkiubpPhcpRkkCbMi86/rZmAyaBj7GRTMLikJsyIzIjOF6b2yuXFIH3olxmDu1h/FFaDusDs8qkh0JgX8jQaMskReXBRxIUEeYxEZ6M/frppIcngID04Y7hoLEYOk9efhSSOJDw3m6TmTCQ/wc88LP4NCakQI940bSmZUOFf1zXU7xZ4Ujk4v3EkdMBsUhqYn8dZNc7hmYC+GpifpYms2KPzrWk1qpVM+xqTITMnPZEx2GneOHqyL7bPzpxAZ6M//zRznxqUT29tHDSQ7JpI/zRhLTHCgR3/iQgJ5fPpY8uKiWDx8gNauG7Z/njXBvSn1v7FfVcAZtNT0quPFlNY1MiA5nqHp2i7hvefLWXr4JDUtbQSbjRTERzOjV64H56SxvYNnV27mxyMncTq1UKZRlgn3N/Ptb27gVEU1e8+XER8azNC0JCa9+r7HZtLOoQgwKex/7F73eR1OJxuKzvHZ3kMcu1RBh9NB74RYHp04moK4aErrGlh5rBhREDxSkE8sXcu3+495bMMQBPA3Kvxt1kSm5mdzqqKadSfPEmgyMr0wm/AAP05X1bDgnS89S9+6Yj3ZMRH8eNdCLTZx4RI7zl0gKjDAnV6+UNvA7Dc/ocPatVdKcK2ak8KCWXP/YpxOle1nznOw9DIp4aFMys/04JzsPV/Gn5et52J9A8H+ZhYN7sv24vMcKa/EbncgCNqK5+FJI1kwwLP+2LnqOlafOI1JkpjWK4fooABUVeWvqzbyzYFjOB1OOgXiH5k0kudXb3OPsdMJeXGRzOiV44VtU3sHy4+eora5lRFZqfROiHF/bquqyu5zpew5X0Z8SCB/XbXJc7+XC1tRgB/vWkhWdFelCIfTyabiEo6XV5IeGcbEvEyPt3xpXQOrjhWDIDCtIIv40C4WsdVuZ82JM5yrrqMwPpqypiZe2ayVHZYlkVn5uVyormPvhXItntLN1yqiyAPjhtFmtTE4NZFBqQke/Tl48RLbz14gMsCf6b1yCOxGHahvbWfZ0SKa2jsYk53m8RnudKrsOHuBAxcvkRQewpT8LA9sNdqBJoc7uSCLlPBQ9zGbw8GGonOcqqgmJyZSWw11w7akuo5VJ05jlCSmu7D9OfufCDiDFoB8dcsuPt93GJvDwXdHj/PY5DHEBgXy8ubtHL1UiVNVcaoqy08Vc7Sykv+bOg5/g4F2m41n1m5mWdEpnDKYFQNJwcHMyM9hwcBC9lwo5a+rNlLd0oYiiVzbr5Bgk5Ga1nb3ysA9OSSBU5U1ZLsm6beHjvH06k0emYJ9F8tZ+PE3vLZgJm9s3c3BMi3Yuu3CBf4xczKxLuq+U8Bjfak5BAEBgeOXK3l86VqKq2sRBdhXXs5fp08gPSKcQKNCm93mOWEFkdm9NQbszpKLPLliPZcam5FEgeNVVTw+WRMRc7qkIDrbqgBO3J8Cy0+c4p9rt1Df1o5RljhXX899o4cgiSLHLlWw6NNv3cHW6tZWXt28k9m9crl/3DDe27mP7edLsTgcvLx1J04RbhzYB4Cz1bU8unQNxy5XIiCwq7SMp2dO5FC5JlvR9QmkpYmf37CdDb+9lY3FJRRVVrP+9FmOVFdybEM1RyoqeXJaN2zXbWHp0SIcqpOlRcX8Zfp4Bqdo1Vk3nj7HX1dtpKq5FVkSsTnt7hWsG1ttCPjj0tX8feYkcqI1bZ3vDh3nxY3bae6wYFZkypqbuGPYQARBoLS+kceWreVA6SUN2/MX+MesScQFB+FUVd7duZ/3du6jw2bHJMtY7DZsrjeN1eHgq4NHtN5KIIigaotsjLJEfHgwr27bhd3pZMnxkzw5dRyjM1MB2HW+lCeXr6e8scmN7Z+mjMUoy7RYLPxtzUZWnzyDU1VZeeo0T8+cSO94rSTTypPFPLNmM3Vt7RhkiZL6eu4fPRRJFKlqbuGJ5evYUXIRFZVN587z91mTSA0PRVVVPtt3mNe37NJS7UYD97a2sHBgHwRB4GxNHY8tXcPRyxUICOwsLeXvMycReYVM18/Zr2rl89eVG/j20HGPt5ZRknC6JmtPM0gSA5Pief/Gudz+xQ/sKvHcsS0KAv++ZhaBRgO3fvaDx3lNskzfhFgOXrhEh9PVptuDHmA0sPaeW9h27gJPLFvntXMatDmtyFIXlwYtThER4M+6+xbz5PJ1fH/4hGcjFQySyI933sjc977wCHYrokh2dATfLL6O2z9fwraSCx5NBeDTm+bjbzRw7QdfeY6TLDE2M41/zZtB32de087b46vmt2OGkRMTxf3fLfOSF7lxYB8eHDucwc+9QYvVe0OsIorcO2oIb27f4yVf8fjkMUzKyWTCa+976CbLokB8SDApoSFsPnPea4wBHp80mtGZacx++xOP8xokiX6JcXy0cB6/+XIJO0ouejh/kyLz7eLrKK6q4fdLVnlkpkRBQHWqnnIYPbBdc88t7Cy5yOPL1nqNxT2jhrBwYF/Gv/oedW3tbmxFQSDC34/19y3mnR37eGfHXq+d+r5McLWPDwgiJMBMcXWN53xUZD5eOA+jLHPNB1963JNRlhiVkcpr82dy/Ydfc/RShcc8NysKS+9cSEltPfd9s9TjvGZF5voBffjtuOFMfv0DLjc2u8dKAILMJjbct5ifjhbx7LotXpInj08azZS8LCa8+j5N3bCVBIH4kCBW3X3zFav2/k+sfNqsNr45dMxbauAKAUOrw8G+0kvsKrnI7vPeUhFOVeXer5fSOz7Gy3l02O0cKLvEPWOG8PKmHV4ZCLvDwbeHjvPNwaO6jge0N6nV7klcc6gqLRYLa06eZvXJ096NBAgP8GfpsVNemwRtTifHL1eR8/S/fAZn3991AKMsefXVYnewtugMD36/XAs49ziBANS3d7g/C7pbu83Op3sP0SsuhjadFDFoKeD3du33etjabXZe27KLdpvdayzsTpWallaMktx1Ez3sm4PHOF/X4F0Vw+HgUNlldpZc9HI8oI37q5t3su7UWa+UuFPVPnGMkojF4T0WNoeDbw4e44fDx3XH4q1te4kK8KethyyGU1VptVpZU3SG93bu+8WOB3CHAJ6cOY67vvrJGz+bnTe27sbfaPBKl1vsDracKWHnuYscv1zp1dbucPDp3kMcKL2kKy/y+b5D9E2Iob6t3WOsVLRPx6XHivj31l26kievbdmN1UUq7TnPa1vb2H7uIqMyUn7xOHS3X03Auba1FUn4z2/HIIkcvVSJLPraIOikqLJa95jN4eSVLTt1swAddgfnauqobNaX+ug0vXVjh83O1weO+kzhN1ssnKmu1c3EdLojX5yakto6ztbW6aZrHarKyuPFuudVgbO1dZQ1NOrek1OF09W1Pq6sqQc0+ZCRqG5p5VxNna6TtjudJIcF+0yZ1bd3cKa61qv2FmiUhKOXKjBIOllBVWX3hTKf5FM/g8KYrDRdsXeL3cHZmloqfMi4tFmtlNTW6zridpuND3bt9yZx/hIT4ERFlc8d7yW19Zyt0cfWIEkcvVyp2x+b08mZ6lqf2KoqFFfV6n49tNvslNTUU92zsKPLOrHVc7R2p5NSH9f8JfarcT7RgT8fvNIzi93BsLSkK7JYZVHSnfuOzu0HOsfMikzv+BhSw/UlGwAUV7ahpzlVlX1l5brnBciIDKdPQqxuivhKJgoChXEx9I6L1aUfeGS3ephRluibEOuOdfQ0SRDwM8i6DzpAVlQECT728iSHhlAYF4OfTnrZYndgcTp8ZrZyYyLpkxCrS5Ww2h2MSE/RxVZ27dnzZQ6nk8VD++s+rBq2saRF6GMb7u9HfmwU/jrZU0EQOFlV/V9R0pxOlcHJibqyGJ3Y9omP9Up5g7YSHJ6WpNtnoyTRNzHOJ7aKJNIvMU53LPwUhfzYaJK6BdK7W1JoCIVx0brYSoJIdlSETqtfZr8a52OQZe4eNdiL42CQJJ8cHpMiMz0/m/zYaCblZOj+jggMSo73LQXhGoHuk0kSBAKNRmYW5vKHCSN1nURUgD9vXz+H2KBAD95Mp1PofJP3nKQmWeb340cwr0+BOyXaae7fFfDZ9q6Rg7lj+ABtt3u3Yz3benRR0GgJ1/brxW/HDdcdCxsO/rV1Fzan00tyw8+g8NHC+fxhwiivsTDJMo9MHMW0/CyCzSave1LRAqijM1O9cDQpMg+OGcbCQX09qip0nndqXiZ5MVHM6ZPvcc+Cq226D+cBsHBgX/okxNE/Mc5Do0gSBAKMRq7qpY+tSZb53fgRjM1KJ6YHtook4nCqPrE1SBLZUREEGg1IouBB2jTKMoNTEumdEMuiwX295Thc2N42bAAmRfEYR7Mis6BvIfmx0YzPSve4Z1EQMBkUpudlcW3/Xl7YmhWZ+0YPZUhKIhkR4R4YyKJImL+ZKXmZPsfikYkjmZqXTYifyUNzyShLZEVF0D9RX1bml9ivKuCsqio/HD7Bm9v3UN3SSkFsNL+fMJLaljb+umojlxubQNDkDcL8/LhxYB9uHdofSdQE5Ge8+THnaus9zmlSZL6/9Xra7XaeW7eVI5cqsNjt2gTqJG66nhIB8DcoTMhO5+HxI4kKDKC8sYnf/7iKA6WXUJ0qYX5m/jRlDNPzcwAtvf/Sxu2sOK7tfDbIEpUtrZ7bz13nTgsP5S/TJzAwWZOdvNzYzPPrt7LpjKbJ694i0m3/hChoAcW+CbH8YcIo99vtdFUNz67byi5XrMvD+bjSyn6KJng2Ii2Z308YSUKI9nY7UHqJ59Zv5WRFFR12u7ZC65xXKhhEEX/FgMOpMik3g4fHjyTMT6vWsen0OV7auIOLdQ2khIfy23HDGZmeAkB5QyPjX3vfU+HRNcYJwUHcP3Io/962m+qWVvJjovjDhFH0itcqIFysa+DZ9VvZce4CAUYDNwzsw61DByCLIk5V5eElK1l+/JR7C0JsaCD3Dh/KX1au9/okKIiN4ttbr0cQBCx2O//esptvDx3DYrczLiuN340f6V5p7yy5yAsbtnG2uo74kCAeHDOMCa4XWWN7By9u2MbKE1qqfXhqEpvOltDa+TnWbZlplCXeu34Og1zYVjQ189z6rWw6XYJJllnQr5C7Rg7GIEmoqspXB47yzo691LW10yc+lkcmjCInRsP2THUt/1y3hf0XywkymbhlSD8WDuqLKAjYnU7e2bGXz/ceps1mY0hKIh1OO7sulmlSGSpE+flT3dxKdGAAd48azKxCLUPaZrXxyuYdLDlyEofTyaScTH43foQb282nS3hx43Yu1jWQHB7Cb8eOcMdzalvbeGHDNtYWnUEWRa7qlcf9Y4ZekUwJ/yMBZ9CWtINTEznXWM/FhkYGJyaQERFOSlgIt40cQHljEwhQ1tBEuL8fY7JS3ZF2SRR5bs5Ufr90Fedq6sAJqSEh/HXGRNIjw2m32ZhSkEVwkJlDZZe53NDc9XYRtO02ggwjc1KZlJdFRIA/9W3tXP3B5zR0tGtVGSSot3fw3dETbucTZDIyMS+DNtWOKAhcamiisrVLelUVNO0dSRIYnZPmnmAAUYH+TMrPRFW06po7z17sCjYKmgpgn8RYQv39GJmaTEpYFycjKSyEqYVZiAaRTWfOodrx6I8ki4zPT8fudDIxK4OYoC7VvqyoCKYUZlFrbed8XT2q07OtIItkJ0QSHRjA5NwsQrtJdRTGxzC5IJOTVdUUxERT0I1jYlIUkLu2hgjdzttitTIoNYGzDXVcaGhkUGI86d1UCGODA5mSn4VslAgzmxmbleZ+056srGb16TM4XLPVoaqUNTXx6vadPD5pDP9ct4U2pw27qpIeHsYzV01xc2aMssz43HTqbO20WW1MzMnySA/nxUYxtTCLQ5cqyIqMoE+ilrKuamnhsRVr2VJyAScqkX5+DE1PYu2ZM17YCgJkxIST2w3byAB/JudnocoCAQYD43PS3asOQRAYmpbEhaYGypuaGZGS7MG3SQwNZlphNn5+BqIDAhiZ0aV6KYsiY7PSqGxvpbG9g/N19ZyqrNFeXK6XkKVFk6MZmBDvftGBq1hibgaNdit2p4NJuZle2E4pzOJEZRUFMdEUxndhG+ZnZlJeJlZB20k/MTfjZx3Pz9mvauWzp7SMW7/5AbvDic3pxKzIBBqNtFqsOFQnHd2yAJIgoEgSf5s8gasKcll+8hR/WL7avQowShJZkRF8ecMCOux2rv7oc6pb22i32ZAEAYeqIji0/TtOAej2ReCnKAxLSaJ3dDSvbd+NpXsq3pW+fWvOLMZnpvOnVev48UQR7TabWxrDYXfitGskR7XzvAKYZZkAo4EfFt1ApL8ft33zA3vKyt3SCbIoEqwYaWjtINBspMVhdakqamMRFxTEdwuvQwBmfPgpl5uasTudiGgBY6MgIiNicToQZK2PTlXFT1EojI3mwwVzaOzoYPaHn9PU0UG7vUvSodNR9OQlmRWFyVkZPDd9Mufq6pn/yZdYHBoz3CTLmGSZN+bOJC4wiH9u2srKomK3XhAATpARGJycwIHKCuxOJzaHA7MsE+pnZsmiGwgwGrjxi28oqqqhzWZDFAQMksRfJ4/n6oI8Fn7+DTsvlnliAPjLMq/Nmcmf126gsqWVDrsdWRRRRJE3585ieEoy7+zex7+27cTqcLjHYkhyIm/OmUVFczNXffQ5bVYbHXa7i8Er8dl187j3h2WUNTV5kDwB8qMiOV9dT5vN7oGtUZYINBj5YdH1RAX4c/u3P7KvrNyjPw+PHs7NA/qx5dx57vlhqTYWTidmRSE2MIDvbroOWRSZ/+mXXKxvpM1mQxYFZFHixZlTmJSVydeHj/KXdZvc/aFzrHvcJ659YrIo8uE1c+gXH8cLW7bz4d4DdNg1HpSfojAxM53nZ0yhpK6eeZ9+icXeha1Rlvlu4bUkh4bw0NIVbDhTQptrnptkmVsHDeDBkUN9Ps9w5ZXPr8b5qKrKmDffo7ypWfe4LzMrMlvvuo1hr7/jleURBYEnxo/mcnMLH+476H0cAdGpavWgepifopAVHs6hyxXaD3rEUlJCQ3hp5lSu+/wbryyPIorIThELdq+gsyQIzMjLZkJGOg/+tMIrWyOLItvuvo2p731CfbvnznajLHH74AH8dLyIizpZBpMs89Dwoby4bYcXRcFPUfjr5PHsKS3ju6MnvPd/qZoD6k5O7DSzIvPhgjm8uGUHe0q9FQIEtMyU3eH0DsSqECRrdbgu98gcKqLIdX17kRsVyV/WbfT6fDIrMlvuuo0hr77lndVyfR6OzUxj49kSL2yj/P35YdH1jHvrfd2xeHnWNL47epy1p896ZZdSQkOobG7R7qfHWCiiyB2DBvL2nr1eSgqSIDAtN4up2Vk8vGyVV7bMIEls/s2tzPjgE2p7qBYYJYk7hwzE36Dw0tadXnMqwGBgbkEeHx84pDvGvuRSOvvz7ryrmP6Bt0SIWVF4f/5VvLJ9F7sulHqcWwBGpCRz59CB3PHtj179McoSq29bREKwfrAa/kc+uy43N3sB8ktMEkS+PHRUP22tqnxy4DB2p1N/g6EAMwpyWXP6jNfAttlsWBzek6/TLjY0sv7MOd3z2pxO+ifFsrf0UteeDZc5VJWNZ0q41I3s1d3sTidfHz6mm+Gx2B18degoNa36aVFJFEDUVoQ9H7g2m40VRcXsKS3zuWlV7YyB9bAOm531p8+yt6zcJwXA1+5xWRK5cWAf3tu33+uYzelkTfEZztXqp3JtDifPb96GLIo4dMr92FQnxyurdDFotlpYerJI+yzXGYvVxafZWnJBN619ob7BJ8/K4XSiyKJPqsOmsyUICLppekUS+fH4Sd2+WhwOlhcV46coupSFFquVTw8e1s+yCT7+7bJLTc2sKj6t26d2m411p8+y+6L3S0UFdl4sJSMiXFciREBga8kFruvTS++uftZ+Ndkuoyz7lBq4kqmo1LTpP4wATR0Wn9+mTtXJ8uJTuulLURAojPVdDlYSBfwNBt2qC6Cyr+ySz3SsSZGpbPHNH6pqafE5Fs3dZDd7mt3pJKjbHqDuJgBnamu1KqV6xwXIjYrAqJNZlEURP4Phv9rdb5QkYoMDffbHrCgEGPTv2e508P2xEz65PIkhwQQa9ds6nSqBRqOu3IooaHEYXwUHREHwqaQgiSL+BoNPGReTLBNgMOhSCwQEgs0mn2PhrygEGHxXAPU1Dj9nKiqBBiOiDo9OFkUCjEafGWWDJOFvUHRZzJ1Z1P/WfjXOJ9zPj96xMV6g+3oDdVqAwcjIlGSfv5caFsLCfr11ZAo0IG0Oh64QmUGSuKl/H67Ky/U6tyKKTMnOZEZutk/+il11AqqXczLJMtf0LiT9CvyhoSlJpISGeJ3brMiE9hRv72aR/v5cle8tq9DZn8vNzag6TCBJEBiRmsynN8zX7Y8kiszOz2VWXs7PSpf0NBWYmZtDv7g4L2zNsswNfXtzXV89iZAufOxOp67UyuPjR+tiKwoC2ZERzNbBrrPtvF4FTM7K1L3ncH8zKaGh+rQFUWBmXjbjMtI8qmKA9gJd0LuQ+b3ydcdJFARm5eWQGhaqi+3C/n24pk/BfzzGBkkiIyxMS/H3OK8sCgxKTGBmXjaqzmtLEkVm5eUwOz/X67oGSeKq/Fxm5+fqvmRVYHzG/08kNV6eNY2kkGD8FQV/g4JRlhmVlkKgwYBfN+5Dp7RFuJ+Z9xdczdCUJF1CmCQI3DNsMAt6FzIlO9MFeLeHz/WZYVQ0iYAAg0G7riRxVUEuv1u5knXnz7ilIPwVBbOiaDGKSeOJDQrk2WmTXPfVjeLnOq/ZIJMYHIyfqz8mWWZociJ3DR3EHYMH6JLJTLLE6NRU3pgzi5jAAPwNStc95eeyeEB/3dWJKAh8MP9qFEni/flXE2IyefRnSHKiNvncl+y632CTkeenTyHYZOK1q2fi53oDa6sDmb9NnkBiSDCPjxtDfnQUZkX25j5160rn29/foPDmnFkEGA28NGsqSaEhHtiOy0hjYb/eDE9J5rZBA1wPTg98RJAlLVPjbzDgr2i6xIv692VcehrzehUwLScLoyy5xyo+OIjXrtakJ96dfxWBRoPHWDwyZiS5UZF0qYWpHn8aLB28NHsao1KS3X3qlD15eeY0Ivz9+fuUiWRGhHtim5TIPcMGUxgbw29HDXevGgIMBoKMRt6dfxVGWeaNOTOJDQz0wHZWXi5xwYE8vm4dTqHrZdgpY9FzjDvNIEncM3Qwq+5YxN4H7mJiVgYmWcbfoOCnKKSEhvLCjCkEmUz8++pZOtiOJzk0hMfGjaIwNlqT8HDJl/SOi+GPY0eRGhbKnyeOdY9xgAuHN+fM9Lny/CX2qwk4d5qqqqw/c5YzdXWMTU0lOyqSVquVH48XUdvWRnpYKKWNjUQHBjAjN8ftkfeVlbP46++xu/SeRQEW9e/HH8eOcp/70VWr+fboCZyqq4KEC8wAg4GnJ02gxWqjxWpFFOD57ds9vr0VQWR+QT5Ts7MZmpTosey+87slrD97rivh4DpkkCR23HUHRy5XcqKqiqFJifSOi6WpowOLw8FHew/y3r59OFVXuRlB5K25sxmWosmIOFWV1cWnKamrJ8hswu50kBsZyavbdnHkciVtNiuyS0/o82vn0zsu1n1PVoeDZSeKqG1rZ2ZeNptLzvO3DZvc3+6dsMuiwO9HjeS2QV0xwVaLlSUnTmBzOJlTkEeQycTGc+f426ZNnG9owE9S6BcXR3VzKxcbGt3jZJQl0sPCmJ2fg1kxMCc/z4P0pqoqG86e5XRtHaNTU8mNisTmytoYZZmXtu7gjd27cTg98THLMo+MHkWQyURFczNTs7NIDPEMcp6urmH9uXOkhYYxITPdY2VhsdtZcuIkzR0WrsrPJcJfS7Vf+/mX7Cu/5BGWE4BAk4FXZs5gZGoKzR0Wvj9+AlGAq/PzCOj2sKmqytaSC5yormJoYqLH+ANUt7Tw44kigk0mZuXleJAdNWzPcKGhngnp6cQGBTL0zbe8OESKJPLYmNE8t3mbRyEBUYSE4GA+u3Y+sd1oFADHK6vYUlJCTmQkY9JSPeZqm9XKkuMn6XA4mJufS7DZ7NF218VSDl66RP/4eAYlepZBrm9v54fjJzHJshe2vux/ItsFWiDw4ZUr2VhSgiJJOFWVhb17s6esjGNVVTidTgRBwCBrshEF0dH8e+ZMIvz9qW1rY/H333OyWiutY5Ak/jphArNyND7OBwcO8Py2bdqD0mOR4m8wEBcSyMXGRgRBoMNm6xknBrQltyyKXJ2Xx1PjxqFIEkcqKrjzxx+pam31SC+bZZlZuTlYVQfLi4sxSBI2h4NIf38qmpsRRZEQk4k2m02jB6gqGeHhvDV7NvFBQTRbLDywfDk7S0vdVRckQSvyVhgdTX5UFJ8ePuzOPA+Ij+fV6dMJMZupaG7m7qVLKeo2Fk+OHcvjq9dpgdDugWUBJqSn88r06RhlmeKaGu5ZupRLzRoPKsRk4s5Bg3hmyxavQKgkCPSOiaWuuQ0QGJgUx+YL52mxWnGqKglBQbwxaxZpYWG022w8vGoVG86d07B1OkkOCeFsXR0O1+/WtrVpD1+3cRTQ4kZ5cdEcq6xEcdWcemr8eGbnauS5jw4e5Plt2xDQgtgjk5N5cdo0AgwGLjY0cNfSpZytrcXu1LJxISYTj4wcSXFVDR8dOuiZkVTBKIqsu+1WatvbuHfpUmpdMcVIf39enzmTvKgorA4Hj69dy7JTpzBIEnank8X9+vHb4cMRBIEt58/z8MqVtNvtOFSV9NBQ3pg1i4TgYJotFh5csYIdFy9qZbFVlalZWaw8VdzlfDpNgISgIGZl5fD+vgPIokir0waomBRt1fTMpElMzMhAVVXe2LOHf+/e7S4ZNTE9nWcnT8akKJyureXun37ywPZfM2bQPy4Oh9PJXzdu5Otjx5AlCbvDwbWFhTw+ZgySKLKvvJz7ly+nqaMDFYh3YZse5jt8AP9Dzuf+ZctYd/bsFXeydzdZEMiKiODVmTOY9vHH3mlEWeaz+fOpbmvjweXLNV5LN5MQCDGYUCVo6OjQrzLRaT0+K27q04e7Bg1ixDvveE4YV8rzrv4DabRZ+P7ECZ+74nuaJAjEBQWxYfFiFn//PbtLS7HqxKMUF0u2e9ZKEUX6xcXx2fz5TPrwQy40NHgEKAXgnsGDeXfPPjrUHhUZJIlZubk8NW4cw95+m0bXBOs08Qqa0iZZ5t4hQ5ibl8f4Dz7wyPIIQJifH9tuv50/rF7NmtOnfzG2oMUETIJMTEgQFxsbPPprkmU+nTePho4O7lu2zANbgyQxOiWF12fOZPS771LR0uIFp1GSGJGczPpz57yumx4Sync3XM+Id97xkhcJNBrZfvvtPL9tG18fO+YpXyHLPDZ6NMOTk5n+8cce9yQKAnGBgWy89Vau/uwzjlVVeZy389PKnTXsNt9EoH98PG/Pns2MTz/lcnOzBx4mWeb766/nVHU1j61d63FdoyQxIzubv06YwPB33qGhvd1jLPwUhY233srnhw7x9r59Hm3NssxdgwaxoLCQce+/742t2cy2O+64su70/0KqvdliYe3Zs/+R5q5dVSmpr+fqz7/wcjygyWa8f+AAl5qavBwPgCAKPDF+DI+vX3/lTFuPb+0Ou51PDx/mZE217pvKT1FICg/lz+vX/0cPm0NVqWtrY82ZM+wpK9N1PIBuds7mdHLo8mXWnjlDRUuLt8wE8MbePSQEB3OhocHjmMXh4KeTJxmUkKBb2+pKY9Nht/P+/v2gqjh63K+K9smzqriY1adP/8d6yrIk8czkSfxhzRoveoDFbue9/fupam31wtbqcLD5/HlWnz5Nk1U/O2hxONhYUqJ73UstzSwtKvLqD2ip9mWnTnk5HoB2u5239+3jYmOj1/06VZX69nae3rTJy/GAhp+vpIkTOFJZya7SUurb273wsDkcfHLwIPsvXfIaC4vDwbJTpxialITVRS706I+q8uPJk3xw8KBX23a7nQ8OHEBxla/qbioa9hvPnWNypn7g/ufsVxNwbujouKIo0ZWs3ccEU4HyJs/tDj2ttLFRV1Lj59Js7TYb2y9c0L2u1W7nclPTf50aPV9fry3H/0NTJE2VUM8EtAfgSin+8sbGK+4U92WNHR1UtLToOlq700lZU9MViwD4MqMkUdbc7JVVAg3bS83N2ueujsmiyAVf2LrMl1O1OBxUtLTorlg77HYuNzf75ErVtbVR3tTks5TTt8eP+6RKBBmNbsnbnqaIIiUNDbrZSIeqUt7c7P481LPypibde7a45mqzRV8updFi4XJzs09sq6/wbP2c/WqcT2xgoG4W5+fM5nT6rBctCgIjU1IYGB+ve9zudBLm76/7hpNdsRJfz4wsivh6TBVJYmhiIpH+/7nEpN3pZFJGxhVXGyL6JXLsTieTMzN96vk4VS24rtelIKORkSkpui8AoyTpOoBOy4uKYnBioq7sAsCQhASfvJgrTvGf0AABAABJREFUmcXhYEpGhm5/DJLEyORkhiYm6jq2NpuNpcUnsDl9O1NffUoIDmZwQoIuh8UkywxJTCQ6QF8Cpk9sLCOSk3Xb2p1OXZXITpuRk8OM7Gzdh7JzXuiNhUmWGZmczID4eF1sA13Y6s0ZP0VhUGIiOZH6chy5kZEMTkjQxVYQBPrF/fe72n81zkcWRf40ZgzmHvIHAlpsR8/MisI1hQXuN0nPxzXAYOCmPn0YlJDgdbwz5ry3vIypWVk6k0Vl0YA+vD17Nma5S+6hc1+L0SB7nKu7FcbEMDAhgafGjfNISf/c42eWZebm5xMTGMj0bP2SPSZZJiE4mGCTyePhMcsyDw4dSmpoqDvI3vP+jLLE9Oxs/HpUjjDJMk+OG0ef2Fh3Jqi72VQnz02ZQkpIiMfPRUHALMs8MXYsE9PTSQ0N9cjomGWZAfFx3LrsB2z8ctW/zraL+/UjOTSUuwcP9pgXiigSbDKxqF8/7h0yRCN7ekiTqKiCSlFdLQ7VqetkTJLEbwYN0sX2qXHjGJaUREFUlAd+Jlmmb2wsg7th23lVSRDwUxQeHT2aWTk5ug6xf3wcwa6NnD3nogDcNWgQfxo7llA/Py9s7x8yhNTQUG7s3dtjLAySRLifH/MLCnh4xAj8DJ5cH7Ms839jx9I7JobhyckebU2yTEZYGOPS0nhy7FiP/oiCgMnVdkJGhi62Y1JTyYuK8urnL7VfVcAZYOfFi7y5dy/lTU0MjI/nxt69+erYMVac0qppJgQF0WSxEObnx+J+/ZiSmclj69by06lTtLvU5UQg2Gxi6Q03EhcUxNqzZ3ho1UraLN3iM67l7azsHF6cMpVvjh3jqY0bsDgcOAUVRO1hzYuM4h9jJvLGnj0crawkIzycewYP5s19e1hz9qxWPrjbEAYYFPb+5i43UCuLi3lm6xZq2tpICg5hSEI8m0rO02G3Mzo1lSCjkU0lJQQYDCzs04cwfzN3r1yKiIDd4cBmdRJqMpMWFkZKSAgjU1KYlJFBQ3s7b+7dy5bz54nw8+Pmvn1xCBrbe0BsHI+uXcuJqiq3vIUgaNmNdTffQmNHB//evZsDly+TGBzM3YMGMTAhgYaOdga/+yY2m9Njo6IsCyzs1ZcnRo/leFUVr+/axamaGnIjI7l3yBD3W7PNZuPDAwf4qagIgyRxbWEhbx7YQ1mzqzSwU/sjCgJ9YmPJDY9g1ZkzdNjtDEtKItrfn52lpQSbTNzSrx/TsrLcK6Y1Z87w3v791LW1MSY1lTv/H+7+O0yO4mr/hz/VYeLmnLPCrlY5CyWEAgiBECAyIhhjggO2cXz8OOEcsQ0GbGNyTiZnkQQo55x3tTnnid39/tEzszM7PULi+7zXhX+Hi0ta1XZ3VZ3q01Xnvs8506dHDGVTXx9//uRjnt+3zzxmSUQ+qxKCybn5dAwM0RQ6LuUnJ/PtM85gVU0Nhzo7uXv9+ohub5kxg4n5JmTuCwZ5bMcOnt2zBwGsrq3liokTIw7WbU1N3L1hA8d7epiQm8uts2ZRmZHBB8ePccurL+HxR9Vil0w+2ddnzOau9RtiQiwUIfjBggVcN2UKYCbtv3fjRj48fpxMl4sbpk1jcWUlYML7rxw4wIPbttHv87G0qoobpk4lLQSZ1/X08PcNG9jc2EhJWho3z5gR+fgGdZ2ndu7kyV27COg6F1RXc+3kyWY2AmBvWxt3hXQ7NqTb6pBuPYEAD27bxov79mGTZS4fP55Lxo//TFfJf4XDOSxOm4rbqeIIKLidNuyqQlF6CpNLCihKSUERMhuaTuB2qLjsKkIIfrV4CTMKi7h70wZahgZIstu4eGwNSXaTqj67uARN1zFkIyZ/j1u1sXLsWARwrK8bnxQyPCHxaRoHOjvY29mOy6nidKm4nTYcqsLtZ8xjXX09noCfYAizl4TgovHjItyjrc1NfOvd1/GFHH0He9tp8vbx6mVXU5SSylAgwKO7tuN0KmbNMQluevVFvNFbawU6g0Mszqrk9jlzyXSadZJUWcbtVHE6FVDhO2vfiETAS0JQnZVNQXoKzQP9CAPOLK3gfxcsJN3pxBMM4HLacDgVklw2nCGC5sHOTuyyHOfoDhgGm5sbAZMEGZ6LJJcthk0tSwK3w4bTqWJXZAY0Px1DUelFQkZBw6BuoIe7V5zHHUuWAGYs1kM7tuHsVHE7bLjtsSEMrtC68GDqINonpioyQWGAMsxfCl+pYdA81E9JRhqpyQ7OGz2WK2sn4FDMMdsVGbfLhtOl4nKqOKLIqrIk4XbYcLlMgqvbEburcNhCc+CVkVSBLbRT/c+BfQxpwZhMCWDu7ivSM/jG7Nn8dcN6hjQ/khDMLi7hvKjdqipL5jpzKrhdtph6dEIIXHZzLoKShsuhokTNhU2RcTttobWqRnQLIXKu047LZSOgayQ5bUjRCcLU0HoIrfPo8BNJEuY751JRJRmXI3GIyanKF2rn8/rhg3z77dcjIf9KKEmYTZKH01pEiVNRuHnqDOyKwn1bN9EdBSPaZZksl5vXLl/DUMDP4kcfiCVwCZieW8hTqy/lx++/y5N7d1k65CTMRagbBpphIAuBLElcOm48tZnZ3LnxU1oGh6Fcp6Iwv6SMe5afz9wH/0nTQHyU/oLSMu5bvpKVTz9GXW9PxLFpC/FfghY6kYQgw+nktcvXoAiJc554mG6v55QQJIcsU5iSysuXXkXb0CDnP/koQ8FAxFDZZJm7zz6PMVlZzH/wn+ZuKbyuQn8/r2oM102ewpUvPINf0yJzYVcUnrzwUmqysrn0+afY294WQU0cskJQ19D0EcT+0L1T7Q5euexq0hwOznvyEZoHhh2bTkXllmkz+Or0Wdy/bQt/XL8ucl+bLKMIyTxeYTqODcMwnbwjCIPhj0LY+e9QFEZlZPLsxZdzrKebi5553EwuZxhIQmCXZf59/oXMLCji+pdfYENjA55gIKLbuSWl3Ld8JZ801HPDK/+JcUoL4I6FZ7G5sZH/HNwfM1YM87j49+Xn0ePz8uP33x0ejySTbLfz+hVrUCWJcx5/mK4o3ToVhe/Pmc+aiZP58/pP+Oe2zZE+OWSFguRkXr7sajqGBjnvyUfxBAMR9MyhKPz17BUsLq/ktjdf5e2jR8ySTKH7TsjJ4/ELL2FnawtXvPB0lG7N4oBPrLqEcdk5XP780+xub4302aWonF01ij8uOeeka++/Yuej6To/ev+dGLgvbAysDA+YUOCdGz9FkQT+EVHVPk2jY2iQR3dtp7G/Lxa5CC2IQ72dHO3p5pl9uxOiFwgRg1xohoGmaTyyczsORcY3omKDJxjkw/o6Pj5RZ2l4AD6ur+flQ/s50dsb06+TGRLdMOj1evnH1k3YZeWUDQ+AV9No6u/juf17WN9wgoGAP+LQ1g0DbzDIza+/xLdnnRGiZ498g2FaQWHMCxOei6FAgJ99sJYbp0xjd1trDCri1Ub4eUZ8KPv9Pu7c8DHV2Tm0DMaiZZ5ggLs2rWfVmGr+sH5d3Dz5E7n7o1728CiiUUdvMMiR7i7eOHKQp/fujqFK6IaBJxjkf997hzvOXMzGKMNj9inIx/X1bG1u4n/eiy+nZAA//mAtF46pjnfwhaLwi1NS+eZzr8fMo1/X6PN5uXfzRtw2W4zhCT/3N598xFnlFdy3dWPcHDcP9PPsvt1sbmqM0a0RuvZH771DQVIybx49HNNnTzDIrvZWPqg7xp0bPhmhW52hgM5PP1zLLdNmsqejLaZ9KBjgtcMH+cqU6YzO/Hx5nL8wxqepv98ybP+zRDcM/FpiyPTto0fY39luCXv7NY23jhyyTLsQff9E4rXgFgEEdI31jQ0Jr9MMnbXHjka+QKcqAV3nvePHzKPRaULinmCQtcePsqOlxXJMPk3jd5+uS3h9Q38fe9rj+SkA21ubeWz3Tks4VpXMesUBI96464bBRyfqaB7ot4S1bbLMK4cOoEoS3pMNLoHkuF30+fxxRnAoEOCDuuNsaW6yvO5oTzefnKiLMTxh8WlBPjxxnIa+XstrdcPg44Z6yzaHLLP2+DFL9nxA13m/7hhOVbXUrSIJXjlkMuVHznNYt7vb2ix12+P18O6x+LxFYM7Fuvo6drW1WvZ5R2sL6+rrLFOEGIbBhsaGz218vjBoV4rd/rl5MYlEAK2DAwkrWwR1nYKkFKQEOFSOy02Gw2nZdjKxyTIFyckJI96T7XZy3UmWiIgaysSXSLJdLrJdpw/hy0KQ504izZE4Kj6o65YL1C7LZLvcCaH0ZJudrS3WKUQ0w+BH8xcm5PlkOJzkuJMS8leKU9MS70pPIjZF5n/mLrR0iKqSRK47iZQEQZGqZB7ZE1UXMUJHtEQS0HVLhFaWZIpSUggm2MlnuVzkJqBnBHSd4pQUS/1IId2mJ9CtAayts849ZZdlst1u3AlSeSTZbGS7XJYsZkWSyHCe/vsR6ffnvvL/WFIdDhaUlp1WOgEpBMUnEoei0OYZRBfW5WTOKCph+ajRlukCHIrCMxdfxg2Tp8XAk6ciAihOTWNxeUVc/2Qh+MaM2Vw5fqIlkVA3DP6y7Fxy3O64a52KwpcnT2deaWmCfDGxf0aLKstcNX4SX54SP57I3CSYTEkILhhTzVXjJ+EYUVrHoShcNm4Cg8F4/krYH3PpuPEsrqiM061TUblxynSumTA5juMlC0Gm08UT+3bEH98+Q1RJYlZhMctHjcE5osoHmD68S2pquX7i1Li5cMgKl9SM4/zRYy0dqpph8I8dm5heUBTXBmbi/oWl5TFOYDCnNslmY3nVaKbkF8R9YJyKypenTOdLk+L1owjBmMwszqkaTZbLHad7myxz9YRJfNlirdpkmfykJPZ2tlmm1JCE4MKxNVw9fpJl9Yo14ydxUfW4BB9KmcXllZbzcCryhTE+AH9YfA4zCgqxywrJNhv2UJ4Sm2Smu1AlCQkz6ZJTURidkUm602lJMnQqCrfNPMNsCzVHJ06QJcGdy5azs72VQcNPiB0SUdCNU6ZRkprGjVOmccGYmkg+3BgR5mJTJclMFRFKV+BH45a3XuS9hmMRPo5TUbBJ5iK5duIUqjIyuW7i5FC/hv/TZIM/bFrHa5etYWp+AQ7FnAuHonDbzDkEjCC/37QODT1mMVWmZ/C16bO4fuIUfnnmYirTM8yc0TYbbtXGbxYtpSY7h0trxnP1hEmRxRRjeISZ6CzD4TRTRagq6Q4n/1qximy3m2/POoOzq0Zhl2WSVFMfi8rKuW3mbBOuFbFzDGY9Nrus8PvFZzOzsAi7LEd0e/2kKVwwpppJefn8fMFZkXQPTkWhNDWNdt8g6xrq0KVhvSiSNBwXO4INnGSz4ZAVpuQX8Ndl56JIEk+susRMa6KoJKk2Umx2/rrsXMrS0vnylGlcOHZcpE82WWZReQX/M3chaQ4nD55/YcQoRjQkGXg1jcO9HZRapA9Nstm4fdZc/rzkHJJtNpJUGy5FpSwtjcdXrUaWJO4++zwm5eZH1rlDVvj6jFksLq9kTnEJ35szD2eU3muyc/nnigsQQvDoBReP0K3Kr89cwrjsXC6uHsdZ5ZUokoRTCaVSKSymaajP9JtKsWtNEoJ/rriAHHcS35w5h3OqRmOLmotzq8bwjZlzyEtK5t5zV5LmcOBWzfQ2BUnJPLZqdQz353TlC4V2gbmlfa/+KAc7O1lUWsHozCw+bahne1sL0/MKKUxO5uXDB8h1J3HeqLHU9/bwtTdf4WBXJwCpdjvnjhrDlydPI9+dzJyH/0lz2PFrmJC4QLCsoop7z1nJhc8/xtbW5ritUXFKKh9d9eXIzztam3nr2GGeCPk2hgKByAv62AWr+aTxBAc7O3j2wO4YB7kqSVSlZ7ByVDXzisoYlz1cEeDaV5/j/boR8UXC/Aq+cOEVjMnI4s1jhzje08OyilGUpaYx55H7aB4MhUhE9XlecSmPnLc68nNQ03jpsJmG5IIxNchC8NT+XezpbGN8Vh7ZTjffXfuGWcAuimSX407ivSuu44WD+/BpQS4ZWxuTRkI3DG556yXePnYYuyKjGTCroIjRaVk8unuH6bcLGQS7LHPHgiVcUl2bULfR0jLQz0uH9pPjcrO5pZEn9+0KJWULLw5zR/TA8lU8vGsn79eZQaHzS8q4ccp0trc2U5meweKyyphdS0DTeP7gXvp9Pi4aM470EUeFnW3NfNxQT21WLooiYRgwNa8Au6ww/d930x6dSzt0W4es8O4V1/HAjq08f2Avmm6woKSc78yeS3GKaZS6PEM8f2AvqXYHq0ZXx+yGDMPgrWOHOdbbzdnloyhLS4/pU0NfL68cOUBxcirLK0fHjEfTdV48tI9OzxArR1WT406i1+flspeeor6vB38wCAhyXEk8cf4lnPXEv4dBkygk062o7LnxGzHP3dTUwOaWRqYXFDEtLzYyoM/n5dn9e3AoChePGYftFAzPf01Ue6dniDWvPsvR3m4UIfBpGil2O30+n+loC0HwDlXBMAxS7Q5+v/Bs9nW209Dby6vHDjIU9CMQ+HWNb0yZTU1GDje/+RJePRhzLqlITeep8y9j7qP/TJiref8NtyEJwQ1vvMDHjXWRi0uSU1lYWM647Bzcdhu3v/8GAhMBGEk6DH+d3apqhj+Uj+JPZy5HkSTmPfYPToQJeGExIEm18cdF5/D7TR/RNNCPLMzxXF49gUd3bx8uLRzVZyHgoyu+TFFyKge7Orj61WcYCAzPhWSAIQQ+LYiEQMfAHnJeSgjsKOS5k/j6jFn85OO1kZxHmmHw50XnsKx8NN5ggHOfe4QjPV0xY7RJEudUjKbX6+P9xmFj6pAVHj33YqblF9HlGWLNa89xpKfL1K2ucdHocfxy3hIkIfjHjk38cdM6VEnGwMCvaQSCUYYnSneqJPH1KbO5ZfJMDMPgF+s/4PF9O7BJZhqW4pRUHjl3NTkuNzvbW7j2teci/o6grvOLeYu5eEwtAU3jG2tf5d26I0hCwhM0K004ZZP1/OWJ0/nz5o9jHcShLqmSxPjcXPZ1taMICb+usbSsij8vMndcT+7byU8/XhvZLTsUhQeXX0RtVi6tgwNc+cozNA30IUvmOr9m3GR+OGsBQgj+tOlj7t2xEbskoxkG2S43j65YTXFyKoe6O7jqlWdDujV9Qd+bOY99HW28cHBvLE1DQJrdgV0otIY/WFGbd0kS3L34PM6pMHX7lbdeZENTA6okEdB1ZhcWc8+SlTgUhVePHOD291+PlDSXJcG/lq1ier718XN4Xf6XGJ+rXnmG9U0nYr92pyCKEJbcGKei8s9lF7C5uYG/bVsf49BWhGBqXiH1PT00Dw1YGp+3Vl/LP3Zs4tmDe+LalleM5qdnnMX8J/4Zj9SEzx0WThiHrPD1qbOZX1zGBS88ZllFwikrVGVksrezLabPTkUlGAylfbUIQBybkc2rF13N7Mfuo23o1AP+FCExPa+Q+5atZNaj98WhcA5ZYe1l13PP9o08smd7/Fgxk61JsmQa8ihJUm1svPombnrrJT5pqo8Zr1NR+NHsM+n3+/jthg/jPRInmUenonLf0pV0eob44UdvxyBTshBMyS3g0RWrmfHIPfSOCJp0KAovX3gVrxw+wH07Np2eT8kwSwFluFz0+Lz4o3a5DkXhq5Nnsai0ggtfeDzuvukOJxuvuonVLz3JrvaWON3+bsEy3KrKre+8EjMeSQhGpWXy+uprmPXovXG6dSoKmm4MO5RHrIsJWXkc6GjHZ2hxbQ5Z4Z1Lr+OfOzbz5P5YxNIuy1xVM4lrayez5OkH48bjVm1suvomXGrivNP/FTyfbq+Hjc0Np214AEvDAyZX5Ma3XgjBhCLumm1tzZxbPpoXDu+Lu1YAzx7czQuH9lre+42jh5icU3DSqOnIjaLEqwV5cPdWtrY2WcP4Ai4YVc3zh/fFoX+eYIBsp4sOz5ClA72ur5sXD++LT/PxGRI0dDa3NvLykQOW7bph8J+De3nmwG7L/mJg+qAsOmUALx/eb35URhhaTzDIXVvX0zoUzi09YrKiKUcjmjzBAA/u3krb0GAcJK4ZBjvbW3j50P7hXWKUBDSNp/bt4oVD+07bmY2AfHcyLZ6BuMh1bzDII3u20zY0YF3VJHQU3mdB/fAEA/x71xaSbLa48eiGQX1/Dw+FxjtSrDhs0bKvq53rJ07lXzs3xT1XM3T+c2gfTx/YHQfh+zSNp/bvIsVmR7N8Lw3erjvCyqpqi7bPli+Mw3kw4E8Ynf7/Ilb8hLDIQmJ0RlbClA0dQ0MJ4X8dg36fN2FJnpNJ29Ag7584aml8nIpCeXqGZX5nMAmDqXZrSFUWEh2eoc8MYLUSIQTdXo/lIvPrGi8d3Z+QsgDgUmyWkLhm6HR6PQmh6bahcKUOK9BAJfMkUG6Pz0u/3zoVhCwkOrxDWOGcmmHw0N5tdPs+T6kmwcXVtZaGFmAo6DcT01k818CgwzOYULd9fh89XmtGkywknjsUvwM372tSFhIpXgiTymKF6gZ0nV6fJ27HGhZPMECvz2uZIkTTjYTzfyryhTE+BUkppNoSc1A+n4yMHY4VWQiePWTNbnYpKkvKqhK+yIoksaCkwpILIguJyrR03AnLihiR6hYjRTcMVlZVo0hWlAODoaCfUekZCdOPrKyqjjkKnKrku5NZVlaFFXnBwOBAT8dJoHi4efIMXEr8eA3D4NyK0aRb8KUUIUUZO4uX1TB4/ZJrLPlFDllheflolpRVWn48nKrKeZVjEnCEDAK6hv45dtk2Weas0koq0+LTh0pCMK+ojKXlVZZzEdR1zq+qRrXQrU2WWVY+inMqRlvSTQzgRF8P1qQRuHrcJOyy9UEm15WUULcuReXMkkqm5sanxhDAjPwiziytsNYtMLew1PKZpyJfGOMjCcHvF56NU1EiMLB1TSxTTvnrHuMbMSLPkoXAZwQ53NcVE0wKpkKm5OaztKyKs0qseQyXjZ3ApJw8y7wtWS4n71x2PQ+fuxqXoo54OYwRnTci3XQqCl+fOodcdxK/mb80pj38p2bo7O5sJT8pOWL4wukPfjVvCRta4n1mipBwKSpOWcEZWqBiRNtvFyxjVEYWl4ytjVloYYhbN4zIPIXHIzB1dO/Sldw8eSYzC4pirnUpKmvGTaY0NZ3fLlgWMw+SEKTY7ZFAWaux/mj2QnJcSfzsjLNwyMOpL5yKQnFKKlfUTOCWSTPJcroj/CM5NBe/W7CMwuRUbpo4YwT3ZWToiGG5lpyyQr47OW48KyrGUJuVy68XLI3RrV2WSbHZ+cHM+ZxdPpra7FycoWvDuv3alFnkJyXz2wXLYta5Q1bIcbr5ysTpLCguC+UgCodImH/OLSomObLjjSYzmH9eUzuZN1evIUkdDn5VhMAZ0m1VeiaXVY+PG8/colJmFxRzx9zFJKk2bCHDaJNk3KqNn51xFnMLzd8Zee1VNRMpS41F6U5HvlAOZ4AjPV08uGsrdX09zCksoSQllSf27aRjaIh5xWVkO1183FhPptOJW7Xx9P7dkZdNwiRjZTpc1Pf3cLS3KzZA0gBJSJxTPpq3ThyK3SEYoCAxJj2LGydOZ0WlWRljwO9nzWvPsqOt2fw1w2BRaSX3Ll3Jp031fPntF8yYl/D7LpkL7ZFzVjM9r4gTfT08sHsbB7ra+aSpnpjyNUb4EonzKsdyRfUEZhYUR7o06v4/EYgO4QgZUkkINl95Ky8d3sfa+qPku5NZUzuZouQUZjx+j+nHMBhGZhSJR85ejUtVOdLTRZ4rma1tjWxsbqQiLYNraydHFpFhGLx/4hjfWPsqvT7v8Ocp1GeXorKsZBSdniHGZ+dxzbjJ5LrNxFqarvPa0YO8eHgfdlnm0rETmFdUihCCn3z6Dk/s34EvoEdul+RQuXn8LO7a9mlMiglZCG6YMJ0fzFoQ+bdd7S08vHsb7Z4hziqt4OLRtRHD3+fz8eS+naxrrKM4OZVrx0/GqwX5uKmOFJudbEcSzx7YzVt1h4e5UVE6sEkyM/OLscsKQwE/dlnhojHjOKd8NO/WH+W5A7sRQnDx6FrOKq2IwN4n+np4cPc2DnV3MiW3gKvGTSTLaTKUA5rGy0f288qRAyTZbFxRPZFZUbo90NXOg7u3cbSni3lFZVxTO5lkm51vvf8aLxzeG4uaSqYz+2sTZ3H39vVxc7WwpIL7z74QMEMpHt27g43NDZSnpnPt+CmUR+n2gxPHefrALgKaxgWjaji7fFSEBd4y2M9Du7exu6OV8Vm5XFM7JUa3rx87yIuHzJQal4wdz/yiss+MbP+vcDiH5WBPO1u6GmgZ6kdSDZo8abT6+3HYFXKSXOztamN3bzPJHjvX10zjkRUX89GJ4zgUhSA6Lx7bS3NvLzUZuTQO9Q7ndhYGkiqwyxJbuxogZrdjgARBoXF0qJMt7Q30+D08sG8LHZ4hylLSqcxOp3mwn5LkNK6dMBlFktjU2oBHC4RC34dv5dc1Nrc2Mj2viMN9XWztbKB+oAeHQ8bji3J+h/IGKQps626ktjObqXmFKJKEYRgUp6RwtL8rcl/TmAhKU9LoD3jZ0tnAnr4Wmn29TOsq4GB3u1kyWTNi+hQ0NJ49vJs/LljOxJx8dne2srmjgd19LXRrg5zRW0xZanooGlpje2cTPuEH1Yj6yIrIvQ73d9A01IdfBFnYXxZZoAMBP1s7G9nV04wqS4zpzGJmQRGDAT9PHNhh8p+U4eF4tACd3kFunz6POzd/woBuGrtUu4PCFLPKqSQEhmGwu6uVrd2N9Pq8pHbYWFhSQbFq8mnaPANsDs1FW6CfQ5+2s7O9xQxzkMyjXbrDiaHqkZxC0TqQbYI9fS2UJqfxzSlzmV9YDph+yG0djezoaUYIqOhMZ05hcQTdOdLXxZaQbg1F48yB8ojx6fV72dLRyK7eZpyKSm1nDtOidPv8kT08fXQnmqGzsbOeD5uP8o/Fq9ja1oSObuouykDKQrCwuJxD3Z28cnwfumQakxSbg+/NmBdZyY2DfWzpbGB3XzNd2iBn9JREjI9PM3W7o7uJoKFT2pnKvOIyUkIVY4/3d7O58wRH+rrwiyAL+stjddvRyM7eZhRJYnRnFrMKihMe9U5FvlA7nwf3buG3Wz6IS2QdydFiAYYITLp8ut1Jn98XQS+k0JazwJ7Mkd4uDDmeXG66XYRpBMTw/SUEBgbRQEn0sx2ywp3zz6VtaIifbHgb3RhuNwzz2b+dczY2ReYHH7+BZ4QzT9JC1SCiF1jovjUZOdRk5nC8t5tNrQ3DhMVQX+xC4Tdzl/GTje/ERDA7FZUz8kv5pPEEg0FfzHgwzC/nhktv4cRAL6tfe2xEhQOFbIeLpsE+9ND4ww7TyPLQTXKmGDGPDlnhX4svZFpOEWe/+ACNA32R1KUOWWF6bhG3TpjFmjefwadrMfMEMCY1kyfOvZwlz99Pr98bcfA7ZYULq2r55Zyl/GLjWh7bvz0yjxKCZJudt1ddz0DAz3kvP8xQIDaP98hlLUbsNiNB8SPeHaes8Md5y1lWOprzX36YQ72dEVDBLsuMTc/mhRVX88qx/Xxv3esxunUqCo8tu4zR6Zksef7ftHsGI7tyh6xwVnEld5+5kp+uf4cH922N6asQUJOeQ6rNySctdTF9NkLGZ/Plt/LrzR/w8tFhlE4WgnS7k3cu/BKNA31c/NrjeIOByDCdssKPZ57FZaMncPkbT7K9vTlyrSpJlCSn8frK6/ikuY6b1v4nBv1zyAr/OGsVM/OKOec/D3AiSrd2WWFaTiGPLrvkpLuf/4qdj1/T+MPWjxIanvDfo8cZ/ijruk6bJxaC1A2DwYCfPtXLxLw8dnS0xMHiQphfj5gXFRPJMhIYHjDh8l9seo/vTJlvAsQjyH4GBukOB9+1MDwAmW4XqpBp9fbHpnvQgmxtb2Jru0W0degZ84vL2NbRhCcQiEHLPMEAHzUdQ9eJGw/CnI8nDuzgk5Z6iwoHQRoGh8mO0UhN+D42RUEnPteQVwtyx8a13DR+Jm1DAzE5k71akE+b67m4chx+Q4ubJwzoD/p5eN9WBoP+mLnwaEGePbyLNWMn8cj+bTEwsI6BJxjg/j2baRrswxP1slnJyLkAUGQJQxiMrNXh0YLcsek97LLCsb7uGDTTp2kc7unko8Zj/GLj2jjdeoJBfr35Pc4tG0uPzxPje/NqQd45cYQ9HS08sn9bXP8MA/Z3tzM3vzT+Ixv6yrYODfLS0b0xc6EZBgMBP48d2M7m1sYYwxMez283f0BlagY7O1pijEtA12kZ7OfNuoPcuf3jONpBWLdfnTCblhG69YXW6vaOZiZnf748zl8Yh3PLUL8l9By3YE9TWocG2N7enDAaWJEly/t+1rMaB/p45dh+yzZZCHZ2tCSEcgeDfibk5H2uKP6jfV1sam2wTFHh1zTmFsYvXjCPgutb6tnZ0XzazwRYWlqZkIN1uKeTLa2NlilCgobOr7Z8YA21C3MRb2w5YZmOwybJrG04ik2K/0b6dY2nDu3k5WP7T172KIEsLqtKWCGkbWiAbe1NluPxaEG2tDXSlUC3ezvb2NjaYPnR8WlBHjmw3dJQhj9axwd6LO/rUlTeO3Ek4hCOFq8WZEPzCXZ0NFve26sF+bSl3hL5GwwG2NbWxJHeLsvnHunpYkubtW51w2BXR4vldaciXxjjk+FwJiAyDcvpr7FYxCC+1eD6cVMjqMTpPMsAPmiKLzgH4JDVhGkTwIRVK1LSLSHXz5KS5DRKU6wRBgM42NsWF3kOJqpVkZpBgTvltJ/pVBRm5peQbrfm3GQ6XJSmpCdIBWLQ7R1MmFKjNDmN8pQMy/aArjMuMzdhBYpen5dE0PPJxCbJ1GTkkO20Tl/hVFRKktMt4WWnrFCakmZpBMCEtctT0hMgtQb/ObLHEl0Lr7dRqZmW7QFdZ1xWruUH4FR0W5mSaQnhO2WFkpQ0Mh0ui6sg02nqNtGaKkw6/fUUli+M8UlS7VxQURM3yBGhKv+HYkb2PnJgKy5FjVv8Mce7uPVtHvj8UZBoWCTMig4VaRmhnC5xniYqUjO4cuzkk+btsRKnrHDrhFncNH6mRQ4is08dniFKklPj7q3KMmuqp3BN9ZTTfq4qyZxfXs1N42cyMmWDU1G5dcJsLqoaF+KRxHOrgoZBdUZOnG6dssLXJ83h+nHT4l5mVZIYl5nL/MJypuYUWr7swx+VeB2EK59Y2TxVkrh09Hi+NnFO3IfHqajcMG46K8rHYJdlRp7YHIrKuWVjubZ6SoS2EBZZCFaUj+XKMZMsbKL5D7IkqM3MHdmIELC0ZDS3TT4jbp5sksyc/BIWFJYzKi2eFKvKEtdUT+HrE+fE9ckpK1w6egLLykaRpNridqCKJLOqclxIt/FzccuEWVxYOS7OmMpCkGq3s6CwIm4spypfGOMDcMfspVxUVYtdlnHICkmqjSRFxaWoOGSFwqQUcpxJkYUYPY12SSbD7oya3ChIVYBNjk7SNdzm1YN49QDTc4siibyKk1JZUTYWp6KiCEGyaqY9iCH2iaj/Q1wRVZKZkJXHs+deyay8Eob1ZUT+VyWJy0dPpDAphYeXrqYs9BWVhbBUhiDkEHa6+eO85UzLLWJSdj4FSckx9w2LIsn8dNZi5haUoUoyNkmmOCmVB5ZcxNb2Rn686W2MKKRPEWb6BWnEM8PjqU7P5ulzriDV7uDG2ul8pXYmrlC6BkUIJGHwxOFtfNR0jJvGz4gyQMPPcCoq11RP4eIo3abZHfxs1mLOLK6kKi2Tfy6+kEJ3SqhGmMzCwgr+vfgiur0epublk2a3m/mmJZk0uwOnIltwuEw9XDyqlkeXXcptk8/gW5PmMj3H1K1NkqlIzeCxsy8j15XM6lG1fGvyGSSF9OtUFK6rnsLXJ83Bpdp4ZvmVjMvMDa2LkG6XX4FDUfn2lHlcXT0l6qNloKHzz30befDAFuYXlVnqB+CKMZNYXjY6slZlIbhi9ATuXbSS8Vl5/G3h+eQ43dhlU3/LSkdx18LzAXh46WrmFZRFxlOclMr9iy+iPDWDpaWj+PHMs0i1OXDIipmbaPQEfjTjTFRJ5tlzr2RKdkFkPGPTs3l6+eWk2h3cMG4aN4+fEXnX3IrKrRNmcm31FNIdTp4653LGpGWhSmYNtyk5BTyz/MqTcvE+S04Z7RJCyMBmoNEwjBVCiHLgSSAT2AJcbRhG4oponBrPx69pvFF/gOP9XZyRV4ZdVvio6TjlKRksKxnF4d4O3qw/hFuxcbyvmzfrDqFIEpeMmsDV1ZN46uAO/rD9I4LBEakinEkYIuSYNkL/GFq5bkXl3jMv4Oeb3uVIX5eZnV9R+dmMJSwsrCRJUfm4pY7Xju/n+aN7QlT0aNNnkOdK5oZx0zmvrAa/HiRJtfO7LR/wwpE9eINmmglFkihLSueV86+jaaiPOza9w7qm4yiSxMzcEtAFG1pOYGCypJ2Kwo3jp+PVgywsrCDL4abNM8Co1Cwe2LuZO3d8POJ4Z9ae33zZ1/AEA7x8fC/dPg9nl4wh1ebgjOfvDfV9mEOiSBIPnrWa5w7v4Z36I9hkmRXlYylMSgYB55VVkx+1ndcNg+eO7OJH69/Ap+mRaXDKKtdVT+Wx/dvp9Q+HCEhIZDicrLv4ZiQheLP+IMf6upidX8K07Nhigod7Onij/iCZDhfnl9fQ7fNw3qsPMhQMmNH4IXLoD6acyW+3fBDrJzIMZFlicVElf12wMgYC7vV5efH4Hgb9flaUVVOcnBZ1mcG65uNsbW+iOiObswqrYrIftg0N8OLxvUgIzi+viTmq7exo5qLXHxkOPQitKYes8KOpi7hj47v49Gjfj5mg/qOLbiLF7uD1uv00DPSyoKCCCVn5Me/Bnq5W3m04TIErhRVlYyPVNgAGAj5eOraPbt8QZ5eMoTI1M2Y8m9oa+LSljqrUTJaWjI453nd5h3jx2F78usb5Frp9v/EIuzpbmJCVz4KCipidUtNgHy8f34ddUlhZUZPwGB4t/ydR7UKIbwHTgJSQ8XkaeN4wjCeFEPcCOwzDuOdk9/gs41PX383Fb5iVFQK6FnKQGThkFR0Dt2JjIOgPvTsGQV2nOj2HW8bPptCVwtXvPmXmdNaDJscDCQWJQncqWW4Xm9oaYp2TIf6KIgm00DEs+iPlkBXuX3Qxv976Hkf7ugjqunnUiuG+mJwaVUhIoVQR5o5AYmJmPod6O+jz+zAwUCSJ6vQc/jb3fFa8+hD9gai4GGF+AX82fSkYpqP2zp0fEdD1mLlwKmZqjtLkdA71dpjdiILh7154AUk2G19a+wwGw8nTp2UXsaW1wUwtEqNYcCs23jr/SxS6U3np2F6+8+lryCF+jY7B9yYv5Prq6XT7PKx+81GO93WbvocRS0cWAkmSCOpa5Kha5k7nwSWXIAnBxW8+ymDAT1DXkCWJyVmFPLBoNaok8b8b3+LZI7vMeRLmyzIxM4/1LSfi4qSEgCJ3Km2Dg8PpUEL/m0xulaeXXUllaibvNR7hlg9eQAiT3mAAN4+bxW0T5zIQ8HH5W09wpK8TTddRJJksh4tnz76abKebxw9u52eb30ZCImiYOkizObh81CQuqhzPqtcfoc8fH4ulSjLTcorY0Fpv9j3UfVXIfGfyAs4squCStx7Dr2kEdc0Myygo5575qxBC8K2PX+aN+oMYhvlxkCXB40supzYjjw2t9Vy/9hnAPM4K4LJRE/nJtMX4dI1r332anZ3NkfEk2+w8u+wqipJSeeX4Pm7/5FWkyFwYfGfSQm6omU5PSLdNg/0EdA1VkilKSuHppVeRanfwjz0b+OOODxGIyPV/PmMF55SOjRt/rK7+H42PEKIIeAj4JfAt4DygHcgzDCMohJgN/NQwjGUnu89nGZ/zXn2QPV2tlkF5JxOHJIMQcVChTZL5/uSFGMAftn8Qi0BELQgNPf6ZoR9LklJp8QzEx0uFDdBp7jrtskx1Wg67O1vNF3iET8KlqGy5+Gssf/UBjvV3n9a9c51JfHjBTUx/9m/0BWID/lRJRoQIkEDMcwUwPaeIv89fxdwX7ombR4es8Mq51/GXnet4o/5AbJBh9LRZ+FccssKGi77KmnefYldnS8w8O2SFr42fw5i0bL627iXLhO2RXx9xb6essqSoivcajtCvxW64BTA6LYvnz17DtGf+ZhJBY65VeHzJFfzn2B6eOLQ9RreKkFhQWMFPpy9m8Uv/sgy4VIV5bPFoIyD+0A82ScYQRlwwpkNW2Lr666x47UGO9XXFXOuUVX40dRFu1cYPNrwRNxcFrhTeW3kjM567K2ZnCeaa+fv8VWzvaOKePetj+iwLweSsQv6x8ELmPP93S92+dM41/GzzO3zaUh+jH1WSOL+shi/XzOCC1x+2vHb9RbeSdpId0P8Fz+dO4LtAcujnTKDHMIxwbxoA64LopyhtngEO9LSftuEB8CZAQ/y6xj1715Nqc8RDn6HFXJaSzonBnoSpFRqG+hJSAEalZnGkv/O0IHOfprGnuzUhbK0bBs8d3U3LkHXZnZNJf8DHs0d3Wc5hQNeGndQjXmQD2NbRxEvH91o69b1akAtef5DBgAWfxsqnHiWSELxwbDf7utvi+uXVgjx1eCfZTpel4TnZrT1agC7fEAXJKWbQ64jxHO/v4fmjuy0hfp+m8dzRXbx8fF/cRyVo6LzfeJRXsvclDDwNGDoBzaIt1OGgoVumWlEkieeP7qZpsC9uXB4twOOHtuNSVcu56PF7eO7oLktEeCgY4OkjO9ne0RRnLDXDYEdnEy8e22tJBgzoGle98wRt3iGLNp1X6/aT60y2RBwlIXi74RCrKyfEtZ2KfOZ3WwixAmgzDGPL53mAEOJGIcRmIcTm9vb2hL+n6frn4vF8lnR6BxOG/dtlhUtHTUiY7kGIxAibQHBu+cm3nIlEQkSIY3FtoayFn6capMDMVJgoPUJlasZJIENhRnpbtplEtkSUBTAj2y2vNMw4p0SP9esa2xJwj1TJLA6YSHy6ZpnqAcyFbRIE4/usY+5KElXF0Aydf+3b+Ln4QwhzF2l1pWGYfU603gInGY+p28T0jYAWRDvJtX4tiG6Z8sRImHrEbNcJGJrlXBgGn6uySFhO5dBwBnC+EOI4poN5EfAXIE0IEd45FQGNVhcbhvEPwzCmGYYxLTtU99lK8lzJFLpTT6fvpyBG5GxrJdkON6vKx1nvXEK+EJPrEQ+XK7LEsuJYZ96piCwkFhdXmYidxWN1w+DCilrcJ8kOl0jsssyZhRUJF/DotCwuLLeuRDAqNZMVZdUk3GvEoEojmgTMyC2x5ILoGKwsH0dxUlpcm00y+U6ySHBf4MyiCkuD6ZRVLq4Yz8rycZbxRZkON6sqxlkmmnMpKueVVbO0eJSFcTPP052+xLmcwn0bKbIQXFhey021syw5Qpqhc1FFLSkWqWMcssKFFbVcVFGLU46/1ibLrK4cb2kEXIrKBRW1nFs61pKSUJqczkv1uxMW3xzekcZTFs4srOSckjE4LPqko7Oo8P+P1SsMw/iBYRhFhmGUAZcBaw3DuBJ4D7g49GvXAC9+7l4AQgj+Mvf8COwZ+ffQnzZJMsvzWkyugCh+Q/xEdvoGiYU8zT/nFpSSZLOzurI2VBljGB0rT07nrfO+hF8PWN43aGiUp2Rw3dhpZroHizHZJbNiRfSC0A2dD1uO8OPpZ5Fqs8cwAuyywm0T5nLt+0/S7R+MGX+0KMKci/AitUsyTlnlrnkrzQBWRY4a7/D/Hd5BfjJjCSXJ6bhDL4dTVkhR7fzpjBUUulP59sT5OORwuofhObPaqbkUlSyHi7fP+zJPLLmc1ZUTcMpmXXNFSDhkhR9MMdNi3DnvPJzycBkbWQgK3CmMS8+JMpax0PTK8hr+eebF/G72cmwhiDf83MnZBVxYWcuXq6czKjUz8rLbZQW3YuOv884nw+Hi59OX4JAVFCGF1onKrNxivJqfm2tnketKilpvw8oQwtzNJSJHOmSVFJs9ogOXopLvSuFH0xaxsKCCpcWjIrwZVTLn4pczl5Fmd3LXvJW4FTViNF2Kypi0bK4dO5VLqyYyITNveDxRuk2y2fnjnHNxyErMXMzNL+Ps4tF8Y+Jc8qLG45QVklU7xUnJHO7rBBHOIWVE1pFDlkecOIbfm0yHi59NX8KU7EIuqZoQ0Z8sTETv+5PPJNeVzOeV0wosFUIsBG4PoV0VmDuhDGAbcJVhGCdNa3YqUHu3z8MLR3dzor+Hmoxc2r2D7O5spTo9m0uqJnKwp52H9m/hw+ZjEY5BjjOJu+ddwOq3HmYoGIKSQ8vcLssoshRbpx2zeVRqJm2+fgzDRM78QZ2JmQX8YMoipmYXIoRgwYv3UNffE7rWiMD3qTY7t9TO5u97P8ETCGAYMDGjgFxXCtvaG0my2bl+7DTGZ+ZxwesPEtANRFQAq1ux8ekFX2NHZzNrGw6TaneyuKiKK997jD6/11wiBgjDVPTNNXPY1tFE02Afc/JKuaFmOvu62/m4+TiqLDMxK49ZuaV0eoc4//UHzPitMBQWgqhXV07gN7OWR+gM29obKUvJ4ILyGj5qPca/92+gx+9lckYhaaqThw9uJWDEHocNA1JUOxdVjKc6PZfzyqpjyGnb2pt4vX4/Dlnh/PJxVIVg4CcOb+OOLW8zFBgO/HWpCj+ZupSfbno7KvWrqTuHLPPc2WsYl5EHQOtQP88f3UO7Z4B5BeUxMHBQ13mn4RAbWuopTEplVUVtDGP3eF83/zm2h9ahfj5oOUxvwIMsyQS0INeNmYEnoPHIwc2RXVL0eKdmFTImNYe36g/S7feiSBK5ziTunHs+VamZvHhsD0f6OpmQmc85pWMjL34Y8n7rxEGSVTsXVIyjNHmYmd7hGeSFY3toGuhlVl4pZxVVRdazput80HSUdU3HyHElc2FFLTmupMi1DQO9vHB0N71+L4sKK5mdV0q338MNHzzNvu5WMCT8WpC5eeX8ac55zHnxrojPxjAg7DZKsdtZVTaeJw5vJxCFUAIUJ6Xy1nlfjtHt9o4mXq87gE2SWVlRQ1XqZ1cq/T8LLDUM433g/dDfjwIzTuf6zxLdMHjm6Hb+sW89PX4P6Y0uNF0naOjoUpA93Tncu+9TtnY0oKoytRm5/GDiIiZlFRLQdc4sruCNEwfMF9wAGZmLysfzwvHdCGEQvcM2DDg20GWmLwiLBNt7Gvjltre5c84FlCanc9v4uXx/42sEjPCW1YSCZ+aW8Nfd64aRFAHbehoYRy4vnXstWQ43hmFwwwdPo0v6MOEwSsGPH97Ghy1H2NBej02S+bjtSKRCB4R3GwY+AjxXt4M/zDqPadlmTphtHY3cufsD9vaYZW7VQ+aX/erR0xmbls3O7ugKogaqkLl+7HQAPmk9zt/2fsjR/i4y7S7ebtrPto7GCAxfP9BtmgBZoAJBbdiY2xQJWYGHj2yiwJWCQ5U5v3QcAA0DPdy19yM+ajmGLARN3h7+d8oSXIqNX297F68eZHgTaODRArzfdIRp2UVsaKvHbwRDxtmgMCklsrj9msYDBzfxxGEzAHV7dwOZThcTMkxuzOb2E/x1z4cc7G0n1ebAZwS4uWYOkhAMBHzcu/8TXq7bEwEVDAMI/f3+/RtIttkxZN2s8BFFo7DJMv1BL8/WbUcIWFhcwTfGz6M23TSIjx3eyl371tHuHaS0NZ0km40lRaMBON7fxd/2fsT6tjpskky7v48fTFqMW7Wh6TqPH9nKgwc20RfwsqmrjgyHg+k5JQDs6m7mr3s+Ynd3M27VTr/m4bbx81ElGW8wwN/2fMQr9Xvxaxq7e5vIdLr4+Za32d3VEgIyzBpd69qP8stt7xA0ho9bQiLyHnh0P1eMmsS6lmO0Dg0wqPnMdSogKIK82XCAC8rMskeNg73ctecjPgzpttHbw0+mLiHV9vkrln6hUmr8Ycf7PHhwUxw0ComRD1kInl68hvv3b+CdxtgEYU5Z5dWzb+CG95/m6EDnSF4gkhAx5/roL16yaudLY2bQ7h3kqSPbY9ApRZjs0sEoVCL62pKkdN5e/hUePLiJ3+94L+ba8OK2SzKSbDqIwz2QhEAbkfB8ZCqP55ZciyIkLnjrAct5csoqBa4UjvZ3xkG57664iaN9ndzw4dOnnTjdjkoQMzI9ejwOWeG3M85lYUEVi165h26/J+KXkIVEVUom9869mCWv3me5i0q3O3l+ybWc/fo/YnRnlxXm5ZVz37zVfOOT//BO48GYPrsUlZeXfYm+gI/L330kLhXExMwCqtNyeL/pCI1DfTFf/pEysk+GAZIhELJ59AqvEUVI5LtSePvcr/DooS38cecHMTpwyAp3n3ER4zPyWPLqffQFvBEd2CSZCZkFPHXW1fx0y5s8e3RHDALrkBWeWXyNuWN8899x911eXM13J57Jstfvo3cEgOJWbPiCwUiwcUwwNpDrSIqp0BLdnu1w8+byG/nTjg958ui2GN06ZYVfTV/OWYWjOfOVv9Pj90TmQpUkKpIzeeXsG05aOvq/IqWGNxjggYMbE74UiUykZuisee9xhizSKgR0jfsPbCAvKZmjg52xjcI6dURY+gM+/rrnI3Mxjrhv0NBNBnWCazu9g7zbeIi79qyLg9TN6GUIoqMYUsy9dcOIpFewuq9f07h7z8dmva2RZMGQeLRAnOEBc54ePbSF9a11p214nLLKV8edwUOHNtPmGYhp82pB/rDzA3r9XrNuWdTbrRk6B3rbeavhAEHi0UwhIKhrPHZ4Sxw07dOCfNR8jC3tDbzVcCAOEvdpQf61fz2tnoE4dM+rBdnQVs+GtjpGOqqi5zf888h2IWBSegEH+tpijEDQ0OnyDfFu4yH+Fr3rjXruH3e+z/KSarx6MEYHfl1jT1cL61vreOrIdsvx3LVnHUmqHb8eP55X6veysb0+zvCErw2DKiPHYwA9AS92WTF3liNkMODnrYaDvNt0MG6terQgf9z1AYPBAEPBQMyHOqDrnBjsYX1bHXNyy+LueyryhYntavMOWARLnppYGR4IcTaaDrO5/cTnuu/JkDKrr0hYPMEAv935LgMBaxeYEFCSlGaZ6F1Awi+JjsH+njaTM3OaO1a/rrGrq5l9oWPa6Ug44+BIwxOWpqFe9ve0We7EwOBve9cldNzKQmJPd4tlihCbLLOpvd4SzdIMgz3drRzsbU+gIWsEB6x1FtsnwZz8UsvxeIIB9nW3WtamB6gb6GZPd4sl3UESgm0djQmCZOFATxs7O5ssUTZFkmjx9FuOx4qsOlKuGT3VUgdDWoD93a00e6x5ZU2DfQl1q+kGR/o6LK46NfnCGJ8cR9LnoBeaYsQgWbHS4ukLfUni21UhoQrrfD4nZc5hHssUISy38ToGdf1dCQ1XWVI6U7OtKz0qQmJxwSjrHENAf9CDjp6Ym4S18bJJMgf72uPDK05BXIrK2PRc8pzWyEaBK5XqtNyEi8mvBRNU44BxGXmMS8+zpCz4NY0ZOSX4rV5kBN3+Ibp9p14cMe4eCV7YVJuDMak5uJV4uoNTUalOz01IhShNSmdcep6lwdQNg6nZRZZUCAGMScuhcagHq7Xn17RQloR4EcCi/FEJxyMLiVm5pZZweVi3BS7r1BgF7hSq03Ms087IkkRlymc7nRPJF8b4OBSV68ZMt+Q4JJYonDr656h2DR1EvDJlIShPTefH0xaT7XCP2HXF32fkz2l2Gz+cvBhbgrwt4Wj3kdc6ZIWfTl3G3p5mi3Zzp/X3eRdxVVV8ygYD6PANcHywwzo5GpBmczItqziGkhA2SH2BIQziS/bYJJkiVyo2Eb/3lIUgSbWzvLia2ycstODyGKgyjMvIQRJS3HjA/GqfX1ITp1uHrHDb+PlcO3p63G7AISvMz69gSlYRy4rHxj1Xx6BxqJsh3R83npP9LELjnZ1byiUVkyzSfKh8o3Y+S4vGkGZ3xvCAFCGR6XCxuHA0Xxs3z3I8t09cyKWVk3BISsxc2iSZ2ow8ZuSUcG5JddwHwi4rTM8utlyrAGPTshPycVRJ5qfTlnHHtHPi7uuUVW4cO4v5+ZUUumNTrUgIkhQ7K0pq+PaEhXHrzSErfGfCQs4rGYdbscW8I6qQKUlKY3ZOqWV/T0W+MMYH4FvjF3Db+Plk2l1ICFJUe4TTMjY1h9/POI8U1R76bQMRihLOiPG4R3FFhBE5w5tKHVaajsbh/jZ+v+sdpucWsLpiIk5ZRRIiNgwhjgNhQuZN3h7u3LeWZ5asYXnxWFRJRhaS+fUJPXekAapIzuCuMy5kXn4F9YPdUQstqm/CYDDo58dTlnJTzRzSImMzEJIecfgKScetqAgEqiSR50zmxurZvLH8Rv694FIur5qCWzHLqMzKKWVFaQ1eLThiLsxnnllQyfvn3cIH53+Vp89aw8rSWuySySU5q2AULyy5Dqeisqp8PL+cdk6UwTXnon6ok+vXPc4NY6ZHGaDhubbLCndMO4dvRul2TGo2/5i3mqlZRRS4U3lm8RpmZBcjCUGSYuPKqqn8Zc4FAPx6xnKuGz2DZNVMq+GQZYSkR2gLQhp+nhxNSAr9IQuBKiQUITE/v4I3l9/IY4uu5FczlvPn2SspTUpHAHnOZH4yZQlXjZqKTZZ5fsk1LCsaE0lNck7xWJ5dfA2KJHHt6Gn8aPJicp3JSAjKkzP465xVLMivJMPu4rml1zI3rxw5VJpodcVE/r3gUgYCPj5qOwhCi8yTAIqTk9EN3QyfiNGPAejMzC3h8srJcZwkmyTz+KIryXMlc3nVZP49/1JGpWQhgCyHm9snLOTWcWcgCcGTZ13FipIa7CHe01mFo3h+6bU4FZULymr55fTlFLpSEZiBu7+dcS4rSsfhVm28sOQ6FhVWRfhb55fV8MSiqz4XEz8sXxiHM5hEwwvLxyNJBieGusmxJ+PTAyQpDi4oHU+G3U2G08HjR7bQ5ulnfFoh146ZQYd3kC99+BR+PYiOGTEtMJGjYdh62BiZP5t/DmkBPmw5wk8nn0O2y8mQ5udAdztbOhrxaUEzSBADQ4qnmAd0jdca9vKVmtkUp6RwpK+DT1qO49GiUAdhIEswISOfKyunRZxzha40DvW1RfoUpuS4VIf5lRGCSysnYVMEf9i1Nup4JyLj8Rpe1oyZRo4zmVWlE8kNHYvavQN4DS8uuyBDcbOwsAIJgUNS8OpBcy6k4RxECwoqEUKQ40wix5mE26ZSmJxEUNc5u6iavCgiWb47BSFryFIUgod5LLArCmPTszjU305Q11BRkYXEX2avQpVlU7eyQf1gN1MziyPQMsCo1GxuGTeHD1oOk2Z3sqpkAm837ef3u96l2dNHms3BjLwiCl1pPHZ4izmGqLkQsoEsCW4YPZtnjuzEowUJ6BqykBiTls3s3BL8usaSgjEUu9Miz52fX8FA0MuuniaqkrM5p2S49G+WI4mv1MyiKCXZDKcpHkemwx1Zq+eWVhMkyJGBDiakFzA3rzxyrSIEughitxk4ZMh2OXHKKo8f2YJHCyAkA1kaXk/NQz0osoQiSaabIGpdOCUbEzIKOLe4hvEZBfxj/ye0efspTkrjK2PnMClzOKxyZk4Jt9bOZmtXA6XuDC4orY0YiFSbkxurZ5GflERA1zinqIb8qOPW4qLReHUf+3vbqE7LY1HhqEhbgTuFm2pmU55q5p86r8SaqX068oWC2nd1N7Hmw0cI6noMmmMTJguzwJXK8YHhaGBZSPx5xoUsLRzLg4fW8/vda9ENc3NqlxT8uoamhVCA0Mc6jHaMtNcRA4C5HZ2aWcy0jFIkSeLRoxvoDYQiiUdMV6ErlU6/mdpBYFZ90MNVMTC5RRGDF0pHcEn5JCakFfHDrS/HGDQh4OyCGv4y60I+bD3M19c/h27o+KIJYBFrOnxfW2jXdc+cS6lKzmLpm39naESk96iUbOr7ekILf/h5AEmKnccXXsPY1Fz+eeAT/rbvAwKaho6BLCSK3GlcXDaJOTkVrPnwEQaCPsu5KHan0eEbNJ8R0s8tY+fx1Zr57O5uDulWw6sHcck28l0pPH3mdThlGzd98iSbO+oZ0gKho4GZ0iNRAO4wH4cY579dUpCFxE1j5uKQbbT7+njkyEaCurmrcMgqywrH8ttpK+nwDXLx2vvp9XsY0gI4ZZN1/PTC6yhLzuRPu9fy4OGN+DWz3JFNlvny6Dl8rWYBR/o6uOz9B/DrGh4tgEtWSbe7eG7RlwhoGove+FucE312dhmFrjSePb59+B9DHBIh4EcTl/Hc0V3s7TM5WiKq7b45l7Mwv4rXG/byvc0voukGAUPDJavMyinn7tmrGQz4Wf3e/bR6BxgK+kNMaJlH56+hOi2P+w9+yl/2vh/RrUNWWV02iR9NOpvGwR5Wv/dvBoP+yHhcio3nFn2JPGcKP9v+Oi/U7cSrBZAQqLLMt8Yt4tpRMy31Exne/0U+n/8LOZnxMQyDpW/9nboB60TWicQ8ntnosUCWVCFHXtogFnEt0UO32D3eNWs1bzTs5fWGvbFVDkJ/VYSEliAO345KgKBFq4GEINXuYDAQiEO8VCGRbndYRhlHv3BW8ZbpNhdLCsbw9PFtFj2Cr42dz78OfopHj0cuxqTmcO/sSzn7rXssYHwDuySjGQaaMcKNHvohvEMc+cLZJJl3z/4a13z0CEf7O+ParqmaSbE7jV/ueCshfSCRRB4VZYjDUuBK5bkzv8TC1/8ad1+XrHL37Et4oW4HrzXsjTFwApiWVcJPJp3DRWvvj7vWLim8uPjLfH/zS+zoaoyZC1kIVpVOpN/v482mfZZ9vmn0Gdx78GPLtkvLp1CRlMnvdr8bF72eZnPyzrKvMu+1O+OQJ5es8qtp57Gts4HHj2yJIsSaMjolh3+ccRnL3vx73HicssrD86/mrn0f8lHrkZiPoYTgzPxR3DjmDK796NG459olhbfPvpU8Z+I8zv8VPJ9WTz8tQ32f/YsjREenJ7wrGWFBAoZGvjOFoKHT7rWGiU8m/zr4CQf72uPKq0RSJySIAVeExKqy8aYRiLNM5u6oz+9Fs7BaAUOnzTsY+d2YKwWhLbQ1jubXg7zTdCDheDZ11uNWbaHChbFytL+T1xr2JoShh4MSRxJjiPjXreByWUi8Ur+bxsEei/5qPHF0M0NBf4KZPLmYridhORtdviFeOrELRZLwjbj5kBbgtYY9vNscz20xgC2dJ3ircb/lrktH563G/eyKYZCbohkGr57YY4kqhaXdl3gdbuk8wf6eVsu0GQFd4/m6HQnh8pfrd7OruynO8AAcG+jktRPWieu9WoC3GvezrvVonFtBx+DDlsOUJmXgtYDaJSH4oOUwl5ZPSTimk8kXxuEsS1JiTs3/g7R4+uhKBMdGnNFWjQYH+1oZSsDnQIQnL77PBgalSRkn5S0ljpg++RwUu9OoTstLcE+dZDXxOdyt2BJC3oZh0B/wIj4H10oSggvKJlpeK0LHlUTGZTDo/1w5nMDcoUT7b6LFMAzsFiV3wPyi20LHMysJ99nqRReYzutEPCuvFogCReKl0J2asF82SU5YzscwjJMaNZskRzJAJmq3cg7LIbpJIh6WFEqcZrWWBebp4vPKF8b4ZDuSGJ2S87mJhtZinlN0Q4/38QCFzlTunnVJwqt9WhjGjV1oipCYlFFoyX0A0A1YUVzLrOyyBFUmhissfHb/h8Upq9w4eg7XVs20jO73aUGuqphqeScJwVWV07m4dKLl4tfRefjIp5ZfuJOJKmRWlU7gyspplqVZdHTOK66l1J1uqQMjhPZ8ltEdKU5Z5arK6aypmhH3UgqgNCmDlaUTLJN62WSFC0onsLJkfBzErwiJhXlVLC8aZ/lcv65RnZYb8ktZHKkFXFGZWAfXV82m0J0aNxdOWeWy8ilcVj7Fkm6SZnOyqnSCpcF0yioXl03movJJcbqVhGBCegErSsZbftxlIbGipJazC6vjq2IImeXF4zivuNbSKOoYLCoYbTnWU5EvjPEBuHPmRWQ53HGcArukYBNyqPR4LEwM0ef9kRDl8L8ZI/5dFhIPzLuSswpGMyolM+56ETpLSDFwuKnoYncaP5t0TtS2PPbe1alZ/HDrC7hViSyHO2pHEAU/KwqL88cghyBgl6yGKlgIyxQHDllhQV4VF5VP4vyS8VGLf/h/Seisaz/MVZWxR2yB4IrKqczJKecrY+cyKbMQp6xGvXgmnOvTg4jQHmWY32JE5tgmSSSrdtyKDbuk4FJsVKZk8cOJSxmbmss3ahZilxScsopLNqsg/H7aSn647T80eztjFn843UjsSzg8hy7FxvfGL6YyOQs5NIN2ScEumVUZzi0ax9mF1VxRMY25OeWms1gy02lk2N38bdbFZmqNWReH+hOqQCIpfGXMHCZmFPKt2kWMSc3FKasRPaTZnPxo0jKK3GkUukZWCDEQ6Nxz4CNKk9ItdS8LweqyKZxXVBszMlkI7p69Gpdq4+5Zl5Buc0Xm0SErzM+rYnX5ZFYUm4Yg3Fe3YiNVdXDPnEuxywr3zLkUt2LDrQyP57LyKczNreAro+cwJbMoZi5yHcn8ccYqMuwufjdtpak32Rb5ne+MP4uqlGz+d9LZlCVlxui2IiWT/5mwlNGpOXxz3Jlxuv3j9FVRVJDTly+MwzksAV3j7cb9HB/oJMeZRONQH5k2N8uLa+jwDvKjLS+zu6cJu6ywoqiWl07sirB2jTBeTYiiE8lJE0a5zOUvAKekcn6ZmZypNq2QHZ1NvNywC03XSbc56AoMO3zD91WEwpyccmbllDIpo4Snjm3ljcZ9obSX5hdckcywAPNFBpuksDivmi1dJ2j19KMIGbdqpyYth61d9fi1IMKQQMB3apfwpz3vRRx7hmFul6dllfDd2sXUpJtR3ENBPzNe+Q1BXY+Mh5DRcsoqW8//IR2eAR4+shHN0FldNpmy5NgKB1s66vnrvg/Y3Fln7gyjrIBTVllWMI6NHXW0eweQhXkkHpWSw/1nXMnWzhPs7m5mYkYhc3MrYrbzLUN9vHJiNw5ZYUXJeNY27+eXO18z8x0bw5SCNNXJovyxvHhiZ+QIGl6LbsXOh8u/SVLU8cWrBXjtxB5avf2clT+a0amxta92dTXyUesRit3pLCuqidnR9Ae8vFS/i6Ggn3MKayiKGA7Y3lnPNeseNtEwdFyyQo4zmacW3MicV38f42AXoXUkIfjdtAv54ZaXYpywdklmSWE1f5pxEQB1/Z08X7edTHsSF5ZNihmPXwvyRuM+Gga7mZ9XRW16bMnh/T2tvNdykDxnCucU1cTs7gaDfl6t30WXf4hlBdWUR7GMDcNga+cJPm0/RlVyNosLxsaUt+n2DfHyiV34NY0VJbUxzmLdMFjXeoSd3Y1MTC9kbm5lrG49fbxSP6zbUzE8/xVoF5gK+eXO13ipYSe6YabSkDAZtl8ZNY/6oS7+U7+dQOjf5+ZUsaZiDvcdXMeurkaQdDyaL7LIdT3MAwGTEDf8rDDrV8fAISmR+uxCgEu20R/wh2jwRtQ9iKRWtUsKkzNKqEzO4cljm8yI79C9RwSmIwQ4JAVJkriyfCYT04u4ffOzceiBLAR3zbicBw5vYGdXI5Jk4DcCJmvVMGH9S8qncWHxFOa8/rs4x6RhQK4jhRcWfYXvb32eDR3HkRBk2t1cWjaNT9oP0+rtI8uezL7eVryan6BuRK4NH4RkSYQSaUnkOlK4oGQKc7IrqE3L5+4D7/PQkU8xCB0jRp3BTaPn49UC3H3gPZ44ugmfriELwfj0QnxakD098WlShYAry2fwUv0ehoJ+/HoQSTJ1JAuJeTlV/HLKBaTZXAwEvPzPtv/wQeuhELrp5GeTzmNBnrnlf/nEDn6z+028mh/dMFheWMuPJ67ALqu0efr47pbn2d5lVsFIVuzcVnMWF5dOxTAM5r7xe3r8saWPFSFxZcVMnjy2Gd8IZNAwTOO4/tzvcs26B9neHYobNDDXwoIbcCk2tnbW88OtL9DqNfNFTc0s4TdTLyTbkYxXC/DT7S/zZtMeJCFwyjZ+OP4clheNB+Ddpn38fOer9Ae8GBicmTeGOyatxK3a6fEP8f0tz7O+41hEt3dMXsmsbLN431PHNvPnfe+E8vMYrCqZxPfHn4MqyTQOdfOdzc+xt7cZAZS4M/jt1IsYm5qHYRjcvf99HjzySUS311bOZlXJJJJsDhoHe/je1uc4MWimWxmXWsDvp11EgSstTrexev4vMT7/u+1FXm3YdcqQq8BcKAXuVHTdtMxx3n7d3FUYFlHVnyXh6jARlvQIsQsFIQl8UVUMPitlg1NWqUzKZldPU1wbQIEzlbeW3MZtm57iw9bDIyKcTcg7x5FMk6cvxmltGKYx/Vb1El5r2smhvrb4iPpQL42Rhx1j+E+rsSYrdt5aehvPHN/CPQdi00g4ZZWvjT2TF+q3cqg/NsjQ1I8cQyeIvrddUvjppPPY1F7HCye2xRzLVCExLq2Ax+bfwJc+fogtnfUxunXIKo/Ou55ev4dbNzwR46uySwqL86v5zdRVnPvuXTQMdsc5teflVjI9s5w/7X3Hci5yHcn0BDwx8x+enytKZ+CyqTx6dGPMc52yyk8mrmBqZinnr707Zp4UIVHizuClRbfy7c3P8H7LwZh17pBV7pt1JQ5Z5ZqPH4y5r02SmZFVzn2zr+KS9+/jQF/riLQmKs8t/ApH+tv57pbnY651yAqrSibzvdqzWfr2nXR4B2LmIlmx8+aS23i+fit3738/7oOoCnNHrRki5mMnIchxJPPmkm8kBDHgvwRqHwz4eKVhV1w6gVgZPmSEfwoYWogbZI1MnFkwmvdbDp42lKsIiWxXMs2e3gRoGPiMIEIbQRcSsQZo5Ivs0QIcHUgcCdzpG+TD1kMWhif0TF2j0RNfUSNsNCpTsjh+sNMCJk6MJZ4sjQeYEPqrDbv496GP4xanRwuEDFLYOR+rHyFMQzIyl485liBPHNvImJS8MGIf88z9fa181HqIbV0n4j4qfi3IA4c+od3XH+ck9+lB3m7ey7KWmriXLdyz9W1H2dXVlHAuAqHd28g2GYmxabmhnVb8XNx74EOWFtTEJVYPGjotnj4+aD3Iey3xKUK8WoB/HPyIJNWOb8R9/brGpo7jfNh6kKMDHXG6Deoajx3dyLau+rg+ebUgz9dtY2pmKYNBX9xcDGl+Vn9wLx3eQcuPfiBSny12LnQM+oNe1rUdZmHemLjrTkW+MA7nLv/gKaA/idrjESnzXw3avH1k2F3xl3yGBA2dAlcqNovo5JFPPl3RDd2sJW4xHFlIHOprtUy7EB5/opIuLtnGho54vkb0tYlEEpDvTLFEU7xagBMD3fQEPBZXwkDQF3oh4p9hGFDoTku462we6qVuoNMSbleExIG+FsuIdx2D+sEumoZ6LO/r1zWeq9tiyZkBQcDQ6QvEF/wD08iMTs21TCNhYNAcyZQQL+2+fuoGOy35NgCH+tpQE0DtDUM91A92Wa4pVZI52NtmqZ+goVM32EmLx5onp2Pwfst+yxQummHQONRz2gRPMNPXNnt6T/u6sHxhjE9ugoUfK6f7qhvs7Wmky3/6NbDA4PBAC6NTck77yrCPJ9ELp0gSo5NzLdu8WoB1bQcSLIawM92ajTMU9PPU8fUnvTb+76ak2lz8dtqFlkbPJduoTstL+HFIUR0hdDL+vkIIfjl5FS45PgWFACZkFDE9q8wS/vfrQRbmjrGsGaUIiamZJUzKKE6QXsRgffvhBIY6jKhZUyXsksKV5TMs++yQVSZnFJNus/6gjU3JY1pmqSVcrhk683KqLA2ijGBqZglTM0stywUFdI0FeaMsjZ5dUpieWUZtWqHlugjqGmtb9lrOo+kLtf54hyURFUISgnFpBXH/fqryhTE+NknhtuqzTiGlRvxLNJzHxOIFEzpC6IycPJMgJUWhCPHXDgY9NHs7T5ImMh72lxDUphXw5xmXsLxgJFckzDvS+FrNmWTYRqbyAAONbT11CLQRxngYxbPLMk6LFAeyZIQc3/HjJWSwrEbikFW+XbOEaZml1KYVxBgCmyRT4ErFq/tRJWsDs6pkUhTvKLZ9WmYJkzOL+fa4JTGIjcD0kXx97CIuL58eicAPi1NWWVUymaqUHK4onxG3LjRD58XGTczPHWVBdDOpEjoG+a7UuDYAl6ywpnJ2HEfILin8duqFLMwfQ1lSJraoubBLCpXJ2czOqeC7tcvirnXIKrePW8rK4kmk2pyoUfpzyCpn5o1hbFo+N42eHzMeCYFTsXHj6HlcX3UGrhG6dcoqaypnMSoll/OKJsRcG64y8tCxDznQfwI5Li2KAUIPOc7jj58QBl+sDNBI72DUWCWFSRnFjE/7/LVCv1AOZ4B3m/dx74EPOTHUjWEYaIZGRVI2he40PmjZj24IsyJkDKQ+jNhET5ck9IgvxDDC6Je5IKZkFnFd1Tw6vAPcd3AtLZ7+qGvNiOMwQmlm/JdxKQ7SVCc1afm827IHI+RJ0nURudYpy6w75wc4ZJW/7X+Hfxz8EN2I7pOBKkl8dexZrCyezD37P+C1xt30BTwgdCQxnEpVETLZ9nSaPT0AoXQKBj8Yv5xpmWX8bd97bOg4SrrNzZDmocXbMzxWQ2AY5h5pSX4NfYEhtnefQBUSGgZFzgw6/YMUONO4acz8yLl9V/cJblr/CL1+k9ntVlX+Ov0y3m3Zx5PHN0buHRabLPG9cWfjUuz8Yscr+EMJ/2UhcUX5DL45bnHkBX63eR/3HfiQFm8fE9OL+Hr1IkalmDvAVk8fd+1/jw9bD5Gk2lmaX80FJZMoTcrCMAweOPwxf977DnroSy2HkDGXbOOK0jn849BHEQd8eA4FsLp0Gpoh8czx4XXnlGXm547m99NWs7unib/tW8uBvlZK3BncOmYhs3PMWlRDQT//PPgRLzfsBGBl8URuGDUXZyjJ2Mdth7l7//s0DHUzNjWPr49dRG26+TJ2+Qb5+/73ebdlP05Z5dLy6VxZPiPinH2tYRf/OrSODt8A0zLL+Hr1mZQlmZB5w2A3f9u/lvXtx0izubimchapNjtHBlopdGbQ5fPw1PHN9AW8DAW96ATQQ++AioxbduPTNQaDXgyhRT7OZn5qgUOyM6SZxkiKyvRgGCCjkKQ6TKTN0DFC93VIChXJObR7B1EliYtKp3Bt5ZzPdEv8Vzicw1KenMmkrDzsvWbJ2TxnKucUTKQ2rYh5OZV80nGINm8vSYqDg30ddPs86IZuVlsXOpIw87yEE4FHWDDCQJGN0C4I9vc18GbzDn4z+RLcisqPd75AMBpWFbHXSnIQVQmypHAUq0qm8UHbHoIh0oosDyvQJsvs7K5nQnoJBc50nIqCX/dH9cmk9he60klRHYzPyOOTzr0MGcER/TU5Q/luJxUpKYxKzmN6ZiVjU/P5+8G3+d3el/DrGqmqk9Fp6ezuHoqhA8ghwysLQU16NtdUzKMv4KXLP0ia6uA/DVvY2lVHmTuL8iSTA+QJ+rl5w0MM6l7U0MrwGUG+ueVxbhx1Jk5ZxaP5UUO5dDDMHWtpUiazs6s4K7+aB498xJauY2Ta3MzNq4jZlVQkZzEpK4/6QRsTM/PJcQyn6ki1OZmYkc/BgXqODrTz1IkunqxfR3lSNn+aeiWtvi5UVYtwtaKUhFNVUWQdCdM5ahpHYUawF4xHR6c30Ev9YCdlSTlcUTabyRklCCEocKUyKTMfWdaoSs6hJIoD5JAVajPyOD7UjEBQm54Xs9spTcpgclY+Kf0yE9PyY3ZZyaqdCZn5tPg7SFIc1KTlxqBCVSnZTMzMo8XTw6TMPLLsSXi1AB7NT3poLvqDfaTaXPzryFr6AkMMaX5csg2bJDMxvZTjgx14BvtDR0tzLgIEGdD7KXZl0DDkwa9HMcGEabjTHQrZkp1WTz+BqHaHrDAuLQ+HolDiyqLL52VrZz1pNidXV8zBoUi80bQTVZIZl2adffJ05Au18/mk/RC3b3kcnx6bk1nC5OOM3PRLCJYVjOfb1cu558C7PNewKdIWHlaYcyNFvZjRQ851JpGmujk60B5BESLQc+h3wt/5MMHMJitUuHPZ29OILowI+SwsSige5tKSWTx47KMIRBu+r02Y+VmODbQzGPSZPpoQN2l492bmARKYgZMOSSXd7sat2Dne3x4X1CoLCd2AoG4eOaINkUNSqUjO4d+zvkyXf4ArP/47gyFujcA0IH+dvoZWTx8/2/m8maws6msoCcHXRy/lH4c/ZEjzRO6LYfp0npx7K5XJOXx98yNs6zoecdQ6ZZULi6fz7ZrlfNp+iG9vfdws64sRYdE+OPsrZDtSuPaT+6gb7IjzV0lCkK666Al4CIZKakfrRxUKTkUxOUuGHmlThMLS/AkUupJ57PgnMX2qSS3inhnX0uTp5uqP78Wnm9kFTL0p3DfzesalFvI/25/hg7b9ISQPnLKNs/LG8fOJF7Gju55bNj5IQA8SNHRskmLC/2fcTK4jla9suJ/9fc0R9Mkpq1xTMZ8bR53Ju817+N8dz+I3guihGDQhBFoowbtumEz3RE7raLFaq9Fr0dypmi1CGDGpViUEugF2YcdvBJEkHYEgaGioQsYmKzww+0YqkrK5bfOjbOk6FjOPFxRP4zs15560f/8VPB/d0Dln7e9p952+c7jQmUazpzceMQlPvIhXCoR5G7HwcHRbdMvIa3PsyQR16Aok7q+lhyRsiEj8XN0wjeXIZypCBsNIGE0vEMgoBIxA3LVO2cb3xq1gU8dRXm/aETdXyYqD8wun8lhdfLoHw4DlhRM5NtDG/r5YwqAApmVWsKZ8Lt/d9mTkRQ2LXVJ4au7XuHHj/bR549EYCRiXVsShvla8Fqk+EklYP7IwY+RGws/JioPH597CRR/+Nc5J65Rt3DHxYl5s2MK6toNxJIQxKfn8YNz53Lzx33GIl0NWuX/Wl/nxjmc5MtA2YiyCM/NqWJxXy893vRA3F4qQmJpewpbu+gR5imJIG6c0D/DZazW8pmQLD69DUvnKqLN4p2UXe3rjK55PzSjn+sr53L71CWvdzvsqJe7EeZxPZny+MA7nFk9vQujz5GLQ5BlR/C8swkSWrF7kkfeIu1QkViZAm6+fRXljP6NnFhIxPNZiJsQaWcLWlKChmTmpE4hLtnFWfnyAIIBH87O2ZQ8ftx+0hLX7g14aPJ1x/x7uU0ALcqCvJa7NALZ1HWdd+4G4xQmmQXy3dTe9/vj8RGDCwLt7Gk7L8IT7JAuBS7FZvshBQ+ft5t2WCKpH8/NB6z42dR611MWhvhY+bj9gWYEioGt81Laf44PxXC0dg0/bD/Nc/UbLuQgaOhu6jsYU8Uswus9oH/Hbn7FWZSEod2daomhePUCXr599vfGcJ4Dt3XWsaz9oOR4QbOw4elp9jZYvjPFxKXZrAxIjp79Lm5pRSrk7+yT3s76niQBYc3HC0uzpTpge4dQk/tkOSWVViXVUtNmvxB3SDJ252aOxS/GIoQCSFedJ6Qx9gaGEqRPGpuZbVmSAUN1y1WWZ0sGr+3ngyPsJMxLCyY3xyaQmtZASV6Zlm2boZNqTLccjI5Fqc1lC6WCmd0lVXZY+DVXIpKrOhNkXhjQfO7uPJ+hxYvTo/1USsfDBPJJfXTk3BrkLiypkUmxO7AlQZlO3TsvUGeHiAp9XvjDGJ83mYmpGuaV1TizW0GH0zzt6jmGTJWs49iQrQRKCx864mcnppQmea1A31JaAxGaK9e1P/qI5FRvHB1qxMoyyEOQ4UpAt1CYhKHFncnbhBFxK/IIwgD299czMqkjQJ4N8Z5plzhibpLC8cBIri6bELWC7pLCqeBrnFU1OyAPyaD5AT5he5GRiT/CyO2SVW0cv5sryOXEwvCwkxqUWsix/PLLFLlCRJC4omsrqkhlxHw+bJHNO/gTOLphgaeh1dF44sdHcTVsaaj20s0n8UTPlZGvXYice9f9IcUgqd0+/lm+NPQfHiA+PKmRmZ4/i7IIJlv2RhBTS7dS4ubBLChcUT2VF4SRLuokQggU51XH/fqryhTE+AL+ctJpRyXkxC1wJdXE4+UIst0bCdKIN1/4cbje5HjqH+5sBLVIqRIpS4/C1sf8Lw7z+x+MviEoaNvxcWRi0eHuQRZgzZF0ILppLIQspsvOI1qWEGVyYZU/mb9PWsL37uPV4DIMn5t7K2QUTIi+jLCQckkqxO5M/T7sKWUj8aeoVUcSw8FzodPh6GZWcYzkep6xwbuFk/jL9alJUJ27Fjlux45Jt/HrypeQ50/jG2LOZnlmBXVJIUszKIooQvNjwKT/d+STXV5r8lehnyxEoVw8Fq0brkchcqELCJim4ZTuqkFGExLjUIn45+VIemXMzBa50XLINt2LHJil8qXIBs7KrOKdgIhcWT8cW6pNTVqlIyuF3Uy7HJiv8fca1ZNjcuGVzPA5J5Ue1K6lIzuH6qoXMzxkbudYuqUxKL+X6ygWsbd3FeUUTI88MP1fC4OhgK0EjAKGduku2RcYc9i2KqLkNrw0p9MGLrlNrl5RQbqfodSEi93XKNkpcmfyo9gJuHr2Yb1afQ44jBZdsC/VZ4etjlzI7u4orymdzdsGEyHgcssrY1Hx+NuFC3Iqdv01fY+pWHtbtryatJt+ZxjfGLmVG1rBu7ZLCzKwqvjZ6KYWuDO6YeDHOqLlIVZ3cNf2aCO3g88gXxuEcLR+37WdvXyN+LUiOI5XZ2aN5q2kXmzqPIgvBlq6jZrCbpqOLEXXQoxQrjayiZhhk2JOYn1NNq6efDZ1HIghDeB7CTmIhBC5ZpjI5j2kZo3j42DqCoeKDI++rCMGMzFHkOzNoHOxhS/dRvJo/4msyDLPMz6ysUZQm5fBs/UZskkxAD2IYQcAsXDg2OY9fTb6SVR/8MQq5GUb5klUn7y35caS/TUNd3HXoDXZ0HyegBxifXsqto86hyz/I7ZsfZkj3RxyR4dQIUzLKOadgCr/e/Z/QMwycio0zc8fx8wkXI4TArwV4uXErAV1jReEUkkZkR9zedZzHjn3E+s4DMYiMXVL5zcQr+ebWRwgaWsxzzbkVfKfmPP6491X8+nCVTYes8pWqszinYCKvN+0g25HMsrwJSFG7FsMweKdlF82eXpblTyDXOQxrA9QNdPBB215K3dnMzxkb89ygrvFq0zYGA15WFE4hJcRO9gT9ZthCXzMbu44wPrWYJk8Xv9/3YmTOdd1gTnY1UzLK+fuBN/COKDksDKhMzqPd20dPINavZRgGqiSzpnw+jxz7MCbNrGGYJYWuq1zI0rzxbOw8yqPHP6Yv4GFaRjmXls5ib28DBc50FuXVxoxH0zXebN5Jl3+Qs/MnkuWILeZ4uL+Fde0HGJOcz+zs2GRffi3AK43b8OtBS93u6K5je9dxpmSUMX7Ern8g4OWVxi3YZZVzCyZjO4Uae/8VaBeYg/v+9kfY0XM84pSTMOFUQ4BLsjGgeZFCaSzTbUlkqqkc7m9FQ0cnPv2BgZl0ayT8nKa6+dfMW/nFrufZ0nUESYqdB103XxxFksiwJdEbGMDAIKibninDCO+eTKKWmRpBxS6rdPu8IcKbyauIdgZeXDybq8vP5OP2/fxh339ijm1CQK49nerkYt5v24MuhtN0CKAmtYT7Z90CwJN167jr4Gtxxz6nbOOWqrP544GXY7L4hediQXY1JUkZPFP/CWBGKo9NKeSvU7+EW3Wwr7eB721/mIGgNwLzZ9tT8OtBpmZU0hfwsKHzIH49SOzSMedCEZJZwSPUqEfNk12SkCTzK+/TAsioFDizuL7qTPy6jz/ufwkZgYZOgSODP0y5lnxnOu3ePm7f9gB1gx0okoSm63x19HIuKpkNwL+PvMNDx95HFTJBQ6c6tZDfTFpDquri2EArt297kG7/IOHqIZeVzuPN5m00DHVEjk5OxYZfM2Fzs+/DWKUJAqj49ACaPjyesG7DRzDNALNqklnHRApVLnHKNpyynT6/D1nIZlUO/MjC5HwFDY3rKs7imoozAXiqbh33HHoTRZII6jrl7hz+MOVaMu3JNA118a1tD9Dq6THpFRh8p3ol5xSYKULuOvgaz574FFVSCOhBJqeX88uJV+FW7Bzoa+Q72x6K6FaRZO6YcDkzMkcR1DXu2P0M77ftjly7KHc8/zPuYhRJZn3HQX6y84kIwTdZcfK7yWsYk3JyhvN/jfH57raH+aRjfwI/ykjWjSlJioObKpfy0PEPaPf1xl5hDLNxo5mcYcmxp/L9mgv51rYHIlyc6GvDYgVdmpwcYXlfDDMFgbDgADkklZtHnc2BvkZea94ad18h4LcT1/DjXU/i0+OhzZ+NvwyHbON72x+JyzUTnh2HbItDJwwDVKFyUclMXmzYEIMu2YTCgtxx/KDmIs7/8FcMBE8ddRy5fKzmUDcESihHULRuHZLKd2tWUeLK4tbN/4wZj4SgyJXJk2d8m2vX/5XD/S0xKJ1DUvnTlOvoCQzy891Px0RzK0KiNrWECWklPFH38SnxZRKNyRq2ttatOViJoDHMwI7cB8iwJfPDmou59/AbHBtsi0G9HJLKzydcjkO28d1tD8XoR0ZidEoB98+8lYvX/Z5mTzexWSFV7ptxEwf7mvjT/pdirlWFwvycGn5UezHnfRCvW4ek8vTc7/BM/cc8Xf9JjA7sksrlpXNZVTyLS9f9IQ6RTFacvLTghyfNLf1fwXDuCwyxvuPASR24VjIQ9HDnwZcTJmRPuEiANl8v39v+EDZJsQzYC6dSHWnwROSjaP1M0zln7hpGPterB3i87kNk5DiDF/775u7DGBbIn08P8sMdj1HsyrI0POEeea0gbwFVybl80rE/bhH5jSDvtOxgX19dXDqHz5KRpM2RbRiQrroZ1IfidOvVAzx+/EMqk/Pi5l/HoN3Xx9rWXdQPdsTRA7x6gCfr1tHo6YxLIxE0dLb3HGd3z3GCCfhUn1eEIOQPtF5TblXFIdvp9MdymgxMiH9A81A31B4Ht3v1AI8d/xCXYo/Tj4bO0YFW3m3dSbd/IA4dDOhBnq3/lF09dXHXBowgH7bt4e3mUZZBtrph8EbzVp4/sT5uTfn0AM+d+BS7bIuv4IL5Ifm4fR9n5Vk7sz9LvjAO54GA9yQwsPWuJyzRsV7RYjr3TiZm4TVLw5MIWjjF9ix7ckI0rc3bi1OxJWx3SGrCSgQ6OvVD7YkfDEgJRp1hT6I/QVoMA4PGoa7T3iVEi9V47LLKFeVnJBxPT2CITl+/pf4kBM2ebuQENP71nQc4OtCaoDdGyPD834skSSdFSienlyVoMWj19iaci27/AF0JSusoQqLF02MJ8esYdPj66Atac6mEEHT4+yzpDn4jSJevP67IZFgGNR9dvn4CFu+IZmj0BqyfeSryhTE+uc40HAl4F8NyeotJFhJL8iciCZHw65z4vtGcjPj2DFsSdkmKBLWOlF9PuoIsu1UxNXM3lO9Ms7RdAkFtWvFJYfqT8WJsWJdIsUkKfYF+nIpyUq7Q5+FSCWFuwa14JGAwL6cGtwX8LyGYkVHF3OxqS25SwNCoH2xhKMExMKAHGC4M8H8nQpgQdCJY+65p11PgSI+/DpiYXs6c7LE4LdZy0NA5M3ecpX4UITEnayxnZI/FJuLnUUPnrLwJlh8Hh6QyN7uaaRlVlsYpVXUxN6vGUu9O2cb0zFGMTeC7qUkpZkbWKMvxAExOL7f891ORL4zxkYXE92pWWS7CWInnQ5jg08hFaIQscy9fHXU2sQCVMeLa2PtG78CsDJBNUriybP6I6g/Dv5duc1OTUsxVZfNGtIf/1Ony91Huzo3b7SnC4Bd7niDD7hrxMg+jceH/1RGLNEm287OJl3NN+cIYvoeEIKgH2d9fT7uvyzwOxizEkNNcGv75ZBKB+ZFwyjbumf4VXj/zR1SnFMU81yHbWJo3iYqkXL5XswqHpEaeqwqZJNXBDZVLKHFl4pJtMXQFu6RilwTvtG2LS4miCDly7BlZXSSmnxa6tUlKQtNr1rNX+UntpdxQcRbF7qwY7otDUpmROYop6ZX8YNxFOCQ1MhdmBRI7XxuznLPyJlDsyopZyw7ZxsXFsylyZfHtseeF5oLIXKSoLq4uX8AlpWeQZnPH6N4hqXxt1HLynemsKV8Y42OxSwq5zjTOLZzKTVXLcCuOyM5KILBLKt+ruZBRKfmcmVsbqx9JpTqliFlZo7m9eiUO2Ran229Xn8/srDGMSS6I0+3ivImUJ1nnpToV+UI5nAH29p7goaPvsaf3BEFDI0Vx0hv0MBAYIhwPFZtOI3ylEZNSQzDs9LNLKt8ZezEvnNjIjp7jhGtFCRG+znzxdF3gkO3cULGYx+s+pDtgboEjVRdC4lYE15Qv5om6j+kJhQ1EHwxdsqDQlcm3x17MN7b+E682/LUKO6jnZY/jJ7WX85+GDTx87H16/YMISYv0SxUK09JH82nn4ciWN3q8k9MqmJRewScdB8iwJXF+4XRSVQefdu7DpThIt6WwtmU3bb5eGoZa0dFigkWFIZNpT6PD1xvfhkSmPYVsWyo+PcDxgTYU2Sx1c035Qo4PdnCov4kxyYVcWT6fYpcZ2+PXg7zSsJk3mrdik1UuKJrBWbkTEMKsu7639wRP1q+jcaiLyenlnF80nTt2P0qjp4OgrhMMpTwZn1ZOvjOVtW3bIn4I3TD1I5CYlTWaHT1HIv6NaGAh15FGsTOTXb3HCRjDNe4Fgix7KleWzac2rZT7Dr/Jrp46XLKdQmcGfiNIuTuXq8oXUBF6oYK6xpvN23i5cTNCCM4rnMay/MmRD8bh/hYeO/4BdYPtjEst5oqy+eQ7zR2RV/PzYsNG3mnZiUuxc1HxLOZl10R2PTt76nji+Ie0enuZkVnFpaVzSbclAab/8+m6j/mk4wBZ9mQuK53LlIzKyBr6tP0AT5/4mP6Ah4U5tVxYPCtCLG3z9vLE8Y/Y3nOMYlcWV5bNjyBSuqHzTstOXmzYSNDQODt/CisKp0YyK9YPtvPo8Q851N/E6OQCripbQHEobiugB3mlcTNvNG9DlRRWFs5gcd4Ey11ctPxXOJzD4tE89AY70eg3ae52NzVpZVQlFZBrT+P5xk84NmhGCwtDwR9VO0uWQArB0+G9jQQEdB+/3vcYpa4c0uwSQ0E/wUgOHiOSIkKRwWCIR+re4LKSxTx07D18eiAEpZu5dgwgaMAjx9/hjvHX8dNdT+DRhjCEaWAMA4JAw1A7Dx17iwJnGo2eNsKHJcMw6fvpNgft3h4Ggv149F5U2QgRAgAEASPIlu79lLkzODHUbsK4hoRAwi4prClfyCede/Ab/fgMg+ca3udAXyNe3R9JKJXjSGUw6EOIANGpxIQwkEUQjUHsso5PHy7dJ4SBKhmkqBJBBllWMIWludPw6UHynekcGWhiT98R/EY/Q3ofPs0X0Z1maAxoffiMfnRdYTA4gFfz88+jr/Fa0wZ8egCXbMetOBjUMvn3kdepG2wNHSVM574QcHyojgEtLYT2DaOVimymTDHwx8S4mX02cy6n2mQuLp2F55iPY4OtIQjcj0tRSLUJBrR+St1Z/GXqlwA4NtDMQ8ff5lB/Ax7diVcbPuLpGAwE+/EZ/QgDBoIDoRS4pvHx6h6GtD58Rp/5pz48F0FDYyBotkm6ncHgYMyOcyg4xJDWh9/oZ1DrJxDl7A3oQQa1fvxGPx7dYEiLLuNkMKAN4NH68OleBrQ+AkYQMI2PX/czpJv3HdJseDRPzLWD2gA+o4+grjGo9aMZOuH9jFf3MaT1hq7tw6sPz0WLp4st3fvo9LeRoroY1MJz8fnTanyhdj5vNG/iT/ufOWWnpyJkkpUkevxegoY/LjFSWCyNs0GoVrqIbN2jybd2WeV7Y6/gN3ufwWcMRdojaTEklW+NuYhXmtazp+/48G2jnisLCUWSLB3aJidFQw79Gb7WNJpmEpF4REUwOqmUsSn5vNO61eSdGCNJlrH8lOi2cN3WMNM2WiRUZBSC+FDEcDoHm6RQ4c7nrmlfZ1fPUb6/41/4QylPzG29wu8m3siA5uXXe59gMOiJIFMOyWTE9gc9cXMQTpOSCKqXhRTiVMXPhYyEIskEdBmf7kcRscnp7ZLKLVXnMzqlhHsOvcj+/hP4Qy+3KinkOzL45/RvcWywhdu2/j2UwsWIXPvz8dcyLWM039x6Dwf6T0R2X3ZJpSallD9Ovon1nfv42e6HI21mqhWVv035KkWubL688Y+0entChsGci0W5k/lO9SW8cGId/zjySmTnJiPhUhz8a8a3UCSFL234A/1BD1pIBw5J5eqyJVxRdhZ3H3qRVxrX4w3RMFQhk2FP4f4Zt9Pp6+XmzX8xSwhFjee71ZeyKHcy/7PzfrZ0HYr02SaplLlz+fvUr/NB2w5+te+JyHoSofbfT7qRHd1HuP/YGzF6UoXCzKxq7hh/LSeT/4qodk3X+PuhF08LbQkaGj2BXq6vOAtFsoatE+4KhZliQIw0PKE2nxag1ddJsk2JCdoL/z1g+Hm24QOODMRGA0ffR0dPmGg8YGihXVRsWRkRutIayjU4OlDHK02fMqT5TsqHshq3iNpbjZQkReWro8/FLskxOvDrQeqGWtnQuY87Dzwfk2vJwMCrB/ifXf/mJ7sepD84FAOJe3U/nf5+yzmwiqyP7rMWySkUPxcaJhFwbtYYcixQRZ8e4L4jr2KXlBjDA+auos3bw3ttO/j7oZfw6v4YB75PD/CXg8+ztfsQhwYaYuBnnx5gf38927uP8JeDz8e06Rh4NT/3Hn6Zd1q20uHrixie8Fy807qFuoEW/nn01RhIXENnKOjlsbq1PFP/AQNRhse8NsDDx9+mYbCdFxs+iRgeMNdRj3+A15o28M8jr+HRYitU+PQAfzv4H7Z0HmRD5/6YPvv1ACeG2niu4SN+sfex2A9Z6Nrf73+ah46/HaergBFkU+d+DvU3xLWdqnxhjl1tvp7PKJtjLQYG/z72CgI5bjl/xnE0xO/RLOt5I+BfR15FnCTQ9chAfDE887knpwZ8lihCsuT5AFG5fE7v3ibtIPF9vbqf7kC/pUHzaH4eO/YOdUPWsHZ/0Bq+P6V+EQ5niW8zHbZSzHEmLAEjSLu/G4csgwU1ycDgk449jCzIDOZYt3Qf5ED/Ccs+tXi62NF91DKNhE8LsL3nMJ0jCK1h2ddXT7LqijEQYZGFzMedeyxRJw2drV2HcMo2y5QbipD5qH2nueMbkerDpwfY1HWAnT1HLT8tQ5qPX40wLmHxaH6erHsvIcRw4iS0Ds3Q2dNbx6jkooS/czL5wux8klVXwpIwpyKfnY4jXoK6xoyM0ZYL3zDMBWGctE+fdWQ9/SOtGXx5KmM5vXtLCKZnjCbHnpbwdzxBr+UCVYTMoYGG037mqUg42Nba/gt+NO5ySwhfIMh1pJNlT7W8b9DQKHJlJYC1ZfIc6aSqbstrbZJKjj0NhxQPL9tllVxHWkJfR6rqJteRnpDLU+TMTri7z3akkm5LtmwLGBo+IxDKEBArEgLN0GJ2eNGiGzoD2hBW+lOEFAFWrGQkojryuZmWdJJTky+M8UlSnMzLHp8wT8rJxLp6xWeJ6V0pcmWaDsQ430PYHW1YwP/DaFv8M6PbTtYni2NHpCUMLcffOxG3UcKMW1KFYpn+QJUUbh51HleXLY6LwLdLKqOTCnm56aOQEY99rmboUV/j2LbPKnekCsWStwKmH+R7NZdxZeniuFQqMhJFrizmZo9nVFJh3MtskxRWFy/gitKzLNJIKMzMGMvc7PEkKfHpOBQhszx/JpeWnhl3rV1SWVk4hzPzJlmOTRYyZ+ZM5tyCmXHrwiGpXF66iPMKZsddKyFIU93MzqomM4Rqjbz2oqJ5HB6oi2sTwNjkIl5q+BCrdSEJiW5/n2UbQGVSftQcxLYbkFA/AGflTsYurOkvTsXOrMz/j6TU+E71pZyRVXsaBmjYvyHH8D3Mvy/Pm06BI2PEv5v/CwwkofFa8yf8efLNocUS3R5yMGMGRA4v/liY3+TbyNijeBvRbWFxSCaHQkKgCgObrJsoG+YLbJMUZCFFKm7IkYBU83mqUFCEFON/im6bmjGae6Z9g5tHncdNleczJrk4lFfYRqrq5ie1azg20Mi9R54zk+yHRBYSc7LGcXyoEb8RHDGP4JTtuGXbiPEMz/G8rNqEi7fUlct9029jdckCkmRnyHAKHJINh2Tj2oplLMmbyvWVy/hx7dWkKC6csg1VUqhJLeW3k24E4JcTv8T4tHIzX7NsI0lxcvvYS6hJLWVWVjU3Vq7AKdtxynZUoTAjcww/rLkCWUjcOeUWKpIKzLmQbGTakvnlhOvJc2awqvAMLiqej11ScclmyowleVO5oXI5SYqTP025mXxHRohzpFLozOLPk2/BqdhZXbyAAmcGIjSHqlBYXbKAFQWz2N9/DCGCMfrPtCfzp8k381jdmwwEexEjPjBzsqpp93Xh0/0j2sx1cG7BTILoFuvcIM+RaubjjlkX5v+yEKwsmI0syXH6E8DFRfNYUTjLMiXMmORibh+7mrk58TrOsCXz1ylfTVgA8VTkC+PzAZO49NPxa/iofQcftW/HLTvJd2TRH/Syv7+Bvb3H8ep+hmuOgxzlCFaEDsZw2ZT3Otbz7dFXcvehl+gLDEAoe384bbMQAh2NX+97iCvLFvFU/TsEDS0UOGjue4SAID7OyBrLtu6jDAZ9oXIiw+2yCJLvykQ3oH6wI7LVD+d1URBcWjKXWVnjeObEe3zasQuNMEQcRBEys7Kq2dZ1mIHQeV6Ej1+G2c8/TrqR+4++xuGBRjyaP1JGZ2nedCalVTE/ZyKykNEJcu/h5znhOYFLsVGTUsrXR69GFjLXbfyl6QQVoEpG5Kt3bsF0tnTvGTGP5hCzbC7Kkgr4pGOPOX8YoT4ZpChufly7hhcbP+Gewy+FIrZ1DIKcX3gG11eci0O2cUNSPjdULkc3dNZ37qF+sJXpmWOpTBr2FczPmcCYlCLeb91Ghj2ZhTlTIgs7VXXz+0k38kHbdtq9PczLnkCBazg75ariuUzKqGBDx16KnNnMyR6PFNp55DszuWvqV1nbuoVBzcOinGlkhI4KQgguKVmAW1FoHOpgfvYkpmdWI4TArwd4q+UT+oOdCKGTakvia6POpyq5gDZvN1/d+geGNC9KiJulSgqVSXn0Bga48+BT6ARRojIlDGn9eDQv/2n8CL8RNKkVUZuQff1HQRj49ACyBIahR4yFQ7bTHegzU7OM0I9hQJYjmaqkEl5q/Jggpg9TEgaGIUhWHCzJn85/mj6mbrDF1L9hnhaSZBdrypeiCJlWbzebuvYjC0FADzI+rYLfTvwKsiTzPzVXsr3gCO80b6HV18mEtHIuKTnrFCISTi5fKKi9w9fDbdv+RKc/3pknIUhV3fQFhjAYjo7WolI2yBbIlYTgq1WruefIC3Fn4vDIpVBSLN0wou4bisYO14AS5u7Fq/tDVSLM5ypRtcFskoJfCxLQBeFUHoqkh2BL8zjk04MxKRsiuyVhbukDWhgJGh6PJASqJLMoZxozMyawqXMfW7r30O7vRhYyiiTjlO18reoSfrP/obgAQQnB5PSxbO8+bCaXj2oTAlIUN/1BPwFdC+0Ih9eEJATXlK7g0bp38Wo+pDAREvOFG5Ncwh3jb8KrBfj30Vd4r30jaohFbAA/qrmeKelj6fT18t0df6M70GfSHNCZmTGO71WvQRYyDx9/lWdPrDV3mMLczf1qwi1UJhVRN9jC93feFYnyD+oaKwrm8eWKlRgY/OnA43zUsc3M8CgEKYqb3078GrmODD5u38Fv9z+EjhGJeftSxUpWFs7nmfp3eeD4SzEHkSJnDn+a9E3uPPgEGzp3x+XM/krFKo4ONvN2y8Y4570iZG6sXMX9R1/Gq/ti5xlYmD2N99q3YqDHtJl6EKwuXMwzDe+hE4zT0e2jr+bh42/Q7O2I0Y8QMCdzIl8dtZobN/6BAa0v0i8BZNpT+euU27FJKr/Y8yA7evaHPtqmr+2roy5had5MhoJevrvjb9QPtURCSyqTirhj/E04ZTtvNH/KPUeeC3HITJrEj6qvZ2rGyfOY/9ek1Pjmtj+zv/94glZrBMkI8XWid0BWokTxacLXxcDOYuR9R+TbjWqPZjxbQeKGAQFdQhZ6fPJ6gxi8yqq/EjY0w28+P6rdIdm4pHgxT9W/hW9kUqvQccZjgQyBudg03XTMj3yuQJAku+gP+jGIr3xhk1R+Pu4m/nLoKZq9sRUbVKGwLG8W5xfO56tbfx9n4B2Sjcdm3cFP9vyDvb3HYoABu6RyTdkKSt15/HzP/XEpRDJsKTw846d8adMvaPPF1jB3SDa+V72GVk8X/zwWmxdJQlCZVMTNVRfxre13xs2FTVL4etWl/Ong45aQ//T0GrZ1HyBIvGPY/Aim0BX6QI6cq/GpleztrSNoBOPaVKGQaUun2dsed61AcEP5Su4/9iqaRfWRAkcWP6y+nq9u+z0j/TZ2ycbPa29kZ89hnjzxVsxcyEiMT6vif2qu46r1P4mbY5ukcs/U7/H0iXdY27o5hh6gCoUluTNYVXQmt279XZxu7SHdupXYhGTR8l/B8+nxD3BooP4kv2HtalUlGbfsNH8joavIiIMvI1HpCTy4kRffwkKEj3Wmf8aar6JKFoYndM9ETmMwfSxT06sso+a9up+nTryNz4hHNUzOjbXhgTBvxjoVhIGBR/dS5My0nEPN0Nnbd4QOX1dcW8AI8m7bJt5t3YRmUQtcCMF7bVvY33c8DpH06QFebf6Y15o+jnspwMz9/E7rRjr9vXEmwqv7eblpHf8+/lIcQqdjcHywmd/sexArB6xfD/L0iXctDQ/Alu59CdfSMBfcer3VDbagWxgtMHfYszLHjfDbDd/3g/atVCTlWt63y9/HkcETlgGeft3P682f8m7bpri50NDZ3XuE91u3WK45zdB5r20L77VtiTE8YOp2bdtm1ibQrYRgQ+cuy7GeinxhjI8/ikpvLdYLJWgEybSdvCrD55LPjFk5+Y7RaoHFtJ3kEfv6DpNovIny+ACIz1Bnrj3jpMNanDfNElrVDA2P5ktY8iWgB/FqPku6g27oDGoeS24LgE/30+brtmwTCHb0HEr43A5fj2WqB1MM2n09Cdo4qaGOPtZb9WpcannCedQMjaqkYusdrRBkOVKxJQie9mi+hOlQJCExELSeRwMY0rwJczEJBEOa19LYaoaGJ+gLpQiOl4ARxKMn0C26Ze6oU5UvjPHJtqeTpsZDkLFi/UI2+zrizt/x15zu8fLkKTUE8HmiWmQkpqfXmM5Uiy6ZeZ2tXzZZRC/N+IvtsoqaoFcOycaa8uXMzKi1NAP5jizmZU9KQPazMStzPBNSq+IWv0AwOW0MMzJrI07eaDEwmJFeY8nhkhDMyZxAg6fZcjx+PcDRgROWbQB5MUhmrMhCPql+5mdPToiqViUVMTtzvGWbKslcXrKMdDWe3yIhmJE5jstKllhmZ9AMjUU503DJ8elFVElhQc4UFuRMsTROAsHinBkxzOewOCQbC7InMydrvOVHOMeRwbzsyZbjcUg2ZmXVMiFtlKVuJ6WNZnbmBOwWnCcDg6kZ/x+A2oUQfL/6mgTkLMPi78OQuSp0pLit7nC7HDFMIQduaJIFjHiZw9C1HPkCWRkgE5pVo+DnYWhTQjAhtSph7awU1U1VUoGJWIhoXob558yMcRhiZEUNs90p2alJKR9RycMUWUh8d+wafjHhFjJtsS+GQ7IxJrmU+dmTuW30ZWTa0yKLyYSv7Xx7zJUUOLM5N/+MGM6NXVKZlz2J6pQyZmeOY2QuIbukclPVRezu2R8FEQ/3bXZGLdt79qNIsXNsLl2DMUnFUUYiVreFjkwGIuzp2GsFpm/GGZnn2OeeW3AGZ2RNCuk6lv9S6MhmTdlyRiWXMFJsksI3x1zBD2quozq5bESbyvL8MyhPKuCO8V/BKdsj69Uu2UhVk7i+/HxmZtYyIXVUhKQYTm3xpfKVpNtSuH3M1dglW4So6JBs5DkyWVW4kOX5Z1DszI1cKyNhl1S+PeZKUmxubqm6GFtUKg+HZGN0cinzs6dwVelyMmypkWtVoeCQTN3mO7O4uGgRdskWMTIOycYZWRMZl1LBrVWrcSuOiOGzSSpJipNbqi5mfGolszPHx43nkuIl5EY+AKcvXyiHM0C7t5uHjr/K9p6DeDRvKEguFh0I91hBC8VnmT9rOriVJPyagUf3IGFESsSGAysNQ/z/2HvvcLmq6v//tU+bPndu7z29NxJSqAkdQpUmRUGxiwoqKgoqKIpdUbGi4kdUegcJvYQACaT33CT35vZepp6zf3+cmbkzd86E8vn+fk/8Pd/1PEMus2fvs+s6e6/3e63NrGAzO4cPEMuwncjkslIQrCxfwp7hA7SMtWelARhC5eK6U/h369O2J7KU2Pds20aaFSVz+dqMq7lx06/Y0L8rjVwJbDbpaRVL2T/WwZahPRmOpHYDvKrOx5rO4/d777OdN+W4M6ghND43+SLmFk7hy2//nKH4CHFpYklJiauAb8/6JPW+ynR7tg7u5f7WZ4lLk5PKl7C0ZA6qUIhbCf7a8qBtZ5EmZa5Crp18KXMLp9IT7ee6t29jJBEhalqAwKUq3DTjU9T6KrnmzZuImnFMKVJILx5V5Y6FN/L59d8jbNq3ZWTGza73VlDiKuat/q3J9kAK6fOrLi6qO5V/HnySsUQ0qy8UJPMKp1KgBXihez2ZsSoFENL83LXk21zz5i30RAcy0gVBzcNdS76NKU1u3Phr9o+224HhkUzyV/PDuZ/HpbowpckzHW/wUNsLhK0oCwqncnn96YSSLGMpJZsGd/Nspx1S48SyRcwqaE5TKfpjQzzR/hoHxzqYGqjnpIqj08ZXS1qs69vCy93v4FXdnFx5NJMyqAUd4V6eaH+Vrmg/8wuncHzZwvTCj1sJXurewBt92yh2FXBa5VKqPWXpvC2jh3iqYy1D8VGWFs9macnstCILm1HWdL7B5sE9VHvKOK1yKSUZrPZtQ/v4T+c6EpbJcaULWFA4Nd2eofgoT3W8xp6RNpr9NZxacTSBJAtcSsn6/u280L0eQ9FZWb6Y6cEG3k3+a0JqSClZ0/UKb/S/bp/zBXg0qHFXUumu5pXed1BEIg01phHrFNSuQNQaRlNV3MIiYaXSkpwaYS/l3WM7mRuaxpv9O0kxhoykgRhgff9bnFpxPK0H2zGlTewa52yYtIweYHHRbF7v24CUdqiNVEduGHibtrEutg/tTnJAxqFricnz3a+zsHBOstoSTYw/VyJp9tewsHAGb/VvISFjGMm8LkWlzldOiauQPyz+Fg+1Pssj7f9hJDGKFKNsGNhErbccRSg83v4Cf953b9rwuWtkOyHj08wqmMxPd/6ZN/s2IUUCQ8BAvJtbt93Brxd+m7/vf9guDwtDTdUJfrX7b6yuXgUkQ1somQ6Igue73rCvyhEygxxp5+2J9jM9mIywp5jp9kjAwmRGQTN6q4YQkay+EGisKlvC1GAj6/q2EJdhFJHa3SpcXH8Shqrzo3lf5LZtf2TP6F57F6xonF99LG7FQAjBD+Z+njv33MO6vrexkDT47d2US3WhCpUKTwifbjEQ7mPXyHa2DU9habF9RBk1w7za+wbrB94CBG5V0uSvwqfZV+9sHdrFa31r6Y320xfvoDlQyeyCqQD0xQZ4pWcdbw9uQVc0Cgydem85uqIjpWTDwGZe73+dofgIY2Yfk/zVNPlrAWiPdPFK71q2De3Bp3kpc/uodJ+IIhQSlsm6vg2s61tHxIwiGWNSoIYKtx13Z/9oK6/0vMb+sTYOhguo9RZyfNnRAITNCK/1vslb/W9iSRNDSTApUE2BbivbncN7ebV3LZ2RHrqirTT5y1lYOAuAwfgwr/auY8PAO6hCxacJGn2VuB2OkO9Vjqidz5/33cuj7c/mSU1rmvFvZCpFpGHziWEk7B2JtC/3y0jThErcsq94yQmpAXhUNzFTEpfRHOOwgsIltav5+4GHxzkVGekFWoC+2Cipi/ImQu0fa7qYP+x9AEk0J+/C0Cy+Ov0T3LT5l2wb3pnVXpdicPvcr9ER7uZ723+d00Mnla3g+LKjuXHzT7DkeJgJKW1j522zvsLXNv8IU5o5tp2ZwSm0jBxixBzJqlMqyP05VafyYNvTSKycPj6m5CjW929n1BzOyetR3dw663que+f7SCY+V/CD2V+hJzrA7TvvzBpiBYXlJQv5wpSP8tMdf+bV3reyjJ4e1c1P591IOBHhhk0/zELLXIrB6qpVXFx3Jjdv+Tnbh/YSl/F0uUHdzy/n38Sukf3ctv03WRCySzH4eNPFHFt6FF/YcAud0Z60nUUTKpXuMn487xs81/Uaf9r376znGorON6Z/hkZfDZ9dfzMjidG0kdcQOrMKpvCNGZ/h7v0P8nj78zl1/uGcr6IrOte9c2tSsYynnVC2lI83XcSPdvyBt/o3peusIPBqHn4x7yY6oz3cvOXnOeVeUreaMytP4IaNP2T/WFsa1VJRKXIV8Iv5N7G+bzM/331XVl8Yis6XplzNnIJpfH7Dt+mPDWEmX2i60Gj01fK92dc7+s+lR/i/YecTt+I80f78u/wqWwEJkVJAucoj9f8KE/g6SUlI047tnNrsT8gct+LoQichc8u1sHjw0NO2ApNWTvpwYoQaTwWHIu2OUPuL3a+zuGgG6/o25AB8m4Z2sHt4P9uHd+XUOWrFuPfg46zv3+rQIljT9Qpdkd4sxZPqB4nkntZHcLpRA2yELaD5wSQnL9gX+yGcyHGwY2QPS4pn81z3qzlpljQZMUcwFIVYjrFUcs/BR2jw1dg8rAy7nYXF2t4N7Bleyet9G3LQlpgZ5+FDz9AfHczhn0StGA8d+g/zQtPZObwvrXhS5YbNCM93r+XZrtcc8969/0E8iou+2ECWgTchTbqjfazv28zf9z+UQw+IWXH+tv8BlhUvJGJlh7aIyTibh3ayc3gfj7U/l/PcuBXn3tYn8KgeomaczC1B1IqxpvMVTig9mjf7NmZB4haSqBnjyY4X2Da8J6dOUSvGvw4+Sp23ktZwR1ZeE5Ph+Civ9qznXwcfy6lTzIrzl5b7Oa/mFIYTY2nFAzYKtn+sjW3De5gRnMQHkSPG4NwbG3wXz/TDsWMOnwucYW3bl8q51IQ0CejevJDqmDlGglwiGdgLfXbBpLx5D4bb6Y31Oj7YkhZPd76cY9hNyebBnYyYo45pFpKOSP4QCL3RgcOggtDoq8lb59GE8zNT5Rp5bphAwLahPXnfji2jrewcbnGE03VFY+PgNnQn5AiTncP72DN6wLGvVBS2DOUqcLAX5K7hFtrCziFChuIj7B096AjHx6wYu0f3M2o6hxFpHetg18g+Rw9zBYXNgzsdPeItJLtHDrBrZJ/jOtAVnY2D2x19qeIywc7hfewfbXOsU0Ka7Bje54iURawoe0cO0BntcczbEelmz8gBx7AmlrTyPvO9yBGjfEJ6gHfn+bz/I+Lh+Dbp0vKkB3Xn8AYALsVFuVHiGApCFSrTgk158/o1L13RHpzak5AmlgOhKyVu1XXYXppfODNve2cVTMGbJGROFE1RWVm+1HZRmCAuxaDaW5G2DUyUIqOAak85hgMcq6DQ6KvJq0wr3KXUeStxAsYT0mRyoDErxGhmubWeKqoyDLHZeS0afbWOvBhD6NR6qyg2Ch3zelQX1Z5y3EquPcOlGNR4KvJydUpdRdR5qxz5UhJJs6/OkVMjgGpPOTWeTA/0cYlbcSYHGvLG+qn1VlGetPvkli2o91ShObwgXIpBjbeCkAN1AOyxrfFUOELtqlCpcJc65HpvcsQoH7fqYlnxgveZS2Z54zopgsm+hry5q9xluCZ4q2f+fXbVqrwLfXnJAo4tXWiburOy2mxql6In6zaxUpJivSCDMZr9XAFM8jfkJZutKDmKJl+9Y1qNp4IrGs7FcAiBoAmVs6pW8rlJV+SUrQudMypPYEnxPIpdhVnpAoGh6KwoWcSFtafnTEKXYnBh7RkcX3Y0usi+lkdFpcgoYEHhTE4uPyZHORmKzkV1Z3Jm1Yk5C0MXGtMCTcwqmMK80IycxW4HMV/Fh2pOz0kzFJ3jSxczPzSDcndJDn1DU1RWli3jktozc/K6FIPzak7h6OL5uFVXliJQUPBoHo4unsc5VSc59sUldWdxUvkKtAk7FE2oVHvKmROaxoqSRQ7t0bmg5jTOrT45Z6dnCJ1FhbOZXTCVSf4GNDGxbI3TK4/nojztOa3yOBYVzyGoBd732H6o9gyOLV2c9NfLHFuFkBFkTujwvl2HkyNG+QBcO+WjLC3KJENlc10mcmoA5oemJY3NKQRsPF3FYmHRTIcn2enSSlDnrcmwC42Xo2IxPdic5NTICR+L9nA7W4d2JV0WZFIDSRuhUww6It0ZijG7zkHdz5RA4wQOkZ1WoPk5ofxoPA4ogkdxcU71SXx12jUU6IEsxVioF/C92V/GpRrcseA7NPnGOSwVrlJunXUdZe5iFhfP5drJH6FIL7AXk+rm3OqTuLRuNapQ+d7s65kXmp4kNCpMDzbz/dlfxqO6OaX8WC6tW41f86IKhYDm44r681hZvgyf5uV7s69naqARBdtpcX7hDG6ZdR2KULii4TzOrDwBt+JCFQrFRiHXTvoIswumUuEu5eaZ11LnrUJBQRMay0sW8ZVpnwDgi1Ou4riSxXasIhSqPeV8Y/pnqPVWMi3YzPVTPkaZqxgFBZdicGrFcXys6WKEEHx75rUsKpyDmuRuTfY3cMus6ygwAiwvXcTHGi+iQA+gCgWv6uHC2tM5u+okXKrB92d/mZkFU1CT7ZldMIXvz74eXdE5v+ZULqg5Da9qs+tDepCPN13MkuJ5FBoF3DLrSzT76pJ9obK4aC43zbwWIQSfbP4wJ5WvwKUYKCiUu4r5ytRrmBxooN5Xzdemf4oqdxkKCobQOb7saD4/5SMAfH36p1hevAAt2RcN3mpunnktZe5i5hfO4LOTrqDICKEKBbfiYnXVKi6tOxtVKNw6+zrmh2akx3ZaoJnvzf4yXs3DyeXHcFndOQQ0X3psL68/l5PKl+PTPHxv9peZGmhKj+28whncOuu6/5VnwRFjcAbbBtM9chBDxNMcGHt/oCIQCBI2FJtCuQS8M7gZQwgSSaaHgmUT9JIhMSJmJKk+LASZMLBgIDHIvKLp7BvbB1jjWxgh0ITOSz2vY6gq0kxdupsybAs6It1MD05NImHjcVZS6NqM4BTu44nx+iSrrSsuji1dTIW7jB2b9xCzoukG6YrB1U0X4tU83Dr7en60/fe0R2z2b6ER4sbpn8elGrhUgzsX3Mpf9t/DlsHtlLmLubrhMnyafaQqchVw7eTL+ffBhxk1Rzm+bAWTMghzRxfPozNyiC3DO6hylXNaxXFpdnKhUcAFtadgKCamNDm1YhWVyaONEIJVZcvoj3XTMnaAZl8Dx5cuSZdb463gvOpV/KfzWTShc071KRQkOTOqUDiz8gRGE/10RruZHZzOoqJxFvEkXz3nVJ3ASz2vEdD8XFBzEh7V5sy4VIPzak4mZo0wlBhmafEipgfGr5KZH5rJ6RXLeXtwE6VGMaszdlIB3c8FtSejiChRM8qqiuOp941fkHdM6SK6I+3sHN1Lnaeak8tXpO1TZe5iLqg5mceSVzCdWXkKJa6idF+cUnEMA7FuWiPtTPNP4piScVCnwVfDedUrWdP1Im7VwwU1p+BPQvSaonJ21Uqi5hA9sT4WhOYyt2CcKTwzMJnV1cfxeu+bFBohzqs+Kb2j8ahuzq85BYsII4kRjitdxuSMsV1SNJeOcBtbhndQ6Srj9Irj0goiNba6miBhmZxWsSp9bLV5TEfTF+ti39h+mnz1nFB6dLrcak8559ecxNMdzyTH9lRChvNR7b3KEQW1f/j1j+d8Z3uI239rSq55xpIwyTeJXaO7057tmTI7MJu3B7emQ0Fkl61wZtUpPHLoyawwBWArp4trL+C+1kdJyFzjYoO3kSsaLuK7W3+QY89wCTd/WvwL7m99nPvbHswixwkh+Mnc71FiFHHdOzfSGR03EAsBZ1WcysX15/Nyz1p+s+ePqcqAAJ/q5RfzfoCiKHx+w1cZTmSHv7y64XJOLD+W+1sf4b62h7PSyl2l/GjOLQwlhvni21/LIlgC3DDtC8wumMmvd/+RV3rXZqVND0zlxhnX0zJ6gG9uvjXLIKqgcNvsm6n2VnLzlu+za2RvVt7jS1bw8eYrWd+/kR/v/GV2PykGP5t7G17Nw5fe+Qa9sWzH1Ytrz+OsqtN4uuNZ/rL/H1lpIT3Iz+f9gJgV4/Nvf5WwmX2r6eear+HokqO4u+WfPNH5TFZavaeWW2bdSE+sly9v/GZ2EH8EN8+4gUmBJn60/RdsGMx2nFwUmscXp36G7UO7uGXb7VljrwmNH835LsVGEV/b9G1aI9mXC5xZcQqX1F/AKz1r+XVqbJPiVT38ct4PURSFazfcwFBiOCv9qoYPs7L8eB5se4x/tz6YlVbmKuXHc25hODHCF975WtJPcly+OvVa5oRm8dvdf+Kl3tey0qYFpvDNGV9m/+hBbtx8S87Yfn/2t6jxVvPtLT9g58jurLzHlSznmuaPcDj5r/Bqzyd28CT7k+LbZH4UAcV6MM3jyfwAtEYOoqu5ee2yLRq81ekrd7I+SCLWqB2g3CFvV7SDiDkGDnljRNgxvJsnOp6CzHxJyPsnO+/g0Y6n6Ip155T7SMeT9EX6uXPPnzM6wf5n1Bzjt3v/zB/2/DVH8QD8qeVuBmIDOYoHoDPazX1tD/OTnb/KUTwAP935a/aN7s9RPADbhnewru8tbt/xixwkxsLiBzt+xovdr+QoHoDne16mbaydX+z6bU5a1Irxs92/4Z6D9+coHoB7Dt7PSGwkR/EADMSH+EvLP/jV7t/nKB6AX+/9I51j3TmKB2B/+CDPdD3PD3f8PMeAK5HcvuMXbBzYnKN4AN4ceJttgzv48Y5f5rx0EjLBj3b8ksc7/pOjeAAe7XiK3kgfv80c26SMmWF+veeP/Hnf33MUD8CfW/6HwdhQjuIB6Ip2c2/bQ/xk1x05igfgp7t+Q8vogRzFA7B9eCev9qw7zNj+nFd61uYoHoAXel6hdeyDo11HzM7HadeTKSmym9P3te5qWiOtjj/QhIYpTWe0RcKiwvm80b8hN8SBhFpPleMkSsnM4HS2DG1zTJtbMIt3BjfnzVvmKqUr6gyLLy5cyLr+txzTdKGjCOcbHQCWFC7i9X7nPi7UQwzEB/MiT/NDc9gwsNExbbK3iV1jucolJY3eevaN7XdMWxiax1sDbzumKSj4NZ/jggNYUrSI1/uc2+NVPcSsWF6v96MKF/BG/3rHtGp3JW0R59tHAGYFp7M5z9jOCc5k49CWvHnLXWV0Rrsc0xYXLmBdnjrpQkcVatZlfdl5F7Euz9iG9AIG40N5x3ZBaA7r84ztJF8Tu0fzj22zr5E9o/sc044pWconm6/Km/e/euczLvmVpEwaej+oOGXNd7/V/5X/K/9X/s/IEaN8/r7k94dJtY3Fzps0SY0r32X1koDmSzZyQmY7lCFLihYkvcsniICFRfPxq87Xq3gVD6dXnJS3xmdXn4FHcebU1HpqOKHsmLx5L6+7KC/UPi80m0WheY5pAsEVDRflLfe40uV5YXqXYnB+zeq8eU+vPpmQXuCYVmwUcXLFCXnzXlR7HnqeGxAmB5pZXnK0YxrAVfUfzpt2dNFRzAw6h3RQhcolNRfkzbuq/Hgq3c7zxq/6OLPqlLx5V1edhjfP2Na4qzix7Ni8eS87zNjOKZjJ4iJnuolA8JGGS/KWe1zpcpr9jY5phmJwfs3ZefOeUrGSQj3kmFZkFHJKxYl5855Zmb+f3k2OGOWTX2xoWxXjCmj8YweE77f6M36bDWvXu2sYD1yakZZ0vTgQbs2TV+BT3VhpNCr7U+kpxau5MxTb+DM9wsUUfzNnVWYqpxRdQHDdlM9wZsUplLlKcvKeVXEqRe5CPtH80Zye8KlePtn0UT7WfIXtCjFBrmq4jJAR4vzqXCVS7irl/OrVfGnKZx15QF+c8mkaffUsL85VBDOC01hctJAvT/18zsJRUPjq1C9wbOlyJvubc/KeULqCam8ln5/8yZw0l2LwhUmf4uLa8ygxinPSL649D7/h58r63EUX0oNc2XAJn530cTwOxMlPN11NubeU08pX5aTVe2pZVXY8X5l6bQ4HSCD48tTPM7tgJvMLcmP6LArNY3rBVK6b+rkcAqMmNL487fOcXnESNe6qnLxnVpxCsbuITzqMrVf18Onmq/lo44cJarlkzqsaLqPACPKhmnNy0spcpVxQfTZfmvwZR6LnFyd/igZfHccUL81JmxaYwrKSxYcZ22tZXnI0U/y5LhTHlSynxlud8/17lXe1+Qgh3MCL2DfRa8C9UsqbhBCNwD1AMfAWcLmU8rBhzd5LSI2vvvktWs02MhelLoTtJ2SlVNH4oNuTx740zUpzciB1mDqz4mSe6nwaS2YGxrAnmUd1s6JkOU93PpsBhtuputA4v+ZsHjr0MBEzlpM3pAeYFpzKur43sWT2Uz2qwVemXc+PdtxOOBElhbMJJB5F5+PNH6fMVcb3tn+PiJlxT7jQ+HjTx1lcvJi2cBt37LqD1nAXEpsBfsPU66lOwsQJM8HfDvyDzYNbKXOVclXjFZRmMFxbx9q4r9X2Uj+ubAUrMnYXCSvBQ22Ps214O5XuSi6qOxd/hjLbObyHh9oeS0Pt8wrHF2EkEeHe1ofZN9ZCs6+R86pX49bGOUnr+zfydMcz6ELj7OozmRQYZ3oPxob458H76Yp2Mys4gzOrTski473Y/Qovdb9GQPPxodrzqPSM70y6It386+ADDMaHOLp4ESeUHoui2IvFsiwea3+adwY3Uuoq5aLa8wgZ47u0ltED3Nf6CDErysry41hctDCdFrNi3H/wEXaN7qHWU8OFtefgTULiAFsGt/HooadsJLLyNKYnvdYBRhNj/OvAA7RF2pjin8x5NWdltWdtzxs82/UibtXN+TWrqffVptP6YwPcc+A+emO9zCuYy+mVJ2W1Z033C6zrfYuQXsCFtedmjW3bWDv3tj6Yd2wfPvQEW4a2Uemq4MLacwlmXES4c3gPDx16DNNyGtso97Y+xL6xFpp8DZxffbbj2GpC45wJY5tP/reOpVHgRCnliBBCB14WQjwBfAn4qZTyHiHEb4Grgd+8h/LyiiUtGkJl9A4cgIwFbasNgaLIrCOUJWFOcB4bBjfYYS/E+FZOAglLxaO4bP6PkFk3gVrYRrq9o7sBC11khr6AhCVZXryU+9vuRxWZ9yXZ8WrKXGUMxAYBia6Mq0N7zyTYMbwDIQWqItEyFFeCGK/2vkrcihOzomgZL0+TOH8/cDezC2bzva3fI2yNoicbNGb2c+v2W/jpvJ8xao5yy9abGUoMATCYaOe2Hbfw3Zm34tV8DMQG+HPL79ifNACPHOqi2lNGo8+eLOv73+S1vmcZig/REdlLicvPWVVnowiFgdgAT3Q8xO7RLUgpeaozTKWnjHJ3OVJKXu59kTf6XyBsRuiNHqDSU8QJZSsBaA8f4qmOh9k3uhchBE90WFzpvoqgHsSSFmu6nuadwdeIW3EG4+3UestZWGTPyz0ju1nT9Tjt4XYUofBEh8aldZfjVt12jOKOR9ky9IYd9tPqpdZbyZSArQg2D23kld5n6Iv1cSiym0LDw3nVF6ApGiOJER5vf5idIxuQUvJ0xzBV7jJqvLYiWNe7ltf7X2AsMUpXtIVydwGnVpyOEILeaA9PdDzMntEdADzeEafccxVFRjFSSp7vXsP6wZeJmlH6Yq3UeMtYVrIcgINjB/hP12McHDuQ7Au4vP4j+DQfCSvBUx2Ps2nodRJWgpFENw3+SmYVzAFg58gOnu96iu5oF61CJdhpcHHtJeiKQcQM80THw2wbfgtLWjzTOUiVu4wmf3JsB97i1d5nGYoP0hnZS4nbz+qqc1CEwmB8gCc7Hmb3yOaMsS2l3F2RM7Y90QNUuos4Mblz7Ii083TnI+wdtf30Hu+wuNL9UQryHMXfi7wvtEsI4QVeBj4FPAZUSCkTQoilwM1SysMeAN9t53Pnnl/zRv+6nO9ThMMUXJ75vSY0EhmeuhPTG71N7B7dZ8eZmZBW5a6mM9pFInmdTGYoCIBPNH+K3+35LRM9waWEFSXHEtQLeaL9IUiTGtOmJD7R/Bl+v/dOzAm3GEgJTb5JtIXbiFrhrDrbiJ7goupL+VfbP3K80wHOqjyHjYNvs3+sJaefKt1V3Dj9Jr7w9mezPLnB7qdbZ93GgbH9/GbPHVmwqi50VpWfzDnV5/GNTV+lL9aXThcIfJqP22bfzmu9r/Lv1n9mwbmGYnBp7WUsKFzIDZu+wliG06uKSomrlO/O+h7/OngPL3Y/T0xm5/3cpC9QbJRw89ZvJgmXqfrqTPZP5rqpX+FXu37OlqHNWW0yFIMbp9/EmDnGT3bcnl2uMDi6eBmX11/Jt7d+k/ZIe5ZTpUfxcOvsH7B9aCt37f9TTntWV57DieWruGHjlxlOjCNIdjiOAr4/+4c81fEEj3c8mpP3Y42foMnXzI2bb8hCrVShUuOp5cbpN3FXyx95o39ddl5hcP3UGzAUne9t/25Wmi505oTm8qnmz/LD7d9n7+ierDnvUlx8e+YtdEQ6+PXuX+b08Yllqziv+gK+semr9MZ6s8bWq/q4bc7tvN77Gv9qvSenPRfXfphFhUfxtU1fZswcy+qLElcJt8y6zTF8bkr+1yE1hBAq9tFqEnAHsAcYkDLdA63ABz/8AVEzypv9b+R5Po5glxD2biGfx7QQ0BLem3GdcnZaV6zDDoJFttJK/f10+5M5iieV/mb/6xSoQdI3EGakqUIjYcXt+5cc8g4lBtAUlajl9FzJvrG9jopHSljXt5bOaIdje9sjh7i39V85igdsDsrTnU/yas8rOXyOuIyzpvM/1Hvr6Y/1Z6VLJDEzxrq+13nk0EM5PJKYFePh9geJWBESE55rYjIYH2DjwDu80P1cTr1iVoyHDz1IrbcOc4KzZULG2T2yi+1D23MUD5DcPTzBQHwga7EBxGSMV3tfYX5oAd3R7hxv7oRM8HLPi7zS85Jjex7veJQCvYCoFck6btvhOMKs73+LJzuecMz7YNv9LCo8Kgf+N6VJR6SdrUNbeL1vbZbySNX5sfaHcaueHEfauIyzceAdtg1to2VsX07ehJXg2a417BrZmdsXVoxnu56hydfEcGI4Z2zjMsa6vrU80u48to8cepCElSAu4zl9MRQfYuvQFmY52Mbei7wn5SPtiObzhBAh4AHgPXuTCSGuAa4BqKvLjZmbkqFEfv7JeFnv9anZ4qR80mkkoXoHwH3YHEII57SoFaXH6nZMM2WC3SM7c75PyWhihHJ3BWNmLlFQFap9tW0ehRnNwwFJyeZBZy4HwPbh7YQt51AQ9oJ8KStmS0piMkZ7uD19zJsoA7EBOiLtjgQ3C4vW8AGEUBxfIF3RThShOD5XUzT2ju5GUzTiE25msLBoC7cxkocfpAmVA2Fn3lFcxjkUbqMv1u+YHjEjtEfaHblUMStKe+QQ8Tzmzd5YL4cibTmK2BbB/rGWnN16Stoj7biSZoKc9iga+0b2oDh4/5uYtIVb6cnDG0PaNkCnZ8asGIfChxiMDzpmHYgP0B455Di2pjTpinYCH0z5vC+0S0o5ADwHLAVCQqTda2sAR6qjlPJ3UspFUspFpaX53e9DemFeCDIdsdBRN72bRsqv0OzdRW5UP7CPDGEHFnFKvKoXVWiO5Sso7BzekffZVZ5qR3Qnlff40uPJ166pgen48sD/AoWyvLQDKNQL897YANA6tj9vnX2a8zMBCo0iTIeJDTYiOck/BZnnKppaTx1NvuYcT22wYxnPCM50DKmhotLsb6be1+AYNsOSFlP90xwXsiEMGn1NVLgrHOsU0APUextwKbmX4RmKiwZvI17V65ATqtyVNPqa0UUu6mRJi2mBaY5xdQSCBl8jTb5mx3WQsBLMKJjp2M+60GnyNVPjqc1JA1AVu6+c4gi5FBcNvgZKDee1Weoqo8HXgMshvIgilLzPfC/yrspHCFGa3PEghPAAJwHbsJVQikhxJfDQB64FdkiBlWW5vJmUwrFw2vmMQ9TOkj/N9nKWGf5g2b+1wxqYKFk3MtiioHB6xRlY6YmQne7TfHRG2x3TAJYVL2Pr4AbH+k8PzKDB18hU/5ScfC7FxVlVq7m68RrHNh1Tciyrq89xXIwCwdlV5yYndm6dJvunZCyKzHT777gVc+ZLAZP9k9g08JZDeySqUAlofuwTenZeAZxTdR7N/qact7KCwsLChTT4GllQuCg3DIhicHL5aayuOic3BIVicErFaUwKTKbZNymLY5QKi7GsZAUfqr0oR0kYisH51Rcyr3A+hXooa8GqQqPYKGZOaC7nVl+QA2vrwuD8mgs5puQY3Ko7axx0oTMtMI0m/yRWlZ/sEF7E4KzK1Zxaebpj2oqSY2nwNTI3NC+rznZYDIMTylZybvX5jnlXV57LjOBMKt1VWUpeRcWvBVhUeBQX1OT2hS4MLqy9mKOKluDTfFkxlzShUe2pYbLDPH2v8l52PpXAc0KIjcAbwH+klI8CXwW+JITYjQ23//EwZbwnubD2YlZXnpPVQYoQ1HiqWVa0EENYjF/PYnuwj4fTGJ/4KrZi0TDRhMnEK10EMN0/Lfm9HT4jsxyP6mZV+UoSMoYqUlfvjD93XmgOreE9SS/58XJBoqHy1anfSIY8yA0D4lZ0do1sI04857maEKyuOps/7v0lrWM7sa8Dsst3KwbXT/kqFe5KZhXM5sKaC9PxWXyqjwuqL+Sy+ito9k/iktoPZy1Wl+Li+qlfpdHfxLzQPHS0rDrpqFzd9HFmF8ydcC2P/ewSvYgCvSAZrye7PRoKFe5KwlY4pz32tUUmz3c/Aw5j5VJULBLcvf+PqJjZYyskcwpm0xPtYvvQWxl9IVGBc6vPpthVjE/1Uu+tSpetC43Tyk9nddU5AHxu0hc4qugo3Iobl+JiUdFR3Dj9ZjyqhxnBmXxu8rXUexswFINKdxVXN36cZSXLUYXK16Z/kxXFx+BVvXhVL8eUHMsN076OIhSOLT2OjzZ8jApXpb178DZy7eQvMi04Ha/m45szbmJRof3cgBbkpPJT+PSkzwFwXvUFXFBzEcVGMS7FxbTAdL467etUeqoodZXytenfZFZwNi7FRaFeyNlV53FJnU22/FjjJzit8nSCWgEuxc380AJunHETQT1Ik7+ZL07+Ms2+SRiKQZmrnMvqruSkipMRQnD91K9yfOkJ+FQfHtXDkuKl3Dj9W+iKwcKiRXyy+dPUeGowFIMaTy2fav4M80LzMRSDb0y/icXFR+NRPfhVPyeUruS6KV85bPzmd5N3tflIKTcC8x2+3wss/sBPdhAhBMeUHsNAvJ2dw1uIJCLEZITeWAvdsRYQoJOBDgFSCiwJFgoCSVD1gUgQthKM0/rsa1OQCqqQTPZPY8/otjSzWQjQ0iE3BEeFFrB5YD2pmMUKFjabCBShUe+t56nOhxHCxL7UQiRhfMH80EIqPBVMDUxm1/AmUhYl23KksbRoOe3R1uRzbRg+pcAM4eZAuIUtQxuJE0dT5LiCFJLOSCsho4Cf7fwOI/FhLJnArUgKND9zQrPTqMOJ5auo99axpusxTJng6OJjmeSfDMDHmj7F/a3/4uWeZzBlnCKjhA/Xf5wio5hzay5g89BGIuYokjgCgSJ0rmz4GFXeKu5r/ScCafeVIBmYXmNJ8TKe7nwEU8Sz2iMRFLmK6Yv1gLBQkenYSRJQMdg1soOEFU/3hZLsLwvBa70vsWXoHaJWBEWxyNz4P9XxEMeWnsjtO77NYLwPQ0khOAle6HmCkypOxZImd+y+jUPhg6jJkCuD0bb0kcmUJgPRbjQilBk+pgUnMSXjTe5VvSwpPgpV2H2xqOgoPBnHramBKawoWUxHpI0G3yTqM9jjIb2QpcWL8aoCl+rhqKJF6R2aEII5BbMZjnfTH+tlWnAWle7xa4/KXeUsL15CSHcT0guZH5qXHltN0VhUuICYOcSYOcrsggUUZRzh67y1rCg5mj0jIUpdFczIYIC7VTdLihaDjJAgwcLCxfgzCI2T/M0sL15Ca7iFWk8jzRmk0aAWZGnRYlyKhYbG4uJFuP4XN1fAEeRYCrB7ZDu/2vm9HOOjnPA/dkD08TRL2itBU3LzpCwNqZtvbI91gYXElPb+yY65M56uCg1TWpjJ3Om05L+6MJAoRGWUzBhB9m8VJvmn0jK6J8coKRAEtCCLi4/nmc4nsGQsjbSlHGfnhI5i8+BG4jKa9VyJvRgq3TXsG92VY8tQUPlY0xdwqx7u2ncHQ4lxY6ptp2jm05NvYCwxwg+338hYYoSYjKElnRk/O/nrNPiaue/g33ix+z/pa3d0YbCg8Gg+XH8Nz3Y9zQOtf82iBrhUNzdM/x4vdz/Ps12PIqWV1Z55oaOp903mobZ/kuKgpgP/C7is/lP8Y/9dJGQ4qy8AytzVjJmjDCUGcvpCILig9koeaL2HhIxMSIMTys5gIN7D2/3rcvqq1KjgazNu4+c7b2H/WLa3tiZ0vjztO1S4a/jpzu/QMjoeB1oXOstLVnJ+7eW0jrXws53fJSETmDKBoRi4FQ9fnnYLQT3EnXt+zJ6RbUStKAI7PtTZ1RdzXNkpbBvayB/2/hTTMjExMRQXhUYx10/9DopQ+OmO79AVbSdmRVFQUYXKRxo/w5zQItb2vMC/Dt5FQiaQWBiKizpvE5+dfANjiTFu334jo+ZIkkNmj+1nJt9Ao28yjx36N892PU7cspErQ3ExN3QUl9d/ku5oBz/ecRNxK0ZcxtGFga4YXD/125S4yvlry6/ZOPgWsWR7dKGzquIsTqs8j8PJf4VjqZSSu/b9yhH1SEajsP8W2d+ljgGakpsnX16ZVBj2CdZWPJlhLczkwE4sJyVxGSMhI6iY6Td56iOx7GOVAxoikYwkhjkUbhnPk2pP8t8tg+tBkj6yZT4/akYcFY/dCpO/tNzBHbtuy1I8YCM0LWN7WN+3lv858AcG4/1pSDYh40StCHe3/JbuSAcv96xJK55UWzcMvM6+0V1sGXwTJWObLQTErSj3HvwL04MzUBA57dk8+BbTAzMRSdpBZrqCoHVsDyJ511dmmhDQF+vEq/oc+wIkWwffwZRRx3F6pecZ3u5/w7GvumMdPHbo3xxw8NJPyDh3t/yOP+37RZbisfsizss9a2gbO8Bvdt9O1IqkDcAxK8ZwYpiH2u5h0+B6dg1vTaNlKUj7wbZ/MBQf5G8tvyFmxdJzPWZF6Y1281znE7zcvYbOyKE058nCJC5j3L3/TkYTw/zr4F3EZSw9P2NWlANje1nft5bH2+9lKD6Qzjs+tnfSE+1iTedjxKxxtn7MivLOwBvsHd3JPw/+mbA5lqY0xGWMsDnKv1v/wu6R7WnFk2pPTMb4T8fD9OZD2N6DHDGRDPvjvYzkgXJTku90WeYqZyDWncNfyfy9M3Qt0ZFImauDxYRPrnywHaOFxdahd/LWSRM6UghMB3Do8Ld72EbhfL+JWVEeb/83PTHnydIT62KDA8EzlXfT4FvsHtmWs5glkh3Dmyl1VWQprZQoCLYOvY0qVBITEC+J5J2BN6lyV3IwvC8nry506jz1dEedY8b0xeywFU7jY4dRyd9f6/tfz5veGm6hNQ9Mb8oET3U8wFBiICdNYrFlaANdUWcoXhUqb/S9TMQh/lBCxnmr/zVcqtv5xSUlr/e+hCpU4hOmXsyK8lb/Wg6O7XV8effFulnfvxannopZUTYOvMWu4TxjO7SFcnd1FgF0XATbhjayonSlQ9q7yxGz89GFwQc5AmpCI2IOOE58eC8qQia5PO8337uXm78Uedj0yf4peRWtE4SbkndTTn0x5xszUnV6o/8FR36KiopLcSepBbmiCR2X4nbkoAih4FG9jjsQsI+ERS7nWxckkqmBmY4QMUBIL0bL4y1v+9850xmAd7FXCMe22HWCfSM7ydePCgqtY/sc0yWSwVh/Xo6QS3XnpSRYWIftR7fqQXdwKk3V2a16HI3DKipu1Z3jYJsSTdFwKS7H/lCE4gjBv1c5YpRPQA9S58vvqJZvqZoyzpg5lvGr7FypW8VzF47923wdMH6doPM0SqFm+UTNQG5yJRMly5aYFWHPyCbHfIbi4uSK1Y7hKQTCkZcyXh91AtqUndetuOmPdTg+VxEKzf4pFBlFOWma0FhctIKjilc4BhOXSBYVLaPBNykXLhcGK0pWsqJkJYbjNTVuFhcfQ4FemJNmKC6OLV3F2VUX55QrUKjy1HBV4+ccesJWlieVn4XIM/ozgnPIp1wEgvEQLLm/qfTU5FWWljTZMvQm+cZgYeFSOqMHHMst0EPUeRuIOZBMDcVgeckJLC46JufZCiqT/FNZVLjMsVxFKCwqXMaiouUOt2LoHFW0gsVF+cd2Vuj93jiTWbcjSK5uvNZxokHSr0azb1wY56pIVGEmL/5zCJuBve2/tPaqpAPnBEhe2MZRFZG+3SATxneLRAacT9YC0YWVvLN8vLyUUlCEiVDIckbVhIYujAm2non1UVGFJEE8iZ6llJxtsFxYuJQ6bz3LS46h2ChJf+9S3AT1EFc2fNoxpIJAYWpwps2cTn87/lyf5ich7RspFZHZJvvZp1Wey10tP2Qw3k4mbUETGvXeZs6uvgS/5ueoomWowt4luRUPLsXNx5u+hFv18NGGz1LsKsOluHEpbnShM6tgPseWncy04GxOKDst3RaX4sGnBvjUpC+jKiqfbP4yAa0AV7JMTeisKFnJrIIFHFt2EouKlqOn87opMoq5uvFaGv2TubrpC+mbHjShJT2yL2Fx8TGsrrqIiUeRclcVVzR8mlkF8xzJfudWX8r0oBMlQaKisKBwCaqikD22dn/NDy2mN9bFRHpG6mU0lhjEiZIAcHrlefy55afJ++qz02YE5lLhruaNvqcBMystqAe5ouHTCAGTk4hnCmbRhM6FtVdR6q7gvJrLqHTXoAkdQ3ElDdmNnFt9KWXuSi6o/Uh6fNyKB0Nx8bGmL2Shf+9Xjii0C2wW6DsD63infy0uxUuZu5yoNULr2B5axnYRtWJYSUhDSLCBruRwJW+OSKEeilC4tO7TPNb+F0bNITushrQnjQBkchsaUItYVnI8azofIiETyZjOIu3QCgYzAvPYO7qZqGXvsjJRGSlVilwVKEi6ooeytrdS2krlxLLVzAou5NnuR9k08Gb6bC6lTcSbVbCIPSObCFtjWXllcqJ8bvLNPNHxP7SFW4hZEbTkMXVh4XE0+2cyv/BoFKGwb2QX97b+lYNj+3ApBs2+qVxYdzWKULhl6xfTW36ZhJs0oXJN81e4q+WnaUfX8XZDqVFGtbeWrUNvIZHpOkkp8KkBvjv797za+zSPHPobqlCxLElcWiwvPpkzqi/KUtiWtNgyuJ7OSCvTgvOo8TZkjX1ftJsNA68R0EIsLFqWtVs1pcnb/WsZiPcyJ7SE0glM7vaxg2wZWk+Ju5I5BYuynB1jVow3+14iakZYWLicoBFKp40mhnm5aw29sQ7mFS5henAeQgjiVoz7W//O2p7nMDEJaEEuqbuGWaH59MV6uH3714ikrxAWaIrG5fWfZpJ/Bjdv+RwJGbfjTSXnoi4MvjT1Fn6+6ybbZ0zCODYnCRlFNPkm887g61njI5G4FTcnV5zP0x33EZPRrPERSJr806n3NvJqz1OYmOl5LoTErwa4aebv+Pnur9MZaSVhJWzCrhT4ND/fmPFLVKFy9/6fs33obUAlIeM0+abxieZvoCkaUkr2jG5hfe9L9Ma6afBNY2XF2Y671YlyOLTriFI+MSvKP/b/gq1DuShFal+T9Z6S9nvCQsGSEn3CXeKLCk9kz+gW+uJdTDwmSQkmAgWdz0y6kd/t+XaWsW4cw5K4hBdLRjAxM95ZdrqUEkPRUBC2852UJNL4jL2DUgXowkVCxgBBXCqY0g5mpgnT3nUJuw1RaaXzqqnIRcLeVZlSpuH/VFQjgb09bvJN55TKSzkwthNLmmzof5mOyAEUoaILgw/VfZpwIsI/DtyZfHvG0opxdsESNg6+TUzagdO0DNuRS3UDStJDO/u4KIDZBUvZMrieBPGsdAGUuWq4rP6LbBh4mdd6niaSVKy6MBACTiq/kOPK7MBnmwZe577W35KQCSxpUuNt5vL66wjoIUYTQ9y9/6fsH92BImzo+Zzqq5lfaEeDfLXnCR5v/x8EtpKaEpjHJXWfw6V66It28teWH9MVbUWg4FY9XFL3eSYFZiOl5MmOf/By92MoQsWUCRYUHsu5NR9DFRqtY3u5e/+PGY4PABDUi7i84TqqPA30xbr4497b6I62IpI75+NKV3NyxUW81f8K9xz4DYJx205QL+Kzk2/hlZ41PN/1OJIIqSuVEDAruIxG/3QePfQPEjKMmtnPQuGCmk9zf9ufiabJnOMSMipRBPTGOtPzIiUKKufVXMNDh/5CzArnjN+xJatJkOC1nmewMuorgBrPJD4z6Rb+efBXbB58PcseGNAK+UTzTZS5D+9P/l+jfP6+/2dsHHgNJxQitSSzFEjyPwmU9IBMtKmNBw/IVT4IwdFFp/FG31M5BuvUZljBDiyWaSTMVEATy02lJ6RAQaZh/ImScUVYhtj/E5fCsT2ZlqaJzxXJaaWiJpVo9rjqwuDzU25j38h2Hjr0pywfIV0YVHoaOTC2H5nizEyol5VuMTmT27QpnI59oQk9OUa5hmxduDi/9hp6Iod4tuuBCde2qFS4a/nC1Nu5Y9c3ODi2J2uMdGHwieabGTWHubvlJ8RldjiOqYH5XN7wJW7b9lkG471ZLzNdcXH91J+ydfBNHm//e1ZeXRgsLTmVleXn8f2tn04rzJR4VB9fn/4bnuz4B+t612TNC124OKvqSiYHZvOTHddlpQkUCo0Srpv6M364/VoGkjeXZOa9pP5a/nnwd0QSAzn93+ibxsGxNuKWjQhnpiuoFLuq6Iy2Oo5BtaeZ9nArJtm0hFRe0EkQcUR2FxWewDsDrzgayX1qkG/M+C1anquj7Xr+L0Nq/H8hYXOUzYP54U8n4659dAJFOiue8Xy5A5IiG/bH2vIiZSn1kksWTC1tZ6OzQKKL1NbXuWTn71O2ozx5Mn6Tm9P+3sTZwTMhEzx66K90Rg7mOCfGZYxD4b0cW3IaL/U8mjMGStLCYZHIaW/+vks918m7O/XcKP86cEdGOeOlW5j0xNrZNPA6beF9Oc9JyDgvdj/CcKI/S3mk0nYMb2Dz4DrC5kjuLtoyWde7hjf7n8/JG5cx1vY+RYlR4egAakqTdwZezVE8qfY83/0gvbGOnLwSi9HEENuH3mI0R7nYeV/peZwGTyM7RjZMeKrk4Ngejis9mzVd/86pk0QS1EN0R1tz0gA6IvtJmXedplaCqKPiAXh74OW8Yxi1wmwfXs+sgiWO6e8mR4zBOZwYyQtvpiQfumTf33U47MlZVKGyc+SdvM9SUA/rBf5unffB3F7kexqU91u0xGLX8EYG4r15f+NWPY6BoSwSVLsb8/d/xuf9ioWVo3jSdZaSfx78pePkl0j6Yz0MxnPv+wJQhEpvtMNRVZsk6I91M5YnHEfcijMQ78lRTHZajIFYr6NiAtuG1B/ryauUe6IdeSkLg7Fehh34Q2Ab9w3FcEQ0JRYqSt4g/QIFj+Z1HB8Lk4Ba4JgPDv/ykFIyFHeu73uRI0b5FBglWfFvncRpIgkEZ5RfmjdHJiYxUeyOzX/sPL3yEnxa/ithK1wN78noNrFO7yaH4+sIVPJBxO/2XGsCEpIphuImoAUcXwCG4mZVxXmUuWocS/aoflShv4eWOdcr+99xictYElrOTdOEbofyyHN/mUAwvWAhloOSMBQXkwNzqPHmBrwHKDJKafLPwHBY6Lqi0+SfQTAPKlvrncxk/2zHeWFKkxkFi3J2YpCExAOzmRyY46icTJlgVsESR6WnC4MpwblMCczDSYm7VQ+X1n3OEb0zFDfHl63GKRICQKmrCjXPAUkRCg2+/3e92v8/EVWonFV1Zd63glPXqEKjQCvg+e5/InLsHBNNw7mS7RWfLbowKHGVYMpRshes/beh6BxbdjqV7voJOccNrgpiAgkuVYaVHNCJ/KMkPUBk/nZcBPblfEuLV+JSPO+6U3TKn293krBGebL9L1gyllUnTRiUuaqZFpzPuTUfywnnoAuDjzR8hSvqr8Or+rMUoy5cBLSQIxEwNdmz6zTe5tRCGQ8El50mEOwafpPRRB8T+0oXLk6vvAxTxqnzTsqqsyZ0QnoJc0JLOavqSnThylp4ujA4p/pqJvlnU+1pzMqrC4Naz2Sa/TM5x6EvDMXFmVWXMb/oGIJaEWpGuw3hYn7hsZS7azi98lJ0Ma6cFFRcqocTy87luNKzcCverLHVhYtV5RdQ6q7k6OKT0TMUmyo0fFqQxUUrOa3y0iQhMHMMDFZXfZTJgTlMCy7I6YtSVxUrSk/n0rprJygngS5cXFDzSVaV515BpAmdqcF5VHkac9LeqxxRBmeAXcObeKL9broibQihUGyUU2xUUOVppNAo4bXeJ2iPHCBhxVAFSGmmYW+J7amVMn4qSMwMl8QyVw2D8R7iVgSBzQ+SSYP1uAgM4WJV+Tm82H0vcRnFkmBKJY0jCOw34BUNX+HeAz9hOBHJwMHsdFWoNPlnMBjroSvanq6TikQRCvMKT+S40rN5q/9Fnuu6n5S/GYwf1xR0iowyuqOHEFhowkIIe8FfXH8DWwbfZOfwO/i1AhSh0Bbem3RGtBdngV5CxBpjzBy2DZHJcu0hF3hUPzErjJTx8eD5EgQaIVclAsGCwuNYWHgMCRkjZJTTHm7hmc776IwcoNLdwKqK89MTMGZGeKnnUTb0v4wmdJYUr2JB4XE80fF33uh9jriM4lI8uFUvk/yziVsRtg2/YfvSyXG17VX9hPQi2iP7s+ps96FCs28mrWNb0vatFHIJCqWuak6puJhXeu6nK3IAgSBqJVAVDz4txLyC5RxbdhbuJD+lI3yAZzrvpS28l1JXNavKL6DOZ/NhElacV3qe4M3+5xHAoqITWFZ8atrA2jK6gzWd99ETbafG28Sq8gsod9vBtcLmKC90PcymwbUYipvlJaeyoPC49LF2+9AGnu96kMF4H5P8s1hZfj4hw2Z6D8X7ebbzfnYMv41fK+C4stXMKlicbKvk7YGXebn7ccLmKDMLFnN82dn4kt7p3dF21nTey/7RHRQZ5ZxYfh7N/pmAvfNa2/M06/rWpJG9FaVnpHdprWN7eabzXjojB6hw17Oq/AKqvY3Jcg/x+KG7OTi2G68W4Ojik1lSvCovoTK9Fv4bDM4p8apuSl0FxEzbaKeIUVrDb7Nr5BVkcvmrSBQl6c2eHEzbUVGiC/uMKqXARKAhUYWL82s+yVv9TzCSGEYoEkva6kkI0JJxnBXFwqW4ObHsAl7sfjB95rdvvkgkja4AHk4ou4D7Dv6UsDWMJrANzIApVVThotAoZ1XZhdy17yZcSrJOgCUVJBYRc4gCo4Sg7qHI8DCaGCYhRRpA14TOFP9sWkbX41biWUhXXEZ5qftemnwzKDQM/KqbBYUnYahBtg29iVv1EtIL2Db0CoPxHjojQ8RSbuSAEBJDSIKaylAiRtzKTlNJoDBMUC9m2+DzvNj9PyhCRRM6x5acT6HuJmq6KDQ8WTYIRagENC+FugtN0QnoXgzFxTnVV3N21VW0hXfxWs+D9MU7CekeFhaeTW+snd5YB5Y0UUQCDUG9r5aAVk5PrD1JTyB5g4jdO15NQVHUdNxnuz3JWNyM8GbfY3SE9yWVk0yCC3E0NIK6l95oG2s67+bg2HZciptCo4KQblBoeHBnuF0IoRDU7fYIBEHNl2UT86h2HySkQUj3ZrkaqEKjIJnXUNz4NE/WDsuruQnpbhRhUKB7swKiaam8hgu/5sGXcS+ZEAKf5qHQcOM2ExTonixmskux6zJo2HXzqOPjIxAEdR+FhgtTqgQ1b9Zux626KNS9ybH1ZvVFoV7KjOBsErIXVegENI/jMe79yBG189k6+Br3t/4kPeFSknl7BZD1NrSkzfNRsJLkwPE0gBrvPKYH5/NM512kMapkmh1SQ0URZhYkrqAmHROTZMWM50pp73pOLLucNZ33kJDjpMNU2T6tkOun/om1fY/ydMcf0+ElUs9NSIVq9yQQEXqi42ibrR90LOkipAcJmz3pvhiP6Gg/SBWp0B/jBkGX8HJOzefpiOzj1Z5x5SlQsJBELRu1MkQiSYQc7w9T2v75qsgNqC9l5nNTBAObiKApBh+u+xa13qn8peWbtIf3pJ+rCzezClZwds3n2Da4lvtbf5JEiCQKGi7VzSeafkpH9CAPt/2cqDWaRuJ04cKUOhHLRBBN7vrGx8fCIm7ZX2jJK5Ey62zfpaaQVufJNE0YeW19Isn6PbP6U/RHu9g4+BxD8d70GOjCRbN/PhfV3cC+0U38Y/8tNpkQCwUVXTH4WPOPKNTL+cPeL9MTbcvKu6joNE6p/Chv9z/LY4d+m+4LVei4FR+fmvxzFFR+u/sLjJmDaWOvLlycXPERjio+nee77uGV7vvTfawJg5BexjWTfsJoYoA7d3+RuBXFJIHNgDf4UN1XmBJYxP2tP2Xb4GsZ4+Oi2jOFKxq/Q3t4D3ft+0a6Pamx/WjjrVS4G7lr340TxtbFzIIVnFPz+Zx+zOrT/4aQGpY0efTQb3IUD6Rg8fG/M7+3jwvZiieVpgqVIiPIms67IMOImwrZYIdQzVY8YCMAqWdmKp7UvwkZ55We+5FJ7srE54bNweRb/oGcvACagKAeoit6IAsVsZ+Z4OK6a4lZ/Vl9MR5KJEXkk1mKByAqx7j34I95uee+LKRGYtmuEJ5mSoziJDIos8q23TnyUxaANClOpv+1iFsR7mr5Ordvv4K28K6s58ZlhE2DL9IV3s+jh36TTJPJPk4QMcd4rvsf9MfaiFvhLApAXEYRIsqC0HL7XrQJ40PyWK04KB67n3BsTyK54J1EYhGXUR5o/RkvdN9DX8bOK1WnPSMb2De6iYfbfkVcRtO0BAuTqBXh6fY/s2XwZXod8q7re4zeaDtPtP8+qy9MGSdsjvBy93283vsIoxmKJ5X36Y67GIh18XLSFJDZnsF4N2/3r2FN591ErbHx4yiSuIzySNuvaQ/vY+vgqxPGJ0pbZBe7R9bzWPudWe1Jje3jh37HruH1dIT35uTdPPgSXZEDjn35XuSIOXalbDGHk3dbFBPFwmTT4Itk75sm5s1f7uGg8lFzgEzK30T598HbGE7kwsApn67hRFeekiWHwtudkb2kzhATlEemmMRRHEKEmDJOUA8wnGh3RFtgPIaQk+RzhE1JxBp1/F4AO4bXpd1SMkVisXfkbYbiPY4kNk3oVHhq2DXidcyvK5odR9shKkHq2R9U8vHN4jLK3S3fStIqc3MdGNuCobod57IqNLYNvebY/xYJdg2/haG4c14qYB9ptwy+jCr0HPg7LqPsHH6D9vAex7LD5hA7h9/AEVG0Iuwdfof28O6cNIC28C72jrxNTDqvzf2jWyhz57+V5nByxOx83KrvXQlr+U6IqqLliSXrjGSlRACqoucNy3B4GafGO8lIoj/vs4N6saN3ckoSVjQjOH222Eb4w1PanRcGjCYG8Ki5d7zb5QoKjYoshOb/hMRljLU9DzlC3gBeNUhAK8SpIy0sQnpp3rxTAgvyTnzbBvj+0MD3KlaGc63Dkzk4uiVv3gK9JO/Y+rQC/FrIMc2UCQqMMkelKFAIaIV41Nw73iFJQtSKUByQZFXo+PWQI60AsJ18tZDjvFCEivcwVJR3kyNG+XhUP5P8CxwnzOHMUm7Vy2nlVxHUcsM9QApOB6fJEtBLuKzuhsMSqZxlHE53TrUyJkkuDLys+BzqvNNzMyal0TfHkdyoCYOLar/CaZUfy4Jqs0XkSZN0R1qY7F+Yk64KnVkFK/jslJ/lpcrnJywcTmzlP2YNQdKOkCm6cLGs5BwWF5+ZE6dIoBDUiplZsJxiV5Vj3qNLzub4sotz2qOgUeedydKScw5L/f9gkslqz51TCWuMsYRT3CSBobjxqF5KXDU58zzVF0tLzs5pj0ChzF3PzOByfGooh5OjCZ2jis9gWck5jmM7LbCEmaFjHA3ECgpzQsezqOh0tAljoAmDo4pPZ27hCc55hcqUwFE5379XOWKUD8C5NV+g3jcTJeM0KJKLSQgXHrUABTUZm1YjqBVT7qrk+e4/ETVTfI/xT8q3aiJHB+w37lVNt7K29/6kI6XEaadkv1WKUIWWNWGyWb0yyfNw41MLUJPTI3uS2uXOL1zFzIKlNPim4XSNTYFeypbB50DGmBh/p9LdwPSCpUwKzOfE8svyEAJdnFRxRbIG2flN4gzGOllUdBqq0JJtUqhwN3BW5acxFDdXNH6HgFaEobgxFA+G4qbIqCaklzE3tJKpgcWH3R2JJMyfqaDt/7OSYRwMDMW+VkbB4vWe+xiKd3J61TXowo1L8aILFyWuGi5vuBkhBJfWf5Nydz26cKXTT6r4CA2+mcwoWMby0vPRhIFL8aIJgxrvFC6u+xqnVF7BJ5p/QkgvxxDuZEgOL8eXXUKRUZWcXQoCBZfiRRV6zsJOSWphZo97amztcuxjq5ncdY3vjnThwq8WkLCGeaD1hwzF2gALVejpOh9beiHTgkto8s9lZfll6fbowqDC3cgldd9ACMEVjd+h2FWT7At7fM6o+iRVnmbmF67iqKJUaBIvmtBp8M1idfVnMRQXVzR+l4BWnB5bjxrg4vqvE9SLObH8UqYHl2blnVmwnOPLLqZAL+GiuhvwqP70nAhqxVzZ8N28AczeixxRaFdKdg2/QXt4FwkzTtBVQrN/AduGXmT/yDsIodAyugmBwJLmhCOGzNolpcJipOBrCfi1AqYGljAa72Z/eANxK2lgk+O3JsikqVkXBmXueib7Z/N67/1ZZ3ELgSXtxa+g0uSbS6GrjKFYB3tHt05wRLVxl0bffMo9VWzofxwteXZPWFYSfheUu5q5sP4r/GbXNWmjaibS51Z9XD/9X+n6DsQ6WNP5Fw6MbSNqxajzTmdVxZWMJQa4Z/+txGU4+XSRXlT1vlnMCx3Pk+2/wpS2kdlQ3EwNLuPMquvS4SQ2DqzBlHHmhFalOTEpOTC6hdd6HmDX8AYSGb5kmjC4uO5r3LP/21iYWc8Fe4meVvlxnu74g32PVzJJFy6OKfswswqOZ/Pg8/i1ImYVHIvIgLWllGwdeomheA8zCo6hQM++5K432sqOobWUuGqYHFiSdQw3rQSbBp4lao0yO7QyfVSwQ5PodET20jLyNlXeqfTHunjs0J0Z88lianARDd6ZrOn8m6NtqtxVz2iil7CVHQZYSokiNJYWn8fa3gewsvzubArI8pIPMSN4LPvHNvB67wNErBHqvXNYUHQWh8Z2ETLKmB5ckdUeyzLZMvQiI4l+ZhecgH8C27oz3MKekTcoczcyKZANNI2PbYw5oZNyxvbg2DYOjG6mzjeL2gm784g5wjsDz6ILg7mhVajv4pEAh0e7jijlM5YY5J8Hvkl39ABm6qYDVGQy+MXE8669MMffrRONohKQ0n4H6UJFCBNDcdvEuhTqko7vM7EfVD7a+DN01eAPez6ZY8iTEhJSRRMaQsSS8G8iWSaY0r4bKxO6VlCRyJx2iNSOQPVyYe3N/Gnvl5JtnrALEyrXTvk7z3TeydbBF5KQqGrvAvUSLq6/lQK9jPaxndy174tZdbakQBEejiu9iJd6/pJTBw0X59d9E03o3Hfwu2kXD4nF6uovMyWwlLgV5f6Dt3JgbCOK0EhYMYTQSUiVMlcDUwLzWdf7bxs1kSkkRyUV1cZQkiVmhApNjZ8dSE2gCJWEZUPhZe4mlpVcRJmrkXsO3Mio2Y+CQkLGWVFyKctKL0JKyZrO37O+/zE0oWNJi0Kjkovrb8GnFdIe3sW/DtxEQkbtUZYmp1R+ltmhlZgywcOtt7N75PUkbSFBtXcGJ1d8hr0jb9MdbWHb4BqEsA/BCZnAtBTiyQsQVWGjrIbiIWZFki+w1Hy0MsbdNoxbE+aqEKAJV/qlNnFMDMWDlBK/XsTS4gsYS/SjChfr+h4gao0hEJgywQnlV7GoaDVSWjzR/gs2Dz6X7AuTUncDF9Z9B48a4ODYFu498J1xagcWZ1Vdz9TgMhJWjPtbb2X/6Dsowq5vg28+59Z8DU0x2Db4Mo8d+gmKsC83UoXGBbU3UeOdweHkv0b5/GP/NzgwuvFdDc8pSQfzwhmKt/k1OsVGHf2x/TlvHrDv/HKClwUKVzb+jGc6fktreKvj831KGWGrb0K5mXUTjvGhDydetYAivZ6D4Y057bGPgMWMJHpz/L8ECqWuej7a9Avu2PURRhITHEglBPVaar2T2DL0nOOzZwRPYPfIWmIT7nPXhMEnJv2etT3/5u2Bp9MvhlTawqIzmV94Bn/Y8ylHjlZCquhJKkTmAstkNSt5+knFwFBdRCZ4p9vhOL7JqDnIk4d+STwDjVFQqfZO5+K6W/nlrsuImNkOpJow+GjTL9g2+BJre/+dVWdV6MwIHscJ5Vfx610fTSotstKDWh0D8YNIcvlCVmrckTlzKvWyTMc8eh8mNJF8/TqtDE24uKD2m3RHWnix+29ZkLiCRpN/Iaurv8yvdl3uMLYurpl0J6/33M87A09m9YUmDOYXnsGiorP4/Z5P5oytoXj53JS78xqr7Tb+FzCcxxJDHBzb/J4VD2QT91L/PzG93juDkUS/g4JIvYGcZ4BE8td91+ZFjgDK3XUcCA8kJ1zusw+HtOWTmBWhzF1Da2SjQ50shhM9jnCqxKIvdogtg88Tc4ClEYI672T2jW7I++yheDdxB0fNhIyzuf9Z3hn4T5bisdNivN3/JJpw50Wl3Iobi3Duji9tGsrfTyYxwmbuUScuo7zQ9Vdsbk42cmhhcii8g22DLzgiS6Y0eaf/aTYPPpuzoEwZZ+vQC5S7mxzrJVBYVHQSz3b9AdPhxW2H9FWReUKb8AEUj50r83WTnTkho/zzwI2OvWiRYN/oW/ZO2aG+UlpsGXiWjQNP5/RFQsZ4Z+Ap3KovT2B7ya7htcwsOP79NSYpR4zB2Y6y9n++Oq1jm+iN5SdCCZH7hrIlNdz5F0bQKHMkRf5vJCGjbB58Mm96Po4OkAyj+iYJy6lOkog1eljl7lH8OQoilbcjujtvW+NWlIg57Fi2rrg4puxDeR2GAT7olbsdkV30xw45pimojJj9eRS1SdgcIj5hF5ASS5qEzWFHvo0lE3aMoDwnBkPxUJvnKPIBm/meZPy6g1yxpMkbffc5tsfEJjhO3OGlJGFF7b5wUKaWNImazvyu9yJHjPIp0Etxq773nU8ICGkVjnFogOQb6PB8H2fJjKuTm9evFbN35JV3q937/N5+lpmH/q+gIQ7DXYlbEfYMvex4DNSFi6nBZTT7j3Lc7bkVP4VGZc73qTrpwkjuBnKl1juLZv8idOG0/ZZMDazIy0ERQqHSPRUtL3Ugn9jwQNwKZ6GjKVGEyvTAMY67MV24mRw4mnrfXJzGotTVQLP/qBzoGWyi4OTAYopcuVwrgUKjbwHzC09z7AsFlXrPvMMq4g8mh4f/JRYDsYOOLwctGXmgwj05Jw2gxjuDZv9RecYWGnzzPliVOYKUjxAKZ1R9MTkJsyfE+I4o9/sZweP5aPNPWBA6ZUKJmXB7JtSemQZ+tZhSV+OECTw+gBMVkEBBFy5CehHhxADCYXekoKILN0cXne/4XAOdOs8cvGpowgRPuQykoFrSikITBgG9iBJXrSPErqCiAqaIJds7rnB14aLYVceM4PEcV3YlHjWQAZfb/j/n1X6DCk8Tag78bwewL3M1MhJvY6IiFwhWVVxDk38htb5ZWZNUF27mF55BkauK06u+mAxfoaTb41EL+MSk3/Hhhu9TZFSjOix2gYJPDU1o8ziMr6KgZ90rZddPygiv9vyNJUXnZ3FfdOGm0jOZyYElrCz/eBpit/tQQxduTqv6HFWeqUwOHJ3TnqnBFVR4JnFa5bXoYvyushRsfkL5VUwNLqfc3TzhuS6Wl17CZU3f4+zqr6JN6AtduFCw6Rz2WGYrqJSrT66qlFnpuWLHAs++4WW8b6WMsq7nbgaiO7Oeq6JjKF5OrvgUjb551Plm5/TFvMLTHJXwe5UjyuAM0BM9wJt9D9MR3o0dHrKYmQUnUumeSsvoW+wbeYvBeA8u1ctAtIWYNZBETyzMZPB2SdLzHZm+3SIFoadaq6MzNbics2q+yraBNTzZ/lNiMpFOzwSJ7XcsuBQfc0InMy90Kn/d90kbTpapdPvXhuLmvJqbqfZOZ9vgs6zp+A3RZOD4VJgPQ/FwStUXmRxYxpbB53m5+26G4p1pxZMSBYNS9xQ0xU25q4FG/1xKXc280PU3tgw+j0kcjxqk3jebrvB2hhOd6bxWkmIgUFlRehlLii8gag0TTgxgKEE2Dj7NwbEtFBnVLCpaTbGrhpgV4dc7LiMqR9PTVAAu4WZF6Yd5pedvxK0IKf9xkLiEi3Nrv0WDfyFRc5Q3eu+jZXQjXq2QuYWn0ORbmD5W9UYP8kbfQ/TH2qn3zmF+0enpHVHcirJ5YA1v9T9Gb9QOfA9Q4qrj/Npvsrb7X2wYeAwrA08S2Ivg6JKLean7L0n7nB22RAg77dza72BJyVt9D9MfP0SpUcui4rOp8sxECMFIoo+3+h7l0Nh2St0NLCo6m5Bh34whpcXO4bVsGngGgDmFJzHZf3S6Pf2xdt7sfZie2AGqPdNYWHQmPs2GvU0ZZ8vgC2wbfBGX6mV+4WnJnZYtXZF9vNn3MIPxrvRuSREqcSuCKnQ2DvyHPSPrcKtB2se2ELFGiFthdOFBUXSqPTPpjR1kKNZBZnhbG0ZRKTAqGYq1A/GcsCRerQRVaIQTPSDH0xUMit1Tk1EZKolbg7SHt+BWAywoPA8h3GwZeh5N6MwNnUyTf9G7Hpn/KwzOKRmIHaA/soVI4hASyVh8N9F4OwGjkr0jaxFYSLLjv6QWgiIkrgztnoY2hR3nWRXjR6lyz3RmFBzLpoFHWdv1P0AEV2qQgLhUSb1LFCQuIXErCQ6OvkTU7IDkjse+98tKl6sQp9o7DV1xMRTvxCKCKxkKQmK7sZoyxlC8k6g5Qk9kK4ocwqOYmBmcJLs9CRJmF/3RTrrDb7B98CEkcHz5Z1lReiGv9txF6+gGRmN7M0htdl5NJHd8IkF/dCcPHryBjshWFKEjpUVQryBsDiDkAIPxBRS7ajAUNxfV38r9B7+eDlSuCi+ra77FrpFXScgIipBoSfVjAzsK/bE2wgO9PNvxcyxMLBL0RVVKjCIafHNR0TPGdivDiS56VYXRxOK08omaw/REtyKtbipcxTT7j2FG6FSKXNVIKSkySnEJ+zhqIUhINT22pgzjUkxk8ohlYvOm4jLKjsEXUIRF69hLgGQktof9o2tp8i/mjOpvMBLvpC+yheH4HlRGGYovTCufuIzSE9nOUGw7AD2RWhp989M7gKFYK33RLQzHD9GnWIzEF6eVT9QcpTeyleH4DsIJF73RSdR6Z6WVan+shf7oFsYS/fSqLsbMJRQaNeiKi8FYO73RLQzHdhJXCzi27FI04acntp+QXkXM7GPT4CMochRDkcSs1BWXNqXEp3mRVjeGEiORpqOQDJciEXKImBW297hinDJpEaUvugWX6qM78lYyMoBkNNHLs513UOqqY8zsRREavdEG6n1zHY+m71WOqJ3PO/0P8XLX73KMX/kgynGoXUlvKSemmckdj4Y1weBnX4mrCJVE8i6kiXnjUsOjBrHkgKMhNoVyZUL1NhV+EkuKr2Tr0DPsHh6HtcdvrHBzRtWNPNv5I8Km7XqQWaaJii6UpKLNPaerGOP1TuZV0DCBhJQoDp76hxNNuDi+/HPMKDiF+w5cR0dkexrVUoVOgV7NnMJzeb7z10gZzSl3XugCNg08jEmuQbrOu5Bz637Axv5HeKnrtxljazPXL2r4FV61kL/tu5qIOZxurybcTC84iRMrruWlzjvZOPAIiSSqNb47LeDkis+wpvNHWShcilgq0SgyShmKH8pKs9vlYVHxh1jf98+s+aYKg1Mrv0ZTYBn3tHyWvtj+jL4wKHE1cVH9L9g59ALPdPwoK68mXJxf9yOKjHr+tu9qxjJQVk24aPQfzenV3+SNnn+wrvfudF6BQFc8XNrwW1RhcPe+jxGzxtJjqwk384rOY3npVTzT/mN2DD2bkVdNXvtjx/Wx5CDj4XJJB1qTJG9EEeNHt/H1M851m0hVyZemCReVnpmcW/uDw+5+/itCapgyzqvdf8xrdXeCKMf/zg2rML6VtE20uf0jsUiMD6JDXp/qpthVmgcBSsKqYgK3CIvOyE4ea/t2luJJlWsTyxRe77mLsDkAE8pWhKDaM9OOspgHmTKJEZeRrHpZ2LerakJDFe9d8YCNsL3c/TvaxjbSFdmZtZBNGWc43olLcSFIOJa7begpTIercQDawps4NLaFl7vunDC2driH17r/zMaBh5KLbby9CRlh6+CT9EZbeGfgobTigZStR2V+4cnsH3s9B05PBZZThWAk3pWTZpcfZkPffTnzzZQxnmr/PnuH1zIQa53QFzH6ovvZP7p+giId78eXun7HtsGniZhDWYb/hIyyd+Q1uiN7shSP3ROSuBVhXe//8FbfP4lb2WObkBE29N1LT2Qf24eemZDX7rNlJRdQ423OUjyp9mpCJl2Usm1G2RyyXNTX/r3z5iQho7SHt9IZ2eGY/l7kiFE+I/HuLObrRHEiAr6bCAGVnkl5PYXfLW+pu5He6L7D/y7P9067gMzU3thexxRduJkUOOo9eNrnTgpdcTO/8ExHw+27ScQc5qlD33OE0+MyTFd4d15lGLWGHesDtt3kmfYf5nBxkql0RLbTOvpODn8I7F3XvuHXHH3JbC7PJtrDW5xfDgIafPOzXDTSSclFGJcOfCiS/Jb+B5PuKRPTorSHNydfHLnSHd1NW3ij40tUESotI+sQDqFHJRaHxjbTNrbJEa1UhU7LyOuOfWHKGG3hd5KKwIl7pDMlsCx9/M2UlII53NJyUkypOv//Qvl41FDeHUZKDndCdO48gU8rIZJnohwOfldQGYl3YubdiR3+yYfPkesqkhILkxJXU87dWhPzO0ncilDrne/ogfzuYjFqdjvWSxMuClyVuFXn8AmG4stLARBCMBTvIF9f+7VSQq4axzZZ0qTE3ezITxEIQkY1Qb3CsVxN6MwOneGIDEoJitBwK87wP0BPdC9aHng5oJXnVfA+tZiQXuMI/yMlxa5GrDxRFIJGBaGkw+tEMWWcEneT4wtaoBLSa/BrpTlpdrqgObDUUXEJFAJ6BephHETz8UAVoRLQy3MT3qMcMcrHUL1MDZ6Yl+/hzEUWKEIjpNdSYFQ5DLjkwMirpIzDE9MOJxYmI4lO8t1uAbbtxTa4vXcFpAkXRUb+4EtetZAG32IafIsdJ7iKTkArc1isNpY3ED1AyMgN2XB4GTfdO785NaYFV7Kw6MKc8dGEiyXFl1NoOF2rY1PQZfpIll22KgzmFZ6DkImcNAWNUlczDf7FVHlm5ry1VWGwsOhDHFV8aU6dVGEwKXAMTf6j8WlFTBwfIaDWs4CFRRc51DlVhu6w07P98vqiu5lTeLZjXywuuYxZhWfkxM4RqPj1Mhr9S2jyL80ZW024WFx8KQuLLsox4qpCp8Y7lwb/YoqMupx5rgqNuUXnsKTkcsc6zSw4jebACgzVkzNvdMXDhxt/w9KSjzgqWyE0FGHk7NbsSAB+Gnz/PwmpcUL555lWsBJVGBmLR+BRAxxTeg2zQqtRhYEdvkCjyX8059feRrGrmITZnxWE24ZcTWwHzcwrcsaVSWqHoOFKPlNLxtMNoqGmt6MTQ1uAQMNFlWcWc0JnJLkxpNOcRBMudMXL/KLzWVzyYUfSlkDhxIrP8nDrdRwaW4eKYnMvhI6CRkivYVnZ1Vza+FvGQ4Vk1svknYF7Obf2B9T6FqAIDVUYBLVylpVcTbV3LiG9mirPbAzFm5yIqb5I+fKnfNGVpLG5iqOKLmAwdpAFhReyoOhDaMJtt0e4WVR8CfOLzufihjtYUJhSTrYxv9IzgxJXQ7pcsuoMswpO59XuX7Jz6D8oJDLqolLvX8Tq2lsBOKP6Zhr8S1CEjioMfGoxp1d/k1L3JOp8C1hZ8UXcahBNuFCFzpTA8ayquB4hFM6v+zE1njlpgqZbCXJi+Rc5p+5WFhR9CJeSu5sTaEwJHocqM+ubqpvFtqGnWFryEcrck7LyhfQKJgWWE9TLObf2Ngr0yvTY1XjncH7djxBCcHLlV5kcOBZV6GjJUDGrKq6n2juHcs9UTqn8Ol61CE0YqEKnyb+U06u+CcA5dd+n1jc/PbYBrYzVNbdQaNTQHFjOMWWfxKX4k31hMKPgFI4t/xSq0Liw7ueUu6em53mx0cAFdT+xofSiD7FwwtguKb6CjzT9hU9M/hcXN/yKIqPebo/QqPBM40P1P0ujdx9Ejii0C+yIbfuGXmQgfhCfWsKI2YlHDdEcOJExs5cX2m+nO7oDTbiYFFjJ9qE16TuoIY2/26BzMqRG6r0ukzwbiUATbiYHVyGBcvcUeiNb2TX0HyxpoSsFjFmDGbWyS9DQqPItpMozjyrvLLYOPMLekRdsY6iNOyOEwMKdtJ3Yt1BM9i+lK7KZsXg3itAwVA8FxlRaw1swZQwtqd6Wl32SdT2/zzCuSlR0Kj1zWFb2CUrc9gVtcSvM73aeRcrzPePSHTTh5pNTH2cs0cem/nuxpMX0gjMIuWrHWyMlHeFNrOv5M21jG5NuJONK02YAH0tH+G3GEn1Ju4mkyNXI6dW30xHZQndkB2We6dR6j8pCO0biXewaWoOmuJgcXMXe4Vd4sfOXyTaNj4QhgjQFlrFz+Jn0DkNKmeTueLhy0r0YGYx3m739LKOJXhr9yymawLbuCm/j4OgbBI0qmgLHZR0xouYwu4aeIW6FaQ6cQDCDyX1obAsPHLgOSGBioQkPXq2Yixvu4I+7zkkC+0nkKPkqEiicXPV1nm3/IWYGAqcJg8bAMZycVBQD0TZ2DD6BRytgWsHpWe0xrRh7Rl5gONZOnW8JpZ6pWe3pjexm38hrBLQSmoMnomXcjBG3xtg1tIZwYpDmwHEOY7uZtrH1FBr1NAZWZO3CIuYgO4eewbTiTAmuxJcRmkRKiwOj6+yxdU+n1rcoy2Y2cWzzHcMz5b/Gq30odoiHDn6OuDlGIgPNUTCwzVsmE9Eh+0ClkGIHZ4qE5BU5NukwvUSEva2/sOEuCowa/t3yEfpjLeP5klCtlSxXTVEIk8Q1n1bKyqqbuP/AZ7FkJBtBAEL6ZHStCEPx0BfZRDgd6GxcNOGixns0+0dftqez0DFlNMPUON4eAajCRb1vKSurvoVA8MddZ5KYEDc5gUqd7yiK9Eq2DD6QVauZoXNYXnYtpozxROtX6Ipsx5KmjVLJ1N1lNp1BE3aojonHDoGGrriR0sTCREElaFRxVu0vcKl+3um9hzd6/5jcUQkkFidWfIOtQ0/TOvoWyHCKmoMqDCwJiVQQ/iwVCprwsKjko2wffIyB2EF7HIROSklOCq7kuPKvIDF5uu1btI29ab9chIYmXKyu+yUho5YDo6/zn7ZvJVtmIZHML7qMhSVXErfGeOTgF+mPtqTtSi41yHl1vyVgVHD3nssYiR/M6gMTQaVnHlFrgMFYLhghMPjopAd5qfMn7B5+JuN7hZOrvktDYAX90f08fPDzmDKGJe1bJmp9S1hVdTMCwXMdt7F3+HmANB3krNqfUeyeRPvYRp5o+yrIcd/DGQVns7TsM1gyzuNtX6UrvBWJZb/oFD9n1/2KgF7OnqHnea7je8nxsftiSeknmF14AVFzmIcOfI6ReEd6bANGFatrf45LDbCx71+s6/l91tiurLyRxsCxOX2Q1R//DVA7wDOHbiac6CUuxzkOABYxLOJMVDwwTo9SyGa+pj8CVGwIOwV12wS5BI+1Xsf+4VeyFA+MQ7X2cWE8LovAhj2H44d4ufOnKKg5zwMYiO/mlKqvIOQoYbMfJztKQsbYP/oyMknKS0jb69smC1pZigfAlFEOjK5lx+Dj7Br6DynmaibUrwuLeu+iCYoHQLJ14CHaxt7k7d6/0xnZSkJGsIin26YL+82tpS4PdEC2JAli1ghxGcaUMeIyTH/0AK9130FvZA9v9P4JU8ZIyAgJGcaUUZ7tuJVVFV+l0ChHCJHRnhiSeHpXMbEPEzLM2u5fMxDbT+oVY8oYpoxiyih7hp5l78jzbOm325WQUbtO1hhhc4D/tH2LuDXGf9q+RUJGiMtw+jdv9/2drvA2Xu/+Pb3RPckXnX1Ej5rDvNL1C4bj7YTNjqw+TsHWi4ovYzjW6lhvMNk2+FiW4rH7zuLpQ98kZoZ5+tCNRMxB4tZYsr+iHBxdx/aBx9g9vIZ9wy+k2xmXY0StYZ5s+zoJK8ZTbV8nbo0lx8Buz7bBR2gde4MNff9DZ3gzCRlJ98VYoodn279LODHAcx3fs19wGX3xeved9EdbeLnz5wzGDmaN7UB0P692/Yq+6F7W9fwhZ2zXtN9CxMwOoPZ+5IhhOI8leumN7eVwXtvvV2w+CMnVmau4RhKd/Kf9G3nzG8LAJJxjxbEw6YpsSZXu8FyF3UNraBtb7/hcW2Re6Dqz/pmSkBHe7vsfDMWXA03b198YbB18MM/TLDb3P0hPdGdOXvtZgnlF57O5/94sTs27iUWcnYNPoqA6ojgKCruH/sNQ2i8su1YpKuX7xQwTMsKW/gcYTXQ7wNqSwXgrOwefdkTRTBlj59BT7Bp6JqfOkgQHRtdSPjTLEWdQhU5/bDcyw6UhJakX4daBBx3rLLHY2PdPhh3Qv4SMsG3wYTTF49j/EXOInYNPOjqHJmSE7QOP0xXZmjO2Eouu8DZ2D61xhGwsabJr6Bn2jjyfA/FbJNgz/CxerdhxbAWC/SOvMLXgNMf2vpscMcrHkqZj57ybvFsOn1aGlAnGzF6HVJlUdtnvLrAXc4m7kb7oPhIOfI/DKQ+BYCh5VMgv9tY3N+/hZTjenrdcBYWYOZI3b9way38rBgKXmi+kxuFFYrFr8EnHF4fE9tLPN7a64k2Gtnj/z+0Iv0N+koVILsR8dYodRvlLrOTleTkpknR7nNqrCddhx2Ak0emo/MEuV5HO/C4hhK1k80wpU8Yc+UHJ3JjE8oyPhSUTeeL12HYgSybybApk3vn0XuSIOXb5tFJ8Wtn7zicQGCLkOAUVNGJmDzFr4APVaV7RpdT7lzm8PVMGaOH8NiHB3qEnyccOBYFL8aM4XUeChkcpyZPP9g7Lt1BVxUWDP/8ZvNI7GzPP/VohVz3NgRPy5h0P5zGxvUkkSFjOnBosJhWsIqDl8nEUoTOjYDXHlH/xAxEj7X7IZvSmxK2GmBw8OU8YCTfNgROo9y0nl58kqPDMpjFwrONVM0IImgLHUerOvX1EoNIcPJFK77y8NfaqhXnTKjyzaQqc4FAnu/+nFpzmqBBT4Elz4ARHflHIqKU5cCJO/aQJg6bAcdT4jnKY5wq1viU0Bo51pMBIJHW+o/O2593kiFE+QghWVX0TXfGi5lyFoqNiUKDXkjn5BSorK2/m6skPsLT0M1mLQxUGtgNqDNJvwGy4N+VFLpKlZdSGSs8c+iPbKDaqMZTMOEPj0DTCJKCVpeHl1OApWJhEsuDjVLkClRkFq1lW+mmQmbGG7N81+pfzkUn3clr1D9CEO2NRZttGMstVhYEm3Kys/BaLSj+CJsbv9k5JodHIlr7/wZJjE/rCJgmeWPENAnoFi4o/ipoO9yBQ0AjqtSwquYpz636DrmSWPd4Xlozj10szuCI23D6/6MP4tBJOrLoRXfGlx1YTHgr0KhYUX860gtOp8s5P11tBT34OtzGfeJmPzOgLDzNDZ7Fv+Clmh85P0jM0UmhgY+A4qr2LWFr2abxacfq5mnDjUgIcV/EVilyNzCn8UEaIFwVNuJhXdCkho47jK76KSwmk26sJDz6tlCUln2BZ2ecd617tWUjE6stwAs6cj1DkaqRl6ClyFargxMpv4FL9HF9xA2oy/EbqudXeBTQGjmNh8UcI6JXoyfaowmWPbeU3COjlHFV8ddbYasLNtIIzKfNM55jyL+JWQxntceNRQ6wo/wLl7plMLTg1mWbPYVW4WFxyTRZa9n7liEK7AMKJAXYNPc1QvB2fVkzciuJSfUwOnoxHDXFgdB3b+h8gbPZQ7p7KzKILCSf6WXPoOuJWgoS0kRpF2LdbpGIoTwx9kemuoQk3y8quYyDWStwaYzi2h57IRkxiKGhIICbBlDKNythGaZ1ZhRfQGFjJnqFnGYgdoHPsDUzGz+z2c1VK3NOZETqXpsDxaIqL+1supz+6L12nFBfGpfr5cPPjCKEwluhl5+BTrOu5E2fHWcH00Pn4tBKmFJyCT7N3TGOJXt7o/gMtI6+iKS5mFZ6PImF93+8wk060Mlmihs7y8i8yNXRWus590b1Je0iC5sAJlHnG3/LtYxt47OB1ybvAx/tCFQZziy7j4PAL9EZbsEigKyqqUDmx6gdUeY+yYd7BpxiKtyd3F8ekIXEpLVrH3uLAyGu41QKmFJxCZ3gzr3ffyUiiC7cSpMwzC79WxvbBBwA5oS8AVOYWXcLeoYcxZRRLxlGESoExiTLPUSRkjEb/Cio8c9L0gIQVZc/ws3RHdlBoNDA5eFIWJN4d2cmeoTUgFCYFTqQkI+hW1Bxh19B/GIgdoMw9labACWlIfCh2iBc7fkRHeBOa4mZW6HwWllzJtoEHWdfz66T/lj0OChJNuFlc+gne6rmTuBXOmheGcHFMxQ00Blayd/hJNvX9neFELz6tinnFl9PoPy7dHlPG2Tf8Ah3hzRTo1UwuOCULEu+L7mP30DOYMk5T4HjKPeNRF+PWGLuH1tAb3UOxaxKTgiuzXjad4S3sHX4BVehMDp5EoashZ/1OlP+akBpSSvYMP87WgbuJmoPoio9EMtTl/uHHmBG6hDd6fkbMss/UQ/Ft7Bl+HF3YRroUagNW0kt9/N2YCieQEhtKF2jCQ43vaHoib7N3+GksGUv+KnUHt21os9EgQKa8hBUUodHkP5HN/X/l4MjL9pZYkFwN9o8VYS/zwdhGtvQP4NX81PiWMxLvyKmTBBJWmLgVRlPc7Bp8mG0D/8SlxJPxeVIYnH1HvUtxsWfoXyio7B78F02BU5hReDGG4setutDECKbVS8fYS3i16rSriP3c1PbdpG3sNaYUnEnY7GU03s62gfs5MPocUlqEEwdYol+HL0ndH4t3Yihm+qxv94VNhLSsCAPx3aiKlTw4WJgyzovt3+JDjQ+zZ+gJtg38jYg5QG/kDXxakEqvPS8HYvvY0vdnuiIbk/GgB1lQ/EkmBVeRsKK80/cndgzeT3c4jFvRicp4emyVZHuEMNk+cHeWLceScXqjW+mPbkciGY3vxqddRzDJyG4bXcuW/j8zHG/Dq5ZgKCqTC2xFHE70saX/rxwceQkERBNtLCn9Im6tECklLcPPsLX/z4TNXrrDNXhUP7X+Fel+NRQLQ4mgCpOE1U1CRpgUPJm3ev+IJcKkAsYhBAGtzL7hQiYc5uoY3eFtdEc2sWvw4TSvbTg+yCsdNxGouYNSzywAOsbWs7n/TwzG9id3MpJpoQ8hhCBqDrG1/25aRtakx9avfQmfbps7Do68xJb+PzOa6KRTq8CluGgKngTAaLyTzf1/4dDoWoRQiZmdLC69FiNPhMr3IkfUzmd9z51sHfhnmrj1v5XxO7uS0HnGyUqgEtDrmVpwHpv6/0QkDySer1yvVsXM0IWs7/1VjqEv9dzMnUFKVOHihMrbWNf9awZju+y6ZLzBhdC4YtLzvN79E3YPPZ7VFzLJx1HRUIST0VLgUoKEjGa6I5ux0s6tAlW4MKXAlJGcvlDQ8WnFjCW6MSe4oggU3GoR5zX8i/0jz/Fa1+05dfJr9RxX+U2eaP2EoxFXxUNjYCX7Rp7JyqsKFydX/wKvVsrD+y/LcvRUhYsq7xJOrLqNF9tv5sDoC1l+dhKSMX2kQ7iUw4ntklPhnoVfq2XPyFNZ5arCzaKSzzK54CweaLmIsUR3uk0CFZ9ewbn1/2D7wP1s6P1tFjJlj+33KXZP44GWi5IvyeTRVOiUumZyau2veanju+wdfopM250qXCwo/hRv9vwOS47ltKfImMZAfC+Wg7FaEQbnNfyb1pFXeL37R1l2IU24mVV4BXOKruDhA1cwFDuQMV8VPGoh5zb8iwMjL/Ba1w8m9IWLZWVfp9a/nPtbLkz6SKa4dzoFRh1n1f31A4fUOGJ2Pgkr+n9U8aREFYpjHF+JyUj8AG/1/ISJ19C8mwgBCTnE+t5fJA2auUgZMlfxgM3Xeb37x5S65zIU35WTTwGeb/8aB0ZfcnyuXy3ErYQYiu9zMD5KotYQXZG3J6RJpDRxqyEiZm7/WsQZTqQCpE20pFjErVFaRp5lQ8/vcsbH5r/E6YvuyIuUSRLsG3k6B+UxZZQNvb+nyDXZMe3Q2Fq6wps4MPp8LrUAhQK9gqjZj5nHO91ZbPvUofBbwIacVFNGeLv3D7iUIFFzKEuZSkwiiX4OjrzEO31/zIHETRllfe9vafCfmIO0WTJOT3Q7HWMb2D+yhomggSljdIbfzgtS9Md257WBWTLO610/onX05RxUKiEjbO6/m2LXlCSBMPNFaRG3xmgZXsM7fX/McaK2x+e3JORY8gSSyb2LMxw/REf4rfTu9f3KEWNwDps9HwhqtyUP3CrAp5aiCd3xzWiRSA7G+9/9xa0RR8Vji0KBVpP3jTAcb6Un8o5jmoXJwdGX89bJpfhQhDgMJJ57KaFdbpwiozHHmJ+ZL58kZJj+6G7GzC7H9NFEB33R3XnLUISR91qdvugOeqM7HGFiRRh0ht9GcUTCLLxqEI9akLfehxeRt74xa4j+2B4SDkotISP0RXenzQETZSh2kN7oDsdoCAKFrvAmFIfQFiDpj+0hYFQ4zlXb0TX/dTyto68eRvmbtIfXO77YU2M7mhGCN1NGEp12ex3oJhKTwdj+PHV6dzlilI9HLflAHBMADdsKP1EEKjX+ZZR75n7AWjmH7LYlG6XKqo9ws6j00+hKvts4JCPxtryTMD//RFDkmkSRa7IjeS7zdxNFQafYPZ0il/MtBYcTTbhxqyE8qjMFwKdVUOhqzhuCYk7RVXnbJKVJsWuK41vdkjHKPPPykCJVilxTCLmaeHd2VM5TOZyylVh0jr3h2B5NuClyTUJTchFFgKBeQ7FrqiN1QGJR5pmdJ/CaoNBopsQ9wxFqtzDx5KGiiKQT9OFk9+C/8sL0ha5JePOU7dfKKTQmOXu8o1Jg1B/2uYeTI0b5aIqLGaGLUPNM4HwiUDm59pc0+E/IWcyK0JkRupio6azVFZQcqDYluuJnXtFVTC04N2dhKGhoePPm9WiF1PpXMLfwow4TSSbN1WrSaS+TOpDyUXMuVxUuZhd9hFlFl+flxWjCTYFeR+5RUGVa6DzmF1+TZ/eT//qVhIywte+PxM2+nPaowsX84k/QHDwFTckO2SBQCRnN1PuPTUYQyGU4q0JjWsH5OUG/VGFQ5V1CuWc2db5jc+qsCoOZhR9mXtHVOX2hChfl7vlML7iIgF4zYV5kUhaclJBEwaIvugVTRrPaK9BwqyFq/ccwt+iqnLmqChfzSz7J5OBZyfqO96gidIpdU6nwzk+m5+adW/wRZhdelhN3RxUuGv0rOaP2TgyRa+C14XORpz0CjxLAklGclK6u+KjzH+fIebLH9pM0BU/KGVsFDb9eRYVnQU593qscMcoHYH7xNcwtugqXEsI2nhZiKAE04aXOdxwnVv6QMvccbKOhQbl7DqfV3EGJazorKm6iLo002A3TibBj4G+MJdpR09yJFMfHGvfbmsC3KHFN58zaPzG3+CrK3DMm8DLsvNW+BWjCnZO3yJjCaTV3ogiNGYUXU+1dnJE+DtUrQmNe0dVUeBbajBjhpsw9Gx17IU0M4+HXqjip+qcUuSYRMho4ueaXFBlTMtprc2OmFJyLW/GQeX2OjUcliJnDVHoXcnzl9wjq9YDArRZS6VmIjivdF+PHX4GCQMPEJIIQcVQkhuIHBD6tgmVlX6MpeBK64uOM2j9Q5V2SpDoYNAZO4rSaX+PXy5N8GZn1EUCFZwFvdP8g6byb2d5yjqv4LgDHVHyLaaEPJXeSghL3TE6p+RVBo4Zi9zRWVf2YQqMZEBhKkDmFV3JKzS9ZXHYtZ9X9mebgqRnKKwMIAFQ0XErq6GZzv1QhEcLCEIICvRb7ShuNau8Sjq+8BYHK9NCFLCr5LB61GBAE9BqOrfg2Nb6luLVCTq/9PZUZYzspcDqrqn8MwOLSLzC78MMYSgAQFLomc1L1TyhyTaHAqOfkml9R7JoOCHTFx4zQRSwr/xoerZgPNT3MpOCZyfYolHvmc3rtnZR75qCm4yOM92OT/ySiZrftlzYhtIyC4KTqn7Gm9aMcHH4UlWh65D1qCcvKbkiOrZczav9Atffo9Ng2BFZxas0djpEi36scUWgXQNQcoGXoSUbirRS6pxBN9NEf3U6BazJNgdUMxvewc+BfdI69bmtqAR6thKXl3+fZ1o9hEskKBi8wQGjjZ1aZujNcENQb7TvNpUyep2MUu2Yyv+RzlLhtLsjDLecxkmhNIujjeXUlyPSCK9k88BdMK4wqoNg1A49aQn9sE5riY0rBxYRcM3i69aNJ3xiRVnea8HJ+4yP0R7fQNvIyhhag2nscT7d9JgMlkaiAiotZRVfSG9nMmNlBmWcR00IfZiC2i47RdShCJ+SeRYV3AVGzjycPfhRThhHIJOpvE8OagmexpOzrmDJO68iz9IQ3ETBqqfefSnt4Hdv67yFqDVLmnoVbCbJz8F4skSB7FyUxhJ/GwGkUuqdS5z8ZLeOu7p7IJlpHnkMVBvWBUwkaDQDsHHyQN7t/ipThZNsUFOFlcdl1vNX9o7R9RUgJAhTcnFTze4rc0wAYS3Sxf+gJwmYvld4lVHiXpie+JRMcGn2RzrH1+PVK6oOn485gEg/HDrB/+AlGEz20ja0lag4jUDGJM63gIiDCroH7kCLOROpiiXs2hXozrSPPE5dDKELFrZaytOK7BI0GWoaeZDjWQpFnBrW+lahJno+Uku7IBtpGXkRXvDQET8evjwdciyT6aBl+nNF4B+XeRVT5xkNfWNKkY+w1OkZfx6OV0BA8A482fuQdjbfTMvw4MXOIKt9yyjxHEbUGee7Q9fRHd9qOOzJGhXcxS8tu5qH9q9rS3nUAAPzFSURBVNOUkdTLSEp7d98UPI09gw8iM46CUoJfr+LUunuyjpe9kc0cHHk2ObanEDQa8y/kpPzXhNToi2zjuUOfQspEhsHONgwKdMBCCNUBbhSowo3paBSzl7BIw6XjG8/G4DksKrme9T0/Y9/Qg8kzsX0uDuh1HFd1B4/svwCI5uS1ULmo+UU29/6OXYP3JEMyTAgGnwwFYv8+nrHh97Ow5DNs7vsVMWuY1CFAEQYzCz9Oy8gL9Ee3oxJPGq0njpGa3D3pSejcQAiFYyp/gikTvNT+FSTZxkUJlLgWclzV7TzT+hHCiW4SMowq3ChC58Tq3xFyTWJ7/91s7vstZoZvU+o9mdoZpFqhCg+a4uHEqt8QMBpZ3307+4YfSR5XbB7UnOLPMSV0Ef3RHaxp/VhyXGUStq6iwncsOwb+h8yQGilpCKzm6PJvsm/oYd7sug3bapJAEx6K3LM4ruoXWDLOs23XMBzbT0KGUYR9geBx1b+ixD2bvYMPsb7n9qR/koUqXJR6FtIYOI+gUcNL7dcSNQcwZSRjbO3xEMmedqYPuFEUHUvGMWUETXhxqSFW1d6FSwmxtvNbtI0+nz66KUJlYekNNAbPpDv8Di8e+hwS047nJDwEjUZOqL4TIVReaPsM/dHtdnvSY/tjyr2LOTj8LK93fcv2uSKOJjyUexezrOIHJKwxnj54OWGzB0tGbSa00Cl0zaUz/CYyY2djz08V+14X51DBbrWYk2r/glcr563u29mXJG+Oj+1nmRK62DFvSv4rlI+UkscPXMBIPP+96h9UXEopUas753uvVslJNX/hkf1nOvIndMWDJVUScmTCu99WLCfX/IVn2j7yHuI8j4ttBD+B9tHnSWQQ5VKiChdn1T/OkwcvJOLoDJtfXEohJ1b/gccPnp+zkCVQ41+FhsGBkSdzjI8hYworKn/M4wfOz+mLFNt2YpiP8TZBmWc+PZFtOYiKIgzOrH+I59o+xXC8JSet2D2X7vDbyGR4j4npVZ4lyTu3skUVbhaUXs9YopttfXflLCCfVsmqmr/wyP6zkvaOzLweVlTeTsvwYxwYfppsON2WVESj/JL7UhAo1PlPpT5wMq92fC0HIUqN7VMHLyE8ATlUhYuZRR9HE17e6f1FTj8aSogz6h/k4ZbTcl6yqvCwpPxb9IQ3snvw3oxdji1BvQmExlBs52Ha4yQK1d5jmFZ0Jc+3fTrP2D6IJ0/saPgv4fmEzS7GEh3/L5SspF0sJkrU7GX/8OOO6ALIJJyqOi42SZy20efet1evxKRt9MVkPmeYfv/woySs98NdscWUUdrHXkm6hEy4TgYYju5hKL7PMe9QbB8HRp4mH91B5FE8YONzXeG3cfJ8FqjsH36S0cShnDRLxhiJ7YfkJYS5BUsOjb2Cvcizf2HKCPuGHiVq9ju+uSNmP/uHn7BDfUxIM2WYg8P/oW3khZxdTUqluJVC4tYAhwuJkvuNxf6RxxlLtDtC0wKVlpHHkrvdiXWK0jL0OJridYTELRlj3/DDOIcICdMy9AT90W05igdgJH6QmUWfZEt/i+NLNj/twKJ97BX8ek1e6sCh0ZdpLjjXIe+7yxFjcM53+8H/VtxqIXqeWwpMGWPf0APkm2DyXSDZgyP/OWx6XpETHQszxUJRXI4L+V2LRaIqrrxcHnvnka9cmUSFnCgLoAlfXsVk53buw9TxMN/VI6owKHbNckyziB8mTISd18nzPFUjZ36QXStF6I5X2IB9HJleeKmjl/67i6Qn8jbOalqgYpBvvinJ+Mj5ys3P0eKw7QHQFMNRcQlUXEpx3nxCqAhFd8ybYot/UDlilI9HK6EgiVi8XxEYjhC9gs600JU0Bc9xSLcXfzi+P+9VJgL7aObExxFYjMZ35V10+UQRBoWuqah5J7ZCvf/05Fb2/fWFofhpCJzpiEAo6Mlg385wbLF7NvWBUxzS7CPBKbV3Uec/CeFwQ4hdgrNykVg0BE4j5JqSM4FV4aIxeDbTi65EdfDEP5yowo1bDRKO5+6oQODXa2gInu44Pqpw0RA8g4bAaTljK1Cp9C6jzn9SLj09/Rs9WV+nwy0oQskTXiRBfeB0vFpFTl5VuGkOnktzwXmOfWGoBXnHVhUemoKraQyuzlFQAoUi9wzqA6fiNLaK0Di++leUeY5iojpQ0Kj1r6Lef0oeJWNR5Tt8GNXDyRGjfACWVXwPt1qMJrxJY63Ng1HxoODGUAptg6IwkpNGodCYytKK73BC1W/RFX8yr91RApNtfT/nwNC/KXLNSL65xxefhokUieTZPjUZxqFITXFxVNnXKXA1owlPsk72b1TMpDtEypCtpd+0AtUm9bnmYigF6R2DgkbImMyS8u+iqZ4Jz7PzzS/5PK2jjzK14EIMJejQF/b/F+iZ5Dq7DNPqozv8Gisqb0cTHjThTRodXZR65pEdfSijH4SXJeXfwa0VsbjsW6jChSo8SWO0wezizxL8f7h773BLiqrt+1edu3fe++TJMwxhGHLOoJIzghEDj2JEDKiPGQVz9hFFQB9FkaBIEkmiBEVyFMkMMHlOPjuH7q7vj+6zzw69Z4D3/b4LvnVdwwynT3VX1V29umqtu+4yFrNr/2dI6AtaHNCc4wn6QumaPcXUHHV/mn2Gvo6pZpvtUYVFn7Uj22TeyYhzAIsTRzfrqgkHTTgM2ruhCKUjfRxgZatZNpZuw5cFRMt+NE3YmGqafYe+ja447Df0bVRhhe0Jxs626XeRs1ayQ+4jIbZBnTThENOG2WPgi8T0EXbtOwtFBHWdbbMhUmyTfgeHLfgtuhKPwDD4d5+9Uxc+Cg1eKPyR/Ya/i6Gk2vpiyNmbpakTWBQ/nPmxg5p11YSDriTYf/j7aIrBAcM/aPZPgJPJ0uTxDDn7sF363WTN7VHDsaoJB0vtY+/BczHVNHsOnB2B7UdIm8vYd+hbJPVFbX2RMBaxS9+nSJtbsTL7oWZfaGFf7jVwDuarZpi/hgLOs+ZLl7XFv1NorGbQ3gsFjdHqfST0BYzEDiFff4F1pdvRhUPFfYkN5b8hhMaixAksTr6VVTPX8MTUz0DWW7Y3CCy1D18KKt4YnRs+NeGw5+APeGT8hxQaLwSgKxa75D7DcHw/VGKMVu9nbfFWVheuR4Y76GdNSjDVQZan38XC+OFBFkKxeXLyp6wp/IWGrBFIJ6gk9fkcPP9yyu5GHp34YZMy0GfthiY8JmsPEpyyoaEIi6Wp9+DKOsPOflhqhoo3QdJYwvMzl/LE5IWhqh7N9uhKiqMX3xpoPhduoeZNMz/2Bgw1wV9WHx3s2pcw95XWOWDoJ6wtXcfG0p0oQmckdjimOg8ELEwc3sZ+ldLnxcJfeHDsm+GMUYaSGhbLU2/nhZk/UPOLLX2sYKppjlh4A0KoLdjuSc7aoW0LykztBdaVbsNUMyxMHE7dm+HWtacGmsF+jSA9r7BD9hM8OfXjtviFL4OM6HDsIPYa+lYbUa/uFVhduBFXllkQP4yYPtLSHsmmyn1MVB8jZWwdprznZi0Vd5zVhZsAhUWJw7G0uSXKVPVJ/rbutJZ6iLAvTHbOfZJHx3+AK2tt+CjC4IiFf0FXk6wp/I2Su45hZ1+y1py0RXDvp9lQ/ie2NsCC+KFtdIaGX2rB9hCSLdIWUgbLvtHKAyT1JcyLH9w2a6l507xUuBFfNkJsB1vK+mwo381U7Qky5gqGW+gMAOXGRlYXb0ERJosSh2OqabZkr4tsFwQb5B4b/zZrin8mmDBqLbEPD0PJ4uPS8GdCwOcCZQIDXYlR92eakpChAg5AKCg1JwXRNt8QDjlrWyarjwFgawOkzR3YVL4dTzZQhRUGcCW+rOPLubKzSWghQuEtcxt2G/gmApW/rTmhjT8RlNDYuf/LLEwcz0T1YR4e/QoVdxOBgHnU4YZBCl4XMXbo+zzz4oHEwc0vHU3FXdf8rdn2aCLGPkM/5rmZixmv3AtCYKn97NL/NUruKA+MfR1BA0U2Qj5NMEsLjnf2m8+EkMVqLGG3gW+QNJYjpeTpqV/w3Mxvg/pKD4mNpc1nu8x7KNZf4NmZi2gdU35Yp536Psd07TFWF69llhqxffaTLEqeAMBo+R4eGf8qNW8SpGTA2Y9d+s8hkGi9jNX5q2j4EyhoqIpNw683A7NtJ18IwYL4cSxIHM1E9SFAMFa+h6na4wgEjj7Crv3nkrF2CCRcZi7h6alfhPgKliTfzorsxxBCoVB/gQdHv0C+/hwCSBpbs9vgN4nri5DS4z+TP2HVzO+DPX4yCJsL4bAs9RZK9ecZLd/ZPr4BVcTYqe8zjFbuYkMp2GAqUFkQP4Gd+7+EEIKNpTt4ZPzrNPwZkJKh2BvYpf9sNMWh7s3w0OiXGK3cgxDBR3Xn/q/RbweH972Y/xNPTP6kGSBelDiRlbmzUIROubGeB0Y/z3TtCQQQ1xez68A3SJlbh9hewHMzF8/WlOXp97J1+nSEEMzUnuLB0S9SaqxGAhlzJbsNfhNHG2Zz9rpxPg+PfY21xRu6UqOv1gJpi8BU0X1NAoqwMBSHuj8DWxB07ywbpNw7QwMKppJmu+yZPDL+dYgImGbMndh98Nv8fc1JkdykXqYKi32Gz0dB487176bVUbW2J6HPo9h4qS3jpQqLg+f/gYnKQzw6/o0up7g505UEhy74Cy8WrubpqfM7ZDEsVmQ/wbz44dzy0mHBTEzM1QkCTlTO3JZ843n8jrJ7DH4PR5vHHeve0XZfgUba3J4D513MXRs+yGTl4RaJkMC88P5RGAQONBpPVTi8ccE1jJb/xb8nvt3Vnq1S72Gr9Hu5ZfURNPw8c/0sMJQ0hy28kaenLmRV/tKOOqtslXofS1In8dfVx7T1/2xfCBEjbSxmuv6frnoNO29geeZ93LX+fW33VTDos/dkn+HzuGPdO5mpPdOGX4DtFRTqq3hw9PNd7VmYOIGVubP46+qjqXrjtAa8NSXOoQtuYHXhGp6a+nlX2e2yZ7IgfhR/XX0MrpzTpg6kVgZ408LrNxt0fl2k2ht+ibXFv/RIBb56a+ertvxcBDSypclTeKnwR16u45krC2Ag6ayvjyurFBsvEeV4AIqNF3lx5o+vOE3vySrPTv1vGFvq4JiEk0BTyVB213Wl2n3p8sLMFYxXH3hFjico22Bt6Saem/51VxrYk1Wemf5VU4StTTNJBC+dKjRm6k931cmTVZ6eupCksXXXeewSl3z9aTaV/8Vk9ZEuxwOzJ85GaflsPgkgpcvqwjWsLlwb2Z7nZy7B1oaby8rWWnmyxrriLazKX95VVuKxvtyu09PZF+AxU38qsl4bygF1ozOt7VNnvHo/m0p3Uag/34WfLxusmrmcyeojke15qXA1OWuX8Jy39rpJ6bK2+Bee7YHts9O/gpDQ2N5Wn4afZ7T8L4ZeZdD5NRNwrntT/9fT7bNOYnNiRy/kf/8qNYQEg/a+kY4tYB33bosv6+HM5JU5AYCSu4aSuybymhCCtLkssj0Sl2LjRSqvgkvlySrjlQd6CvHXvUlKjTU922MqqZ5ZwVJjTeiou52/QCNfe6rH7n9etYqeT52Z2tPhLKDbPFml5K6N1AkKrq3p+ZGsumOU3Je6HC0E43FR/Cg2R88oNFZFXlfQmKk/FZFtDJzelrAt1F+MzOp6skqxvoa6PxVZruZNhe3tXo340qUcwd96ufaacT62NtiDS/B/ZqY6QNpcSXRTZ/d0vfKlp60NMxI7rMdVn7S5EkNJR17VhE2+9u9X5Wzj+iJy1i6Rg1BBZ6xyN9GD16DP3p20uf0rfibAWPnvPR1qQl9C1toZVTjdzxUaK7Ifp+eJG8Kkz9qtJZM4Zz51BpwDesx6dBYmTmB+/IhXNW5Gy3+HHhQLU+0ja+4Y2R5VWGTNnTF6nEKRMrchZ+0aTf0QJotTb6E3hUIQ0xZEXnFlhcHYgdF9IUz6rFlsu++tCot+e49IHpAqHHL2TsT1xZHPDbDdKbIvhFBf9XiC15DzUYTOdtkzXqGkxuweHB1T6Udp4zgoaCKGo1oUa48SPfj9HvIVm9PxCcBcmT0LT+bpZocGu8Ib/hQrc5+NbI/nT1Dz1nexa1VhkTF3ZHHyLfRbe3eQ5IIo02Tln2StHVAVm1b4VGEx4OzTkuXpqJMQLEq8mRXZM8M6zbVPESa2OtJyP6WtLMggw0f0dpDtc59mJPYmLLUP0TJLUYRJn707jj4Yzl5k1311JcaS1FvRlFhXexbGjydlLmdJslNqRUFVbLZKncq2mQ93tWfLJhE0EBEvsiosVuY+zaCzH3F9YRsGCgYJYwkDzj6szH4qQhYjCKIvSByHrqTaPhBBOv1A0ua2LE6+JbJWSWM5ND+GnWNKYql9zI8d2TbOBSq6iLE4eTIrsmd0SXkEMbkzyVq7kDa3byuroGNrgwzH3sDK3GdQItqzMncWw7E3YWn9XdhmzB3J9CCIvhx7zcR8AJam3o6lDfDM1EVU3FHS5nY4+gImKg+gKhbzYoeTrz/DaOUudCXJ0uQ7SBlbMVG5C0WYuFKytnQjDT9PytiW6eq9lNxVgZyA9PHREcLEUFLUvUlkc8PoXE5NERYL4ycQ1xfzQv5Sat4kMX0hvmxQcTcS0xewIvtxBpy9eWry5wi8MNcye4dgoNT9KbZK/xeGmuSpqV9QbqzHl2WkLM6l+KWLh4LAxNKGWJJ8C0tTb0cRGlJKbl97PPnGS806qvhIPJ6fOp+D513Kk5PnMVa5H1NNsyz1HhShMlG5r609szYvdhiGmsRQk+w/8huenDyP6doT2NoQ22Y+yFDsIFy/gi9dVs1cwrMzv8aXteZzgyWsj4KOo29Nxd1IwljKdpmPkgs1XQ6cdwlPT13A+tItCKGzKHECW6Xfi+uXUIREStnh4lX67X3YULwejTIeHh6BlMrW6Q+yJBW8pNtnP0VcX8LzM7+j4c/Qb+/NdpmPYoV7ig6cdwlPTv6UieqjWGoOXUkwXX8iPAc92GpiqClq3gQCv6U9gHQRIo4ibGL6ArbNfJgBZx8A9h/5X56Z+iVrin9BAPPjx7J15n0IoTA/cSS6muSpqfMpN9aTMrdmu8wZZKzgZTx4/mU8NflzNpRvRxU2i5Mnsyz1TgB2yH0WVZg8P/O78AMkyJq7sNfQj/jn+lND/NrHlIZJtbEBZBUha8weWmgocfYdvghDTWGoKQ4Y+Q1PTv6Mqdrj2NoQ22Q+wHDsEAD2GfoZz878htWFa5DSZV7sCLbJfgBF6Aw6+7HP0Hk8OfVzivUXSBhL2C5zxhy2I7+LxHZzIY0t2RadjxBiAfBbYDDsjQullD8RQmSBK4DFwIvAW6SU0QvHV2BJfQkD1vaUGwmy9s7Y2gIa7nPU3QlcbxMZYynSH8VQs1Qaz/Dc1LeQTYlOQcLYGkNfTrGxmmBntwjbIdGooeDSb+3D+vKdcxkIgrO2VKGQ1OfRb69kKHYky9Jvx/VLPLDxdGZqT6MBtcY0a/O/o8/enZwVnDXly1Jz06WPQBEWGWtnABL6IgatlRQUg/HqfUgh2+qk46FQZcDalqy5XTNzIISg5q7BEC1SB+FMr+SuQRNx+q0dQE5hqYNkzK2xtHk8xtfC9sg5AqQwWBA/jpnavynVX8DUBhmwVqJTJWYsJRHKXmiKjZSSnLU9a/MKDWYlJmjWWUUhYywgrsZImtsTa5GJ0JUYfdb2NNwXUIRFztweBR1TzbAocTKrC1dCKPXhh5Iatprm2amf4MsKuiD4tspxGt7aJsdECEHG3IYBawV1b5x+cwdMNdt8rqX102/tgEIRW5vPouQ7cKXLWOUedCWJrWZZX7yaTeW/I5uOOaQTCIlKjZy5EkWYvDR9EWvyFzMSP55B5zBy1gpq7rOAoM9a0TbbmcW2qFikrR1w9Lm0s64k6LN2wPXWoSlxcuaKNmwXJo5C+pOU3RfJWvuyOHUqmhInY+5IubEmnJkRjikFKXxGK/9gU+VvKKGuEoCUUzw99UP2GPoZALY2RL+9Eo0KMWNJm+yFIgxy5gqq9afwZZ0+e3u0luVUXF/AoLUSWyghtvM6sF1Jw32xeZ9esbiXa1tMtQshhoFhKeVDQogE8CBwAvBeYFJK+W0hxOeAjJTyvzd3ry2l2sfLd/Hw6MfCwJjX/Gr1qBlbitXM7sYGOnZkB8sqDx1Puih4gYBUWE4VNilzZ3YfupCHN53JWOW2rnvPT7yN7bJf5LY1B9PwJ9q4rIYyyCEL/85M7VEe2Pi+8Ohdt1nb6DoFTmtZ6kMszZzOxuItPDr2CWZdVftuaxtH66fqbQpT10ogx5E7B4nKo+OfQ6EBcjboHrCv5/hP1eZdg2s6uw7+gqy9B0+Mf531xaubFIA5XvGs85EtuAQ6QTsN/IgB5xAe2vQRpqr3N8uqwmZB4q1sk/ss4+W7eGjTR1qC0kq4NFGo+9G797fLfZmFybezrnA1T0ycGwZ5fRRhYWvz2HvkcnxZ5+51b6buT4d9oaIInZ0GfsiAczDPTZ3HCzO/xm9pTycGImIsKVgYapqGP9PWnsHYEezQ/w2mq7PY1pG4KJioisXeI3/E0oZ4YMNp5OtPhGUDXtOS1Oksy3yITcVbeWz8s3PtwcLQsuwzciUVdyN3r38zTd2pcAD02W+i0Hiaqrum7XMwO4LesPAu6t4U96x/S/hMv9kXuw6eT87eiyfHv8G64lVt7cnZ+7DzwE8pNp7l3vWnhu2pE2xZMthr5PfE9GU8vOkMJqv3tpWdn3gL2+Y2+8pvNtW+xZiPlHKDlPKh8N8F4ElgHnA8cHH4axcTOKRXbVL6PD7+xXAABV/s3o4nuPpyTITLoODfsxYcs2sIjbi2BE20Xgt2Cc/UHmVT+W+MVW6PvO+6wpXk6/8Ojjlpex64/jj/Wns0D2x8P56sNNsxN2g65xNBe3xZ4fmZn1F1N/Kfia90lAlMQSVlbEfV29DCmfHxZZUnJ86hz94dPXydmnwbXDxZxqcaOp7gp3PXKjw+/iUKtedYV/xTG/eoyc5lTnR2DpcgYP/I6Jmsmvllm+OZ7cfVhcso1Vfz+PiXO7JhPq6f7+l4AJ6e/B41d4wnJ74etjV0nrJKxV3H2vwfWTV9ETVvoqUvPHxZ5T9jX6LSWMcLM79sOp72/oa5/WjdY8mnStXb2NWejaUbydee4D/jX8GT5WZf+NRo+AWemfwBo6W/tjie4P6erLBq+hdU3I38Z+LL7e2hSs0d58WZ3zBRuROVuQMPZpeH09W7abiFFjxa2yN5Kf977l53Ep5sTaeHfTH+ZYr1VawtXtnVnonK3UxW7+XJ8XPxZLFJHZHUcWWJJya+wUT1Hiar93WVXVO4nFIYFng19ooCzkKIxcAuwL3AoJRyQ3hpI8Gy7FVb1d0QErr+75no+NNtHguTx0RmjjxZZrT0d3o5OYnLWPnONtLc3DWPovtCOBCi66RESHUEprChdAMyggMkCDJlZfe5yFSvRLK+9GfEqzj3vOZuYrTytzk2XMdzE/pyem0eBckL0xf1IEwKNpVvphGRyg3iHb0zfgLBv9adGHlfX1bZWL6F0fLfIlP8gaO4KRJbAajotGt4vzzzZYPR8u2UGquirjJRuYtN5b9H1lkInY3FGyJT3pI6o+Vb2VT6a2RGCwQxY37Ez4P2rMlf1lMUrOaOMlq6NXIoe7LCWPlOpmoPR5SUTFcfZLx8R4/jiQSTlbsjn/ly7GU7HyFEHPgT8AkpZZuXkMHaLXJkCiE+IIR4QAjxwNhYt6DXrKlKrLks+L9pUSnCWZPSo1R/rgc/RWCqOXp3kYKmJCNTxFualZlqP/32gZH39mWVcv2lrkzYrKnC7OmkJR6m0rfF50eXlRhKGhHBVg32TB3RkU1st0C2Naqsiq5kemJrqv306mNPVsKZUXR7dCXVUy5F4mGE+srdprIo+faeVIjNm8f6wlU966wqDoaS6nndUHM9sdWUBHpTT7r7ufPix/ZwliLSuc+aRNLw85HyJAIdXUn1lOtQhIWmpNoyXXNlFbQe/f9y7GU5HyGETuB4fi+lvCr88aYwHjQbF4o81ElKeaGUcncp5e79/b0Vzww1TcbaLXIAb9miyyjCZtfB/2Gr1EfobKpAI2XuxHTlPqIHt2QkfgIj8eMj7z3ovImR+NGdvP6W+8/dp71OFouSp7JV5iNE81MkG4t/Jq5vRScPSBE2rj9N6y7uVnO0RQzHjw7T1i/fBBoZaxeGYkdFXxcKI4ljmRc/cTP3UHvqyYzEjyZr79mFrSIslqU/yPLMJ9lyqry9vaqwWZQ8lUWpd0dIUKgkjZUMx4+KrJMidOYn3sz8xNu60stbNknN24ShphEdHx5FWCxIvp15iZMjtYQUYTAcP4qEsQ2dM76gPe9mUepdEe1RwkD6O0Nn3XlfK9I5zFrC2IY1+UuIYtwLoTISP4Z5iZNQaHdACibzE29mJH5cD2wF/c4hPZ+7Jdui8xFBLu1XwJNSyh+2XLoOeE/47/cA177qWoS208D3iBvLA21gESfYLJoLg18xBDoCDU3EUUUMSx1m98Ffs0320yxMnIqp9qMKB1XEUTBYmvogUjZYk78Q0Ty9IjBbm89Ogz+gIaea6+b2P+DoC9m+72xy1n4QSrkLVBxtEbbWx0TlTnbs+zaqiKGJOEF3zkmQt75OqoihCJMB540sTp1G0lyBpQ52PTeI1agsS38QR1/U1p758ZOav0NXnQW7Dp6HECq7D12EqQ4066VgIDBbZi5K+N/Z//co1h7mgQ0ns6LvK2hKElXEwz82O/Z9D1sbZpvsZ3C0pV24CXQGncPJWXu2/VwRFrsNXoCq2OzY/13ixtZNbBUMRmLHMj9xCkvT72Ob7KdDCYl4iHVwEkM742o2dqexJHU6OXtvhpyjmBd/cygDEdQ3ri9l54EfoQiD3Yd+ia5k5vpCWKzIfYW4sRXLMh+k3z4wlGmZfeEVFBw0EWdZ+mPMhXVbw+4uDW+KpLkimBmIeIjtISxJvY+kuS3bZb+AIsywD2MYSo7dhy5CETo7D/wPMX1xG7YLEm9lKHYE/c5BLE6dFkptxFGFg6PNZ9fBnyOEwu5Dv2rHVphsnfkEw/GjifoIa0qKuruJOf3m1kWKwg5938bW57F15iyy9p6hpElw35y9N8szn8TR57Oy75uhFEfQHk1JstvQBWhK75XFluzlZLv2B/4B/Ju5SNYXCOI+fwAWAi8RpNonN3evlyOpIaVkvHw7pcZz9DmHEDe2YrJyL/nao2Ss3TDUETaVb8BUBxiKHU3FXcN/xj5Bsf4cAKpIMRg/koXJ92Fpg/xr7cHUvI3Newem0O8cyo6DP+W+9W9npvZIk1kBATSOtoD9F/y1Wa+Z6r8ZK9/K+sIfkFTxZBkl1FXZZei3TFbuodh4lvWFa9rW3gKNmL6M4fjRZK39SLZIJzy08QOMV+5se65AoAibPUcuJ64vZ6x8K+XGS/TH3oSjLeIfaw5pnkPWWuestR+7Df+qeW/fd9lUvp66N8lQ7FiE0FhbuJJC/SmSxvaYWo4nx74ATZH6oLaGOsDeIzexsXQdvqwzEj8RrWUbg5Q+j45+grHy3xGYSOGTtfYkqS9lXfFSPH8uq6QKi21yZzOSeHOz/Hj5Dor1Z+izDyFubtWGfbWxiY2l6zHVfqaqj7C++MdmQDfom0B4fueBC1hf/D0TlTuQQM7ejwXJ08nXH8PRltLvHNLGP/H8BpuK19GQeYbjJ2J0SEHMVP/NVPVuEsb2CKEj8clYu6IIgztePIC6HGvDBwKS3b7zbmBN/rdsLF6LL136YweyNP0JbD1gKde9KTYUr0FXUgzFjkNR5pyDlLIN21gHw7jSWMem8o3Y6nwGYoe3tcf3vRDbCYZix2Jq/TS8PPdveA9ldw2+bCCQGOoAuw//L3evPaYZWmgdMypx3rCk/X2crjzIdO1B0tYepK1d2q41vDwbitegCJPh+ImoypZji6+bXe2uX+A/ox8jX3sQEW7atNQFVNzVKMIIN9y5qMJB4mFrC6m44zTkDOA1p3GCYImyOH0mz039OEwdtp+OINDYb8E9FBvP8+DG96K2BggFLEydwdLMmUjp8ezEV9lYvBrw8cOU+Vz+TKCFZxkFP1WoSTd4MaljCBMpSwihIaXLSOLtLMt+ASEUnp/8IWvyv2hbUTTQcPTF7DH0O/4zdgbF+n+aqe3F6Y9jqAt5fPyzIMtzAueC4KWLHYnnF3GMZazLX0zVXR8u3STLc+cwGD8WKSWrpr7H2vyvm7GH1vaoWGiKFRIMAzmP7fp/TMbeB182eHr884yVbkYRGr6sk3PeyHZ93+Mfa/bGk6WuqbSuDrHfgjtx/SJPjJ7JTO3+Jrbzk6exOP3JQEai8CeemzyXIPntYqojFN3RcJ+aH5w5JQhlVry2hecsr0kVcSQNEsZObD/wM3Q1Ran+HI+Pfoi6NxYsc4XCtn3fpc95Y4jtOWwsXkVwpHONnHMI2/V9H0Uxmak+wKMbT2vb1+SGyXlDGcBSdCre3IEHgapAkr3n/YV87VGeHv884CPxMdVBVg5egKMvoeFN8fjoRyjWH2/2xaLUx1iY/gAAa/O/44Wp7xNI2LvE9OWsHLwAQ+2j2ljLv0c/QNVd14LtVxmMH4/v+zw5fhYT5ZsJIiU+KXMPxqoP4svgHdBamP5CKOw4+L9k7H1DbL/AWOlGFGHiyxoDsaPZpu8bCKExWfknT459ChluttWUNCsHfk7cbNch6rTXjfN5fNNHmKzcSfdO8V4WLHM8ZJvjaV4VFq70kDQiN0xk7YPYfuDn3L1mX1x/pv3OwmL3kesZK93ISzM/a8tqtS52ou6rihjb9Z/HhsKlTFRupT1eobIs899k7P15aMNJXfcVqGzb9yNWTX2dujfWVlYRNiv6f0yp8SIvTH2H7i0jonmXqFjTLsNXkK/+m+envtGWfm5tT9TKXhE2e827lbX5X7OucElbnRVhMZJ4N6vzv0J0CMHP1uDARY/z5NinmCjf3oatImy2zp2DrS/m0Y3v6sgcKpjaCLq6hELtrjDO1X5vv/mbnSl0nbS1FzsMXsjdaw6k0RG0DrD9M2PlW3hp+ry2vlAwGYqfzOLMx7l37cFdWR4pwRMOOXMnpmt3d7VXojAYO4GJ8g0d7QlnlfNv57FNpzFTfYBWKokibLbr/xGqsHl89ENtdQKNhLGCXYb/yH3rDqXqrqUVe0VY7Dx0OcX6Ezw3eW4HtcDAUIcpuaOoVLpClIqw2XPeX1mX/y3rCr/twnZ+8jRGEm/nvnWHd9QpWNLtM/+fKErvRMTrQ1LDm3mFjgeCr8qcdToBX9aw1CFq3sbINPFU5W7GSjdGprV9WeXhDW9nlivRalsOjUpq7homKn+jOzDs8dL0eVTC6XHnfQUKT42fBREZOF9WWDPzqzB2E5U92gxvRdZZl7+Umep9XYOo8wXqbJ+UPptKf2Z94bKuvvBllY3FK1CFgy/bT2WYpfGtL/yB8fLf6Ny5HrTnl8SMbSN2Tfs0vEmWpj/D0/UHuuo8e/8oGoWkwXT1PkZLN4Xl2vtDSo8NhT+yqXRN1319amwsXYljLCNqJ74QKktTp7Fm5sKu54rwDlOVOyPS6RLPLzJWupGZ6kN0S55UWDvzS1QlHtFWl1LjGcbLN9Ho0OMJytZZX7iEfO3hrrKSOnVvA0lje0r17nS6lB6biteyvnBpJLbrC79HEXbLLoLWsi4Tlb/THzuy69rLsdfMxlLXz29Wff/VmQyDc9GeWQiNmruBXidFNPwxGv5mw1iR5ss6VXc9vXZyu7IQzmoiAKVBlOOZtbo/Qb2HFMQWakXd24TbQxYDCAP63UNCUqPujfXgeoDnF0mZO0c6ZYHKqslv0ksvqeFPUfc2EeUwBQpVb21X1i+4tvmPgKTGqqlvdb3kwbUGdW8UtwdlwZcN6uHBe1EWxH1600IUoROJrXSpuuvC691W9yaoe5FJYwQalcY6ol9Zn5o3SsObji4rBAOxAyMzcJI6dXcskpMG4PpF6t5Y5KTAly5175W/H7P2mnE+ljbyik8wgFnmbS+Ogkmf8yYGYycQtaBQhEGfcxibFxLr3UUKFlHHyQTHF++92Xvm7INbMiwvzwQ6OfsgcvbBXWneLZkibLL2waSsvYlqk4LBkvSnepa31BHiRvT6PmHuxLzE2yJ5QJJGOHCjHLxCxtqPnP0GFLpT3pIG/c5RPRxIZ26y2+repkgHogiHrH0gSXPXyHKOvoSMvW8kPoowyNj7Y2rdhD/ZbNM+kff1qZG1DyHKbQp0svZBZO1DIrGVeAzEjowkKCrCImcfHI65bmw1JU3WfkOPky8cMs6+xI1oaYyEuSMZe78ekhqCdEeG85XYa8b5CKGyPPe1kHcxu9spOAlB9HQuNovTH2NJ5uNoIksrqAITXe1jJPkOFqU/0iF/EAyTmLYUW1/MYOzNm+UXBfWYdV4KAoPh+Kksz34FUx1oe27wku9Pxt4HU43Wt81Y+zEQOxpbW9j20gWDrlc9FDQlxYLU6cxPvRddzbxsB6RgYmkjDMVPZGnmLFQl1tJeBUVYbD/wUwbjRyK6Xufg3/nqAyzPnh2+kLN9oaIIh62yXyLnvIG4sX3bCxs4ZyUcZN2uQlMSLM6cyVDiZAxtsF3uQdgsTH0YW5/HkvSn2u4bUC9sFBwEVkglaD1RYzb6Mvv7ast9LRx9KX2xw9gq+wVUEYO2vrBZnvsaKXMP0tYe7e0RNhlrP5LmLmzdHKtzTxUIlme/CnLW2bb3o0Cj5q1mq+yX2soKDDQlycL0B5iffA+6mm3DVhE2SzOfwdLnsTB1ekdfmJjqMEPxk1iS+SRaG7bBfsGtc+eQMLejzzm0qz1xY3uy9oEsz0Vjuzz7ZXL2QcSM7drqrAibfudIYsZyXq29pgLOAPnao6yZ+SVVdy1pay+G4qcwWbmNmepDWNo8hNCYrt6LrmSYn3wPWefAIG1ZuoY1M+dTdUdRlDhD8ZNYkHw/mprE9Yvcs3qvUCQ9MIFEFQ7b9f8PGfsgVk19n7X5X9F13rpwWJ79KvnaQxTqj+HoW4cDQOWxDSfg+tUw+xKEPUcSp7Is+0WEUJmpPsyjG99DIN0RhKdVEWf3kWuw9Pl4fpn1hcsYK92IGtb56fEv0XnOOgiG429hceaTGOFu7oY3xdr8xUxW7kAVMQr1/wRhZtkAoRDTt6PhjVHzNqAAOfsAluS+gqXNp+puYM3ML8nXHsLWFrEgdToJc3tmqvfz+MbT8Si2EQ8EkDBWssvINZTrz7N65iJKjaeIG9uzIHU6Tpgm9mWdDYU/sKl4bcgTOZiXpn/cbE8rU8ZQ+th15BrM8PQE1y+yLv87xst/RVcyzEu+m5xzULMHpip3sTb/G+reBDn7EOYl340eHttS98Z5fvLbjJb+TLBltJ02YaojWPpiPL/MQOwYhhNvQw1Pg6g0VrNm5lcU6o/i6MtZmDqdmLF1UFa6bCxew8bilSEGpzAYP74ZHijWn2LNzEWU6s8SM7ZjcfoMbH0BT42dxWjp2paMaDjeiLF13/eoey+yevqnNGRwIkfG2odt+r8fMrKh4U2H2N6OofYzP3kaGXtuNjVRvo11+VBexDmMkeQ70cJjfGruRtbM/IqZ2v0t2K4M2+MzWrqeDYUrkDQYiJ3AcAshstxYxerpiyg1niRubMeC1Adw9CUt2P6R0dK1wcc38VYGYkdHzqbaRu7rIeA8a1KWQc4g5AzSn0bKKnX3Rcr1eynXBKY2HyHzgIIvi8EJBBNfYLx8Hb6sBC+gX2Cs8HtGEm9DI8lM9W4UoYKcy8b4CHxZZrR4LRn7QOL6Agyh4MsGPsFeY4FFTN+ahLEdM9W/B8+V0/iyzJrpC/BkGSH8MNUbLN3GS1eyJPPfqEIlZe3Civ7v8OLUt2l441jaQpLmXvxn9FR8WSVtHRhQ1+UMSBeBy/YDP+OJsY+Fy7kGgiq6kqbmPs1LU98hY+9P1jk8cDJyBiHzqIrJir5v4SOpe+MkjV1ZNfl5qv5LaOFR0VPVv1PY8CC7jNyKlLVmHyNnkOF639GXI6mhNPd8z367dZLm7mG/VZvPDfBpyZpJF1/OIMiHX3MHQ+2j5q0FZl9AH4TA0UZYO/NTJso34ssaKXMfDG0w7GOBDLGd5bf4sjj3XDnTFoOQsoYmQJs9YaQlIiQQWNogrruauree1dMPsTF/EQszZzEQPynsi+kWbFuzgB7Snw76CYEvZ5B4zZmUlBXwZ1Aooop6s04DseOYKN+MbNl0LBEgXGreKtbO/BRJBS28WKj9k/HidYykTgt/t9FSJ6OJT/BMGQT25TSKLCBlvi1h4ssqsll2Br8tTufj+wWQM0AjLOs3J+6+rDSfK/08sjUTKz1keE+BgWwT1n919pqa+YwWr2LV5JdbBoDKrDRAFDVcETb9sZMYLV0ZDKIOU0WSXefdxkT5r6ya/BxSzu2GmD3toT92EkJIJss3dWQKdAbj7ydt7cqzE2eGsQOf2aksaF3ZnVlLmnux/eClTFX+zjPjH2vJInSnwLvbcyKLM19g1eS5jJeu7gr0CWwMtR9PFvD8IrPkMUXYLEh9nHmpD/Ds+KcZK10V8QSDocQ7GCv+sUV2ISi7Ve779MWO5MG1B1P1Vs+9NHJ2SfxD1k7/oI3XEixTTFYM/Ja4uSP/3nAS5cZzzIq0KcImYe5Gvvaf4CWQtV67USL7YjjxXhZlPsOa6fNYlz+/iY9AR1PS7DxyI56s8Oj6o8NguNus8+zCKzg9VNB9hJHFvOTprC/8sgNbk236f0Ha2p//bHoHxfpjTfwUYZEwd2PFwG+ZqtzGM+NntGCrogiTHYb+iKku5oF1e+HJYpsTTxn7Unaf6BH0V9ht3j8QQufR9Ufi+vkObM9kXuqDvDD5DTYVL23pCwND7WenkRtoeGM8tuH4CGy/S1/saJ4c/SAz1X82yypYOMbW7DB0JYXaQzwxelrYHtmC7cUkzJ15bONJlOvPtmGbsQ5im4GfbxbH/yNJjf+vTEqXF6fO7XAAs1sioqU1fFlhtHgFUvbYsy6LbCj8lnz1XqB9G5YQwZ+kuUfIyehMP0vGi7/k6fEPhNdml2OB9IWM2M0+a8X6Y+Sr97Nq8isd6cvNO/qgPX+i5m5govznyAyDpELNW4vrz7S9UEHa+sdUGi8wXrquxxPqTJSuD19Uv63sC5NfJV99mIY/1s6ZEUGmZdXEWVS8TvkEPyg7dQ6T5b9ScV9oDs7Z+xZqD7B9/0WoQn3Zjme27Pr8r6g0XmRt/mcdM5IGrj/DhsJvWDv90zBTMzdGZmUoHG2bSMcT3KPKuvwvIrCt8sLk2cxU/0Wx/ngbfr6sUqg9zEz1Xl6YPLsDWw9flnlx6ptMlK+DDs6TAAr1BzeTbfRZO/NzXpw8l4Y/FYHtT6g0XmBj4XcdfVGn7k0wWvgjL019rye2heqjbY4neGKVcuM5Jit/Z9Xk1zpoCSG2k18LsG2s6sJ2qno7pfoTPdqzZXvNLLtq7oZImYgtmRB6JE8nMJ/pyp00vOjd9Aoarj+OmOMKN03i4jV/2v3WBBmY4OiWrqfKBjO1u3s+d3MWsEn/GpnybnlCdFm0kN1q9OgTgecXiXKCrp9nuvrPaD4HtZa+6LZS/Qny1Xs6pvizZWGmHi1qvyVThMlE+WYUDLwOuQhJnenKP0MCYXedVcVhMHEMa2d+FrJyu63XaRtVd00kHwoCB5Sv3RPSA7qtWHsETUlH85KEhpAGPtEz5ony9WH6P4p2oDNRujlk+re/J5Iq09U7KdX/E1nWlUWmq/+IVBbwZZmZyr2UG9HH+ZQaT4Z9EYGtlORrDxLrkQXdkr1mZj6amooc+C+rbE/ZDIGlzcdoOe630yxtYWS6fC40Gm2KsEmZ+/e4ZgSZrlfJW7K1xZEp1S2ZTwNb7974OWcqesvxuJ1mafN6clA21xeaksLQhiKzkgINS1vwqrD1ZQ1Tnd/DSQhMbQRDjW6PlC6WtmgLNY8e/oowMbWhyB3virAw1OFI6REATc0GR0332GU+ED+5Z20CxxOtWCCpY+tLI4mPoGJq89DVXMS14HamNj9aLkWYmNoIqoiWxtCUFKY2HImtIjQMtfe7tSV77TgfJUnWOaxnWr1HKSxtCTsMX42I4JgowmQ4+V/MS344krMh8FkzdXZYtrsr5sKW3VsVhhKnss3A/6CITvkKiS/L1N0XGIidHMlf6W0qupoj6xxGytprM6l0vYsaINBJGDuTtQ8NU/ydjk+wIPVhPHcDnSaw6I8dR1/s6HBPUOcLq2y2L0aS72MgdnIESVSgCpOccwQ554hIjDZvDV6a/AymOkLnJH32ufOSH+rCVmCQsQ8i5xyOpiQj2hOkqNNWtByEqQ7TFzumB7lRpT92DAPxt3Q5J0XYzEt+kKFEcAhAuynoSoYl2S8S07tPfBDoqGi93CExY0dS1t7oSobOsaoInaHEu5mX6h7nApO+2DH0xY4Ms1qi47pKf/x4hpOndZVVhM1w8jT64ydGYiuERcb+f1FS4/9L2yr3bTIhySqQoLAZSX6AuLFz+LIpgIYibIQwSZg7s2Lw19j6Ynaf909i+koEalg+zrLst0mYO5F13sjC9KdbBksgrarg4slJFFnF0bdCERaKcCBc9LSzaIMgnMCgL3Y8C9NnoSlJth+8BL3p/YMXU8NntPgbFNkgFzsSQSCtIISJqc4HNAK5kIHg5yFPxdG3ZvvB3yOEwtb9/0PK2id0QHP7kBXhkDR3ZSjx7rBc8Cdp7ck2/ecjhGDF4O+IGysJZDQcNCXN8r4fMlq4CKiiNL+uQX3T9gEszZ2DIkxWDl6OpS0J+8LGUIdZmjkbVVgdfRHUJ6avYKJ4OU+NnkJ/7Ch0dQBFOCjCwta3YuXQFSjCYFnuW2SsdmwdfVsCDpWCqS5sceQyzIx5SMp43loSxo5he2KoIsGy7DdJmLuQdd7AwvRnw2fGEBik7QNY3vcDhFBZOXhZy3OCFmhKmqXZrxHTF3RxkAQS112N5xfZfvD3mOp8FGGjCAtLW8TKoctQlRiLM18g5xzdxFYRFsOJ0xiMvx1LX8Q2/eejK7mwXiYxfTu2H7oUIRS2H/o9aSsgiioihiJi9MdOQBF6h5MP+tlUR0ibu/PI+j3An0SErCJF2GhKmq37fkLM2IY+5zjmJT+CIuxQlsQg67yJpdlzA2yHrsDWlrZhu2LgYgy1jwWpMxiIndI2Vgfjb2V+8iMYaj8rBn6NoQ42+8LWl7Fy6PJI1vTLtddUtguCdeRM5a9UGs+Sst6IY26L55eYLF0dpqu3ouquwdAGycWOa04lC9X7eWb0PQRC7R5IhaHkaSzIfKF571UTn2Wi+McgGSuguftIxFmc/Ra+Xwi0jn2Fdfnvd2zQ0+mPn0LWOYqktW+bxMEzm97PTDXYQCqheU1gsNO8+yjXH6Vcf5yktR8xc2dcP48va2zK/5qN+YsIz7xACI3lA78kae0X9oXHVPkmqo0XUJQ0EhfH2I710z+m3HgUz68gUFHQ2GbocuLmzs06+bLOROlaXG+SXOx4Zqq3s3rqnObafRZ3gcb89OcYTp3eLOt6JSbLV+HLBrnYSehqmunKbbw0eS5V9wUU4ZAwdw14RO6LTR5PcATQVuRiJ6AqDn2xN6MoLUQ8KZmp3Eq58Sxp62Acc0W4vPRRhMnaqR+wIf9zwA2hmcXHZn7q84E2jbeBjHM0lt5+uF6l/gxTlVuxtKVknMPa+Ce+rDJevBrPL5BzTsTQA0GuJzedQrF2P63vgBBBlnRZ389I2QfiennGS39CoJCLndQhLyLJV+9sw7bV6u4ok6VrUNUUudgJbSRKKf0AW/dFMs6hGOoID63dCz9Mq0vk7P55FqS/yLr8d1rGowSpYmgL2G7wMgxtpO255drjTFfvwNG3IWW/sV1exCszUf5ToEgQezN6h7xIoXoPhdqDJMzdSVh7tV1reFNMlK5CERZ9sZNQlC0z9F83u9rr7kaeHX0bjaZejUfC3Idi9QEQfvjizKYBAw+8fOAyTH0pj6zZFUnnXh2NZf0Xk7L246WJs5gsX922Zp7lgyiYAbcljHdI2SATezOF2mPU3HWowgdZCa9LLH05ywd+j6okmSxdz4sTH6V1f9jcfR0srT9sjwjbsx9L+y+gVHuEZ0bfTvc+Lodd5j9Cwx/l2U1vbWZHpHTJxU5G15azfua7SDqF61W2G/obtrGUcv0xnh09NQw6S6R0iVv7MVO9iyh5EU3JsmL4VnS1j5nK7bww/iFozglcFma+TS5+Ep5f5LnRU6k0nkKGovWt7RXMcp6s8KMgWdp/EUlrfxreJp7Z9NY5bKVL2jmMxbn/QQiV9dM/ZGP+p7RKjM7dV0VrLhmC9vQnTmNe+vOA5KXJzzBVuq75IdKULFsP/gFDm0exeh/PjZ3G7CxCygbzM1+iP/EeXpj4ApOl3zevzZrEYsXQdayd+jrF2p3NsSSExuLcT8k4h+N60zw7+jZq7ost2O7D0v4LUYTJpvwvWT/9nbBOAoHCsoGLiZu7UXPXhNhONfsiGzuJtHMiz459AEEZwkyngonExwtPCyF0SrOmYDCUPJPh9JlI6fLC+EeZqd7GrNyGoc5j+eDl6Go/+cqdrBr/IHNzK5eFmW+Ri78Zzy/x3Oi7qDT+w2wixTF2ZFn/xaiKw3jxD6yZ+hKtTPKl/ReStA5gc/a6cT5PbzqZUu1B2rMXm+fG6OoQ89PfZdXEe+gMEksgZu5FzjmRtdNfayfEhX8Hc47u4LIQFtsMXsto/gImy1e31UGgk3aOYl76C/xnw0FdaXfZvK8IF3AtaWAsBpMfolR/nHz11q7nSmBp7kI25H9EtfE07dIJDkLJUPfWd9U5YPIuYMXw7Ty+fg/cjg2xAjPs1VrHchJAJWHtz5K+n/L4ur26aQfCYsXwrWyc+SmTHdyj1gVLVD8qwmGHeQ/w/Nh/UazdTyu2QtjMS/03lrGcVWPv75L5IGy90kwJtGJgsqTv57jeOGumv9qGLag4xkq2Hvgjj63bNSAodrRnm8FrGCv8jvHS77v6UVMG0ZUkVfdZOk0Ii5Ujd7F68ovMVP5G68cjwPYDpOxDeWb0LR11CmZUO8x/kKc3nkCl8STt2NosyHwDIQxemjirLa09W6+gL7ojWAIDQ1tIw9sUfqBb3x+NhLkPS/p/zuPr9ozGdugWNuZ/wWTpyjZsBSa5+CkMJN7PkxuP6BrnAbb3o25Gx/l1wXBueBOUa4/QnTbdvHP0/AKF2p1EZacEUGusYrz4m66BMOvSFHQUZFdGRcoGY4XfMFnuJutJGkyXb8DWt4cewugKGoF0q9tRtspE6TIEvaes+do/qbkv0C2dUEb4MtpZEuzCD5ZLUfygOpa6iJr3Et3yIh6F6p08u/GtkelYKT0mitcwWbqmi3vUHQfqNMFk6VpKtYfoxFbKCmPF32Lr20bKfAT4GARaPp39WGPt1DnhwQOdaW2PSv0pJktXR9ZIygYTxT8wXbkhsh89fxyvl5qB9JgsXUe+w/EEdaoyXrwM15+MJL1KfCZL11B1n6cb2wpjxYtRRKzL8WzJJHVq7nM9rroUa/cwVbqWSMqI9JgsXcNk+aoubCU1JktXoSm5ntSN6cpfycVOekX1nbXXTMBZyipsYZ9ItCm9U4wEqcJeUhAClaxzTHO51W4epfojPe8r8fBliagd1wKIm3vQK83r+1V0daDHVcJr0Wn6ICUa3U8CDdeb6VljS1/eM6UKkor7ZI+B7+K3sKlfifmyRsNb387wbLtewevBFBdo5GKn9OyLurcaz+9RVih4stcWAC/cmtPrJQ/OdYsyOVu2B9dKymrIpYq+7nkz9OJweX6pGfPpNBEuP1+dCTy/0OMEkUZwXlcPjp0v6/h+iWj5Fw/fj363Xo69ZpyPro6gK72dSG9z6Y+/s4eshkJ//N1k7KOJTltLZsrXRBKoFOH0lOoAMLVFpOw3RaaPBTq12oNED3yVpP1GBhKnESXzIdDoj70jUp5CCJO++NvR1YWRd5ahlGwUqU4RDtnYMWScaKHxzZkiLNKxQ4mbexLtUBXAIJov5TKe/zWaku26ItBJ20eQcY7rIV+hMy/9mUgHH5iObayMxFYVSTLO8ZFfbEU4pJ0jSFoHEfUKmNriHuMl+GBJ2ejhQFSS9hvIOEeFWdN2k7JBNnZiD9qHScY5loxzLCKCnqGIOP3x9/bo482boc0j7RxN1HhUhE3aPpS4uQ9RC7qEtS+pjt3wLS0iaR8U8fOXZ68Z5yOEYFHux0FcIwReEQ66OoggHgGIihAWCzLfQlPTLMr9kIAjNJtpMnGMHehLvI3B1IfRteGWDgxeegWPQPqzk7vikLD2J2UfBj0c0Lz0l4mZO5F1TmwZaLPyHz6SarjZtF0GVVOyzEt/jrRzBAlzP0Qz/S8Q6OgiyRPrdyOg5+vMktUUYWOqCxhMfpAVQzdiqguZOy4lPNNcumzMfx9wmU1hz7bHMXYi4xzDSPrT6GrfZpd9nX2Rto8iZuzOwuw3UUWiiYUQFqqSZuuBP7Jy+A7S9tHMDeC51LWkFKZ4W7G10dUBhlMfJxs7EVvfvqUfZ7H9JrqaJW5EayMJNPri70DXhlvGh44ibBb1/RBDG2I4fRZC2G19kTD3JWm9gfmZr6ApmfB6MGYUEWdJ7jz0iCNqACx9G8YLFyJol80QwkRTMsxLf4GUfShxc6+W9igIYTGS/hy61s/i3I/DsTh7druDoc1nMPl++uPvwtKXtpTVEMJmce6HLMqezcLMd8Ixs+VZkEBHEQ6Lcj/E0hczkJyV45jNIjqk7COImXuyMPt1VJHswDbFgsy5xM29SdlvahvnirAZTHwYU1sQ/fCXYa+pgDNA3V3HWPESao2XSFj7ko2dBLhMlq6j7q5BImh4a9GUHH3xd2Ab2zTLlmuP89LEx6m6z6EgsbQlzM9+h5i1N75fYaJ0NYXqPynXHsL113UFGiUqKftosrHjSdlvwvNneGLDIWFWYo7bkrD2Z/nA74JyUlKo3cVk6WoECg13DcXav5oObW54qvQn3s9w6kxUJRmW9Zip/JWp8g14foFS9R/Qtuwxsc3d0ZQsKftgMrHjmlwlX9aYKl3HdPkm8tW/0amfDAZJ51jAI+0cQdo+vJkN8vwiE8UrGSteTM1dRecXUWATN3dDVwfJxk4gYR3YTNc2vAkmipdRrj8ROPf429DUTHDNneA/63dvHk7XGhxVlQxbD93IWPH31BovkrD2IRs7CTU8Y0zKBlPlG5mp3NKFbbn+OE9tPAHaYhICQ53PcPIMNkyfiyer+HhY2jIW9/0CO5TFACjVHmWidAWeXyLjHB3OWANn5PozTBT/QKn2MLaxNX3xd6KrQYbyxfHPUqjdAfhoSj/Dqc+wfupLTYxag+2OvgPLBy/rwPZWpsp/QVUS9MXfimPs2KxTrfEi48VLqblrSdoHknVOaNISAmz/zEz1NnR1iP74O7D0Zc2y5fqTTBQvxfWnqbkvUK4/1dE3GnFzd+LmHvTFT8XQ5nSlirX7mSheiZR1MrHjSVoHNbF1vUnGi5eG2K6kL/72JrYBreB2pkrXIkQQiI6bkXHk9rH0egg4Q9DAYvUuipU/43qjSDlKzFiJ648xUTgviB0QTH1VJYulDWDpWyGEipQeaybOwPWea0oV1L3neWH8XWw1eANSVihUrqFSfxQpqy2zndn0JQjhUqn9jYKiETN3QlcH2WboelZPfIJKPThcUFWS9MfmKPK+nKFQvp5y9ebwJ1YYIJ3TcZm9d6l6K1X7TcRClcOGt4l8+TrK1dvCgKvbVieoUqvfRUM4CDmNY6zEDvfR1N0XyVeuo1K7CzU8UaO9bINy9SYAFOrEjB0xwq9UtfEUhco1SH8tmvDxpGROekuiCpeG+2/qjUdQhYJj7IAW6ghV6o9QqFxH3X0Rz1tFzNiOhH1wiF8FBa8tFTzLJlKIU6z+i2LluhDbTcSMlTjmLiFW64K+qP0TRcQwtX4sfRlCaNj6CnL2EcxUryVgwKhoygKG02eyfuqLSCooInB2rvcMayc+wVZDf0EIEWwGrdxEsXJDKL3hEzN3RFeHgr6oP06hcg21xrO47tM4+raknCPQ1UGW9v+EjdPfZqb8ZxA1KrU7CE7tqLVhCxLXfYpK/T/EQxVD19tEvnId5erfwy0ZaSx9GxRhhuP8TgqVPweBbTlFzNixBduXKFSuo1K7l7qSxtaGMbUlCKEgZYNC5RaKlRvwZYmYuR+amaVQ+1ewdwyBqfbRaDxCwd+IrS/D0IKAsO+XyZdvpFQNdMs1oRIzdmxiW64/3ILt8yG2AYPZ8yfIl6+nVL0FITQMJY6jr0D5f/Pcrv+btkVJjfzPGM3/uC17ERxBA0QEQoWwSdnHsCD3I1aPf4SZStRuboWkdRiF2h0d2jNzL4ZoTp1nr6poSh9bD99Buf4QL43/V1eaURWDLMj9mPXTX6LurmYu86Eipd/k/Yi2+wZ1XtJ/CZa+DU9vOAjPn2Y2mDcLhYysUzBN3mrwJoRQeXbj4WFwUr6MsgqqkmLrodupuy+xauytXbQDiYVER6ESus3WkxVibDN8L8Xav1g7+fF2fITFwtwFxM19eWbjQTS8DV11QtgkzAMo1W5vT+UKm2UDV6Gpgzy74ZAw8Ow3r6Xso1iQ+wnrJj/HVPlPLc8VgYPSl1OJEEUH6It/mOHMF3lh9B2UavcxJ9Cmoik5th6+g0r9UV4cf28btkLYzMt8i7RzAs9ufBM19yVmsRXo+NLtjS0GhraUurseySw2YXuwiFv7sbj/YjZOf4fx4i/b+lERDssGb0ARJs9uPLQNWyFssrG3MZI5l9XjHyFfvaWlzgqqkmTpwLVU60+zdqoTH5vB1H/TF38fz48eR7X+REtSQUdXh9h6+DYKldtYM3lmBLbnEzf355mNB4ccLTdsj4llrGTZwDVtJMZOe13MfHxZYyz/k6606ebSjlJWmClfR1/8NGYqN/a6M8XaPV3OQ4QTBBnxkoOHJ/NMl65isnRJpHyGJzfx4vi7w6VMo61sAIYG0u1K8khZYcP0N0nZR4YDrJX3MvvCRtUp6KPR/E8IzlVqP5Vh82V9fL/MRPF3lGp3R9IOFKEwkPgko4XvdV33ZYlVY28JMl6d+MgqG6bPoT/xkdCRdtcpbuxDsXYrnRkgKStsmvkelr6iQ9piFtvr6UuczlTpjx3jQOLLGtV6Nw9n1iaK/0vSOYJS/X7alSE9PL/AVOlPTJUu7+ZoyQobp7+FImKhI53DVtII8JaC4LDF9mcGKe/o3eGSKsXaXZRrDzNeuIhOtcpZbFURb9HUmavTZPFS0s5byFdu7ugLH98P3oNS7b4IfCqMzvwAW9+WWuOZjrINPH+SmfJfGM3/sAe25zKQ/FgYepj7IElq1BpPUq7fT8x8dTrOr5mAs+tt3AKjJ9qEMCjU/hmZHWq5O1GRfiGCw/6iPLeUFcr1h6k1nt/MfRsRHBMINgLu1fOLUGs8Q7n+0GY1gaLNo1x/hHL9YXqL3ovIhJSkRqX+ENVGD/0V6SMp9Uw/1xpP0WgTEpuzuvsilfojPbKGJopi0Cv1XKk/Trn+YBfHBEJsK3f02JDa6LkDPyirMVG4IDLzJ6lQqT/Ukxvj+uNU6v/ukfb2sfQVvVgUmzWBSrF6V48d8R6V+qOU6w8Rfaa6QbF2JyLyBIoa5foDPbGVNCjVHojsC1+WqNT/Td3t1GoKrO6+SLn2KDJSUsOjWn8ystzLsdeM89GU/p6Evc2ZpIGj79hTswV0LH27yCsCjcHkJ4gaSQILU98KvSVYF23dZRVhk4u/IzLdCqAqSUx968h0bnNfWOTgFpjaMkxtOZG78IVKyjkWJTJNLDC0rTDUHtkJIbD0baKvMZs5SUVe09VBTH2rZtao/bYadffFnvdVlSymvg1Rk3BJA8fcuYdDVIlZ+9Ar6+PLEoXKrUQdQySwMLXl6D0E/oOY0zJEl2JBqDaZPB1VxHu2qbdJbGNlD05NiK0eja2U9WCcR3KtdExt62ZML+relr5NpOMSOJj6MjQlWhpDUwcw9WU9sTW0hT2euWV7zTgfRXHIxt/e1cggdd2Lc2HgGHsQt/cnZu1LtxyHwqK+XzKU/lxLSjssKywcYw/G8z+BjpR4cF0nG3sbA8lPdZVtvX/gQFq7UUVR4iSdI0naR0eUkXjeKGnnhAhyo46l78AO81cTNw+MfGJf8oP0Jz/aNRsQmCTtI1jc9/MeX9bgiNuB1FndfSxscvH/Imkf1tNhSiR9iQ9Glh1IfpJM7M2h02vbNYamDqCr7RsfWy0bfwd98fd19UWA7W7Erf2IWwd0YSuEwWDqLBZk/4duBzSLx6zTisA2/nYGktF90Z88g5RzVHhcTAe2Ik7KOZK+xIciX8jepuDLGhumvoClr+iijghhMZD8GP2Jj0Rim7DfQNw+AFvfseujpQidvsRpDPZoTy7+XpL2oahKlva+EiiKQdo5gYHkxzeD7Uk9sO0jbkWP05djrxnnAzCcPptc/LTwBdDQ1GHm537KsoE/4Rh7QvNomeClTznHs6jvlwAsyl0YvNCYgIoq4sT0bWk0nsbSt2NB9mfhS6CFAbx30Wg8RSAxMWuh8q+Ih4HQHJnYSQynvxbh2ALy3aK+3xAz9wrrpREz92HZwHUowkBBpV0eIdgWoQqDeuNJlg5ciaWvDOqETtI+jKUDlyIE1OtPtpULMnIq1doj2Mb2LO77XwxtcVjWJBM7hQW5n9BwNyDC87Tby0oKlT+TtN/IvMz3wi+dhiJi9MU/wFDqswihsaT/CrpfZpOMczIJc28S5gEhPjqqkmE49UWy8bejKmmWDl6DbewSltdIWAexdOAqcol3RvKKFBKknZOo1h+gL/ZODHW2PQYp51gW9f0vAAtz55OOnRRioGFoS1ncdzGWvg3pWDAGdHVeE9tgc6sM/27FFix9R5YO/AlN7SMTO4GR9NdQlVw4s0swkPw4/YkPoyg2ywavJWbu3Y7t4HUowmQgeSYDiTNQRCIsG6dbQKx1F52PgovrvUS98SSGtiD8qGno6nwW5n6BY+6Kbaxgcd+v27BNx05mQe6nACzuv5ikM0ua1TD1bVnSfzmGtpCEfQjzM99HUwZbsD2dodTnEEJj2eDVobPQCPa/7caygetQlQTZ+LsZTP03qkgh0FGVNEOpL5CNvQNVSbF08FocY9cWbA9k6cDV/J8c9PmaynZBkA4slP9M3VuNbexJLPSsldo95Mt/wnXHUNQUlrELKecE1JCHAOD504xOnsNM5Y9huluGZKk+Fg3cRK3xH8r1e9DV+cTMA3lu4/4tsYbWncJxtl3wTPP/pXQplG9hsvgbyvXH8Klhm7synDobx9yRuvsihdKfQSgknePQw+nv+snPMF26lM4vryLiDGe/T8oJsg+Fyk2oIkEydiKa2ke18TQvbDqGtlMLCIaxqa9g2dCtSCmp1O6nVLsTXR0k4RyPqiSpN17g+U2HRqzRBbq6mOUjdyGlT6lyO5XGAxjqUhLO0W3yCKXq3ayf/Dx170VUJUM28X6qldupNh4Ol7cKAoW+1JfIJN7VNtOqNZ6lWL4BhEHSOQFdG0ZKyfrpLzNVvJTZne8SnaH0l5iY+XrYwCCLZOk7kHBOIBU7qQPbGfKla3H9UeLWIVjGrs0lqpSScvUuyvW70dX5bJj6MpLWWNxs/yssHbwVy9i2BVuPYuVWqo1HMbWtSThHtS1P6u5LFMp/BiDpHN/EFoIgcaF8A3X3WSx9F2ruWkbz38eXVYTQyDgn0mg8T7l+b8jSnps5CAwGkp/Gp4xj7Idj7dPWnmr9AYrVO9DVARLOCU3+EIDrTZAvX4PnT5OwD8Vq4Q9J6VOq3kmlfh+GtpSE3Y5tww0oDVI2SDpHY7Twh6RsUCjfTM19AlPbnoRzWNuMtN54jnz5ehRhknCOR9d6z2ib7Xy97GqvNZ5l9egJSFkLuDjCxtS3w9R3ZKZ0GbQNKBUhTOb3XYxj7Ue5di9rx94ZGRgDHU0dwPOnwvtaCHRcWWX2NM3WKaBAkEl8iIH0l/G8KVaPHk/D24CUFYSwA7EmJUvdfZZgNjar5ywQQqE/9RUyifcyU7qaDZMf7aqNxGL5yENM5L/LTOmKgK4fSi+M5M5H15axauOhiK7zu0DXdmTp0PWsG/8vyrV/IWUNgYkQCvP7L8cyduGZ9TsguzZGKqTjH2UgdSarR99M3X2+pT0WCweuw9CXMF28lNGpLxEstHyEULH1Pah0ZY2Ce+raQhYO/BlNzTE2/V2mCr8gOF4m6NHB7PdIxU4OsN10XJjVaiCEHQbcI85DxwChMa/vN8Ss/UNsTwV8pKwjhEHMOoSR3AVIXNaOvYPqLH9LWEjZCDWnvTZsg60JWjiDamDoy/H86XBcBH2hKkkWDvwZXRthsnAB49PfbsmIKvSnvkgm8T4a7lpe2nRsuEcsKKtrC1jQ/6dgI27+B+TLVyBlten6ZpPuTV4ZJuAihIlt7Mb8/t8BCuvG30+59s8ObC/DNnejVL2ddePvC/CRDYQwSNjHMZQNslVrRk+m5j7bge21GPpSpouXMzr1hTZss4kz6Et9CtcbY/WmY3H9ibCsg6b2sXDgOjS1j/GZ7zOZ/3k7tpnvkoqf0oVfG5avF+fzwsY3Um88RftMwSAYRNHZHUWkWDbyEKs27NF7JzIwR75rLZvGlVUE1a6wsRA2C/ovZ6Z4OTPlK9nc+endTzJZMvwPNkycSaV+b9tzA5mPg8kmP8S68f/qcpZC2CwdepTnN6ygeyc3xK3jiNsHMDr9lW7JBmWIJcP/5Pn1KyMyaYKB9Dco1/5JsfLXjvYoWMbOzOv7FavW7x1Bb9icrIlGwjmWbOIDrB49KSKNb7J05AHWjr2NWuOJzdyn2xSRZNnIw6zasCeeP9F+X+EwmPkOnjfK+Mz3IhyjgUSDDt2jLZuKYx3AYPrrvLjxTV33FcJiydAdbJz8JOXavbSPS4N0/J3E7SNZN/7eLmw3J4sBAtvYl4RzFGMz3+gqqyqDLBm+i1Xrd46QCHEYyf2cSu1BpgoXduAnsIydmNf3G1at36sLWyEsFg5cz0T+RxQrN9M+5jQS9tFkkx8JJwVR2N6PpvZ1tWbu/q8Dno/rbaTR6Kb6E5GCbTcvnD1s6fe6B72UFWx9R6qN+yOuVcmXrqZQ+TOvxPHMWr58HZX6A13PFUC5dhf1iScjZ2kClXzljwg0OjdUCqDhPsN08aXIFL8vC+RLVyDQI15Gyej0l5iLA7WVpFr/N/nyNSCUiK7anMNwKZZvRFMHo7NSQiNfvpp649kt3CfKfGZKV0Sety5lmZnSZXjeWERbA051MvYW8qVL2fIYajWPcvUf5MvXI6M+eNIPmdj30f1BrJMvX4Pvl3vMwDdnkkr9Lqr1ByPb48si+dIVRLmtoC/+QLX+SMSHQ1KtP0G+dE0ktsFS6zqKlVvoTvG7FCs3oWnzemCrUqr8lVT87a+gnXP2mgo497Ytfbu2NKh7lBeCVOxYukXgZ+/6ylP/L69ODVw/+uiVgCfo00tepO4+Ra3x6GaeurnnRp+MMFe4tybP5jFoDW5HXXt1/Shxcb1NvZ+8uVm7AFNfGplefrlP7/3TXm3d0rXg47I5aYwovtOW6rTl576ca5u7vrmnvvqV02vG+WjqELq2mO5BHn2yxJwppGJvg56EMw3b2LcrtRk8cz7J2Mk9eCSCpHMccftoeh2DsjlLOsdhG7v1rHvvV9kjFXsrqpLp+Ru9LEgDv7Wn09wMCR7L2J5k7IRIrpXARNMWE82pESAUqvUHI3lLSI+k82Z0fVlEDbTwntEvo5RVpgrndxzOFz5VOKTibycZe0sPbIdJOidDzzPdepmCbe5B0jmGKNkMgSDhHIdt7kk3tgYJ+3iSsZMQEZQFBYtlQ/eibYZ6EDjq7gWJIhySsbcRTZZ1SMZOIenMZgTba2zq2/XGVhgknGOJ24fSjYNG3D6CpHNcNNFTesTtwzbTls3ba8b5AIz0/QJFJJvACRHDMlYwlD0P6JQR0BHCZqTvQhTFZl7uIoRwwvSlEhLJtmUo/W0Gs9/CNFaGpDGBEA6KSDKSO5/ZY2G6TcHzxxhIfxldm98knPXmdihBnTDpT38RXVvAUO7HqEq2i6wWtd4PAosWw9nzUNU4I7mLUES8axBHzUGEsBEixry+i1DVGCO5X4QpZ4tOiKPKqkqG4exP0dQhBjLntHCrNAQW2eRHWDp0B4OZ7yDCUxHmTIKsUKs/gMQNr6kE+j4Wg5lvo6k5RnLnoyipNmxNfXsWD91GNvEpdG0ZrZIozbaKetgCNez7AD/H3J+kcyKZxPuwjB0isL0ATU0zlP0RAqvr3p1939qeWu0hCuWryaU+HfZhIG0isOhLfx5DW8hQ9kdBir45LmIY2iL605/DMQ8g6Zwc1lcNsMViKPdTDH2EeX0XbWYcmejakpY6CUBlMHMuquIw3IGtEDZx+0ji1uHkkp/A0Je31MlBUdKM5M5DUwcZyHy9HVthkY1/GMtYyWDmW2jqULOsImJo6jADmXOxjB3JxE9nTsrDQGAykPnmZuM9W7LXVMAZwPdL5MvX0XBXY5t7ErMOQggF3y+SL11HvfEfpNAxtAUknBPQWlQMPW+SmdI1NLzVVCo34vtjAQ9BNojZJ2Lbx1JtPICuziPpHI+ixClWbmbj5Mfw207yFAgBMetIRvp+Fa6L/0qt8RiGtjW6NszYzLlU64+hKCmS9kmoag4hFBLOcSFHY7Y9FQrl68mX/0S19q/gBW17Byxs80Accx+SsRPQWg7B8/w8+dI1FCvXUandA81TN+ZWHJaxFwnneJKxE1CVdLOs642RL12N7+epuU+Hu+7dlrIBnymXOodU7Pi23cl1dzWF8nUgXeLO0SHrNmyPrFEs38jY9Nl4/mizr2ZNUxeTdE4JU+3Ho2vze2C7BzHrYGalLYL08kOsHXtLGC9pvy9SJ5f6Cp4/Qcw+CNvYsyU17VOq/oNK/V50dSSkHcwpNjbcDc1YjOePUihfjS/LaOo8+pJfZGzm8/jNZEXwXCFshnP/i64uIF/+M8FM+FgMfUkbtvny9TTcVZjGjiTsQ9toB9X6vylWbkER8S5sXW+SFzbsiy/bDz1QRJxc4mNMFX7QjHUpKChKjPmDt6Bri9uwjdlvwm45NSOgDvydav1BdG0xSee4Nmwb7hry5WtBNkJst24pWydfvpF640lMfQUJ54i2ZWut8XQLjaId2172ugg4Q9Bx04WfMlP8JVJWqVSGIXUujnUgY1OfpFS5mSDI51NCxW38h1z66yiKgy8rTOa/RbFjE+LsS1qsXEW5ejO+nEEIC899kWzqvwNxJSlRRKsusgwE4JWAQl8o/YnJ/Dfx/UkUkSCd/AQLB/6CpMr45Ocpln8d1ktQq/6dgdz5aGrAb5kpXsRM4Wf4sogi/BaqYfAchRr12l+p1/5Oo/EIfZlvoyoppKwznf8B+dLvkLKGKiR+k+0DQkgUBG7jPqbzj+C5z5BLBwcg+n6RyZlzKJavA1x0bWtUkcSnHKajZ8Xey0znv4jrPkQu9U0URcf1RpmY/hKV6m0Es4A76c/+EF1bjJSSQvH3TBW+D3IKVQRr/tb2+N4LzBR+AAga9Qfoz3wPVe0LsT2PmeJFIbZDkDqHuHMUALX6w0xMfRaFMjTvC7OZNiHqzOTPRdKgWv0LfZnvYJuBNEmlehuT01/A9daG2L5ANvV5hNDw/CkmZ86mVLkJ8DH1nVg4cB26vgRFmExMfwcRtiVoQfBcKStMFy5AwaNSuwuARv1u+jM/QNNGQmx/yUzhPHxZoqzkELJEIpRbqdWfYGLqs9Qa/wYUGo2H6ct8J8S2wUzhf9CoIYVESvDRUbVFDGd/xIaxUxDUmnUKKAYlpvI/pC/9TSZnzqVYvhZwqdZuoi/zfSxjZwBKlRuZnDkbz9uEEDa+t5ZM8lMIoeB6Y0xMf4ly9e8htv+gP/sDdG0JUkrypUuYyv8A35+hpKSQcopU/D1B2xurmJj6b6r1B0Js76c/833U/7/MfManv0KheEkbQSzg+uxBtX4P3VkLDds8gOH+S9k4/m4q1X9EZgqiTAibuPNWcqmv8cL6pdAixjXbI0O53+L7JcanP9UlU5BJ/jelyi3U6v/qureqDLFw+F6mCz9juvDTLvkKsAlcR6ljIWBgGtsz0v8XxqY+Qal8XVt7WkO3nelagYVjH8Fg7nzWj55Itf5QW38J4ZCIvZ9K7Q4ajcfpzNQIHIb6Lmds6gxcb13LdQVFybBw6F4K5SuZnOk+BWT2zxyfZtY0dG0R8wfvZHLmHPLF33ZhO5T7HZo2j7Wb3tiWIZrjxgQSIUpHul8Im3kDN+H7eTaMv6ULn7hzCn3pb7Nu9FDqjWeYy1gKFJFgwdBdVGr/YnTyY2391NoeFZ12PWcVVR1g4dA9TBfOZ7rwk67nDmR/hmnsxpqN+yPbtKkNTH0FIwM3BB/S8rVt2AoshgeuxvM2sWnivUSZpi5AUxeEDqAV2xjzB2+j4T7Ppon/6qpTMvZ+sqn/Zs3G/XG9tcxltRQUJc3CoXsplq9mYubsrrK51DeIO0ezeuPe+G2qBRq6tpD5g/9AbEZ7/XUx8/H9MoXi77qch5QVqvV/EB11d6nW76Zc/ReV6p0RacbeJmWFYukyYtahKEKn9Szx4OXRaDSeJV+6JFKmYDr/g64TF2bN8ycpVW5kuvDzSPkKTR3ANHanVLma9kxQnXrjaSq1f4SDs9ZVVm3GLjqP66lSrtxIuXpXmA3rOIlAugjc8CWOEgMvs2H8lHDZ0HrdD/qqcg3T+R9Etqf3/wfZqnLlVvKliyOxncp/D0PfvosqMedqVESEKoGUFSZnvouU5Uh8iqUriFlH0HBfpJ0qIYPlRelyiuXL6eynufrPnnDa2hcevp+nWL6BmcLPIp87OfMd4s6xEdSPOnX3GSq1f1AsX0OnPpWkxnT+R9GB3dm6iTi1RvtHJXhunXzx11Rr90bWKV/6JZaxK54/Tns63Uf6VYrlq5iKlNSoMFX4XkCU7JD5mMW2UrsDp8ex01uy10zA2fPHeqaXN5/u06nXH4JXfA44IDRqjceI7gaXWuNxvFA9sdM6iV7tVqfeeKanPIXnT1CpduvbhJWiVn8UeqSIdW1BmBWMKqpQqz9E9DelTr3xFA0vWjohMD9S5kPKMvX6MwFGPUw097F1lq1Sax5E120N94WQWBp1CoiKre/akwpRrt5Mo9eRMUIPlzwR/C6q1BtP4brrossCqsgSxQ+SskTDfToyAwfgemupN54mSvwOFGr1R4g+LUVSbzxLw32hZ51MY0eiM68N6o0nNoOtpNZ4IlL5QVKm1ngWrwf1w/M20QgZ011lpRs691dnrxnno6qD9MpGbC7VLWUdyzqg54seWK9m+ljG3vRybuXK9WG9Iu6oZHvUF0DHNHZuxow6TVNHepLQpKxjm/tBpESIiqnv1PPrKGUlaE8E4VJgYpm7YWjbRpScNZ/IEzVEDMvcCU2NDjDq6gL6UudGlgUXwgBylBn69pjmbkQpFwg0+tPnRDrE2d9QlYEe93axzGhsBTaWsWuY/u82RSRJx9/f45lBHFHpcVCeoS3HNHbtkc1yQ2yj0v8KprEzZnNjbqdpJGPvjcQWTExjd4we0jGgYxm7EaV2EGSUd0RTo6UxNHURprFTJHVACG0zz9yyvWacjyIs0omPdYEmhEU6cRZEcDkEJjH7GCxjJ+LOCbTvnA6clmUeQDLeLX8ghE0q/hFsa29MfReiZTsa+N6mLh5JsBb+Koa+U2RbdG0hjvUGssnPR7bHsQ6g18uoKYNY5q4k46dFlDVJJz8OPZZ7oKMoGrb1xo46K+Ha/91kU1/o0dagvK4t6riuoSpZYvbRZFNfiWxPLn0uMfs4em2BKVduIZ2IlmzIpj5LKv5foTC+aLvm2Edhmjuha9FOQqBgW/vTLZdik4p/CNvcE9PYjfaxE0ieJGKnkE19ObJsLn0OitIrNQ9SFnpga5NNfYlE7G3hy9r6ellYxt5Y5m4k4++L7MdM8hOkEx/tvoZNInYqlrkzjn1oF7aKsEjG30M2+bnIOmWSn8K2DkTXtqIb2wwx59jNYPsVYs5xKEqa1hm1wMTQtsYy2s9zfyX2mnE+AOnEmeRS56KpC4NAs7EHw31/IJv6OMP9l2Lqe4agqihKjnTyEwxkfwxAf+YHpJOfQFUGEMLGNg8hm/g4uM9TKV2IofSja9sihI2mziebOptM8iwAhvovwdRXtNVllk8jhEYy/j4MfSVCWOjacvoz/0MidjIj/ZcRt09irhtVYvZxjAz8BSFUkvF30Zf+Prq2FCFsDH0nhnKXYFtvQBF6xNDWSCU+DEA29WWyyS+gqiMIYWMZ+zHSfw2GvhxN7Y98LRRUFJFgMHc+qcSHUZS+gBNjHca8wRtR1T4sc3eG+y5HdBweKIRD3D6awdwviVlHoIgUQiSIOycyb+AGhDCJO8cykP05urYNQlgY2nYMZi8iZh8OYpbj024C8OUE6cQZ5FJf78D2CkxjZzR1iJGBG3CsQ0PeUT/pxBkMZP8HgEziLASdej+B9GvMPprhvisxjT2Dsuo8sqmvkEl+NsC277ek4qehKBmEiBGzj2bewE0oSgLHOojB3K9bsN2K/sxPSMbeiqYOoBDxtcdAU4dJxN5JNvmFZnsMfUeGchdjW/uhKmnmD9xEzD4KIWIoSo5U4nQG+34dYvtFsskvtmC7LyP9V2PoW6Nri5g3cB22eVDYF0Nkkp+mL/0NAAayPyeV+EgHtjehqf1Y5m4M912Gqe+KEBaauohc6lukEx9CCMFI/5UkY+8KsY2H2N6IIiziztEMZM9vYqtr2zKQvZCYfQSKsJk3cCNx+3iEiKOINInYuxju/yOb02/ekr1mAs4AQggc+xCkvx7XfRHT3BcjdAqGthzH3B3hr0fiYhp7ELePbk4lhVADNrI/je+PA5JC8TxmA7O+v5pAk2VfTGNXYtYbmx2nCBtDW4jbeAToCm2ia8Po6ltoNB5B17drpngVJU5/9jwStXdQKP6cev0R6tWbGB39N8nEp4nFTsKxDsD3VuO6z2IYu4VTWBtVGUB6q2k98ibISJ3S7IuYfRjSH8Pz1mFZB2KEnIxE/H1BbKct6yTQtSXo+lYAxJ3jELKE709j24ejtSgYmsaO9CU/R6nyJ1xvFKHOI+G8hUrlT2waPYzAjTUw9F1JOiejtBzmaBl7koqdQqPxBLq+I1Z4fIqq9AfpfDnekTVUsMx9WrBdh+u+iGHsg6Fv37yvri0iGTsFXUmhKFni9jFNbGPOkcwUFuG6LzA3u7IwjQOoVK6lUPxfoIqOg2XuQcx6Uxu2CedEFOr4fhHHOQY1PLkiaM+upJy3Um88jK5ti20Gp0/Y9mEoQgNJW3uCpcYyNmzaE88bR9BAFwni1qGYYbobQFVHSDqnoIkYipIg5hzfPPZoDtvRAFtzDtugL5aRjL0FQ+1HVQeJOUc2M0pC6CSc4xCyGGJ7WBu2hr4DydjbqNfvQdOWEms51C+Y8Z2IIlykbBCzj2/H1tyTVOytNBqPo+s7YJt7zLVH6ScZOxlVMRHCIOachKJEx+Jerr2mUu212r2MTbyD4JTJesjQ7Kc/93s2jZ2IlIFTmTOdbOYnxJwTKZX/zNTUmeFmzC1R6g2E0OjL/Q7L3Jd84RfM5L+FpB5kWWTrbhcDXY0jZSUMulkIYTDYfx26vg1T05+nWLqMzgCjEDbx2Acpln4ZBvpqgIOiJBgauBkpJRtHD8X3x1vIdAaJ+BmkkmdRq93J+OR/hX3RQAgHVV3AYP9fkBI2ju6D540hRPhSIEglz8Y096BWf5j8zNcJJDc9hHAwjN3oz12K70+zaewIfG8KSTnsCx1NXULDfZruTbQmjnMi2fQPcd1VjI4dE8pEBJInQtgM9t+Aqi5kdOxEao172yCSwmAg93vKlT9RLl8Z/tQNse1jcOAmFBFjdPytNBqPhbEwFSF0MqkfEIudRLn8FyamziAIAAfHEqnKPAxzPyqVa+nM/IFJf9/vscz9KBQuYKbwnTAm6COEg2UeRC77SzxvA5vGjkDKUhu2A/3XYujbMj7xISrV69r2L9nmm6jV70ZG6DsrygBDAzejKAOMT7yXWv2usD0KApNU6ksk4v9FtXoH45OndWA7n8H+v4BQGR07Htd9PiyrIYROLnM+tn04xdIVTE9/rh1bfRf6+y7D92fYNHYkvjcZYmsihEZ/3x8wjV2ZmfkehdL5zcyVEA62dQzZzI9xvRcYHT16DltshGKF2C5icupjVKo3zrVHmOFY/VSvlyx8D14HkhpSSjZs2gvPW9NxxUDXV9Bo/JuomIIQDsODD7Bh0x6RA2JzpqojDPTdwIZNe9GV+pTBi2NoS3DdZ2nPTAkMY3cyqa8zOn5CZCYgfEJEnVUc+yRs+wgmpz7WI/CcQQgP2cF+BZNk4hMIYTGT/w7dLx1ADOjuByEcMunvU6vdTal8Od1OprdshhAO/bkrmMl/h1r9ro7fU7DMN5BIfIjxiXdHtGd2/1ZUQkAnHjsNQ1/B1PQXwhem9bk2w4MPsmHTXh2cGQjiOMELGGWqMsRA/81s2LRn17OFiJHLXkCpdAWV6g0d9xAY+q5k0t9mdOw42kXJZtsD0R84Bcc+Ecc+hompj0b0hcnw0ANsGj0knJ23X0smzkSIODP5b9GJrRAphgfvZsOmXbsC8AG236VWv59S6VI6sdW0rejP/Z4Nmw6M6AuH/txlzBR+QK3WSWlRsMyDSSTOYHzi1Oj2DP4DbTOnlr4ueD6etw7fi0rl1iNJca1WKv+BVxO+8v0pypU/IYTWlS0TIti6UG88QHdKXFKvP0i5cvMWpDyi6uxRqd5CcPJFL9mFqR4btmuUK9cSUN57ZYCiHbCUZcqVawNaQqRESO+PkJQVypWbQkJlhBxH7Q40bVEPJ7y5mWiDSvV6Gu7TXY4nMI1y+Q89ylbZHOa+zFOuXBmJrZQlyuU/U639nW6MJPXGI1SqN/fYYd6t993yVCrVvxJwiSLkUoROuXxlj36qUa5cQ7C3KgpbLxznetd1KcuUy9dSbzxKFLauu5pS+VqiAuhNbGv/jGiXT7V2J5q2VWSdBQrV2m3EtXdH1HfL9poJOAth9d6NvQVZBEUkeTWyDVL6KEqSXlmNer37jKs5U8OB8so1bIUww7KvvPuDpc6rOSUyOGhvcyS23qaFz4ymPAhhvPq+wOrJ4wGJUDaH7eYcpheWjQ7NK0p8M+NKCdsb9W3W2JLKQaPxRI/nEow3Gf0hDTbF9uqL2bEa3WZFiXVl7uYs2McXLeWhhrGbHoc0CKOZ5Om+qHRlyF6JvWacj6r2YRg70d1IG8c+hd6dk8BxTkFRUhFXdUTziJPOwaBi6Ctw7JN61kn0/GIb2PZRxJzjiZJdCMxC07aiewBbxGPvJBZ7+yt2BEI4JOLvJRF77yt2QELYxGLvJO68q4s6EIj1LyOKzhCYgmMfgWOfQDcOJo5zMjHnzYhXOJEO6vRu4rF3RbZHCAfHPiXkVHVfs6yjiHYQAiEMCtPnRi7FhTCJOW/Fsd8GXRIUOrZ1BI5zPCLSgaio6jx6ctJkBc/tVOOcNYWY82Y0bSldagPCIRE7jXg8CluBogzg2CdHjhkhHGKxU4N+7BLqVzHNvYjFTgQRJZei4Tgn4Tgn0o2tgWO/eTPY+tjW4RE/f3n2mnE+ALnsL1DV+QgRJ5BusLCtN5FJf4N06mzaHZOCEGn6c5egKBp9uUtQlFyzLJjEY+9jaOBukvHPo6rzmf2CCxFHVYfJZS9EURz6cheH5eLMdkmQam93LUFZB13fmmz622jaPDKZHxK8tK28EJtU8tP0564OpCJELPxjY5l7k0x8HNPYjWTiLHpzbkxEmBKdbY9tH49jn4JtH4fjnBL+ToxeX9m52ZlJIv4RLHNfEokPY5oHIrCa9dK0RQz0X0Vf7pdo2grmiJ162BeS8bGjUYSKrq8I+yEWBrJ3JJ38Mrq+NenUOc06iVAORFH6e9RND2JF8fdhWQcTj53eVlZRMk1s+3O/C1PLc30Rc95JLnMhqeSXofnCKcw6UCGLQKHl3HijWTaV/ByGsQOp1GcwjT2YlSQRIoaubU0m8x00dYRM5kcEQeh4+McmlzmPoYFbiMXez9wWDKP5b0ED0eG2grIJ+nO/QwiTvtz/oipD7dhax+I4p2BbRxNz3trRF330536Louj05y5BiHRb2UTsQ1jmfiTiH8S0DkSIFmzVReQy56EoaXLZWdmZ2bFukU5/E11bQiZ1Tkg5aMFW35F06mx0fSvS6XO7sM1lfxXOxl6dvWYCzrMmpU+lejOu+yyWeQiGsUPzmudNUSxcRMN9GtM6iHjsbW1TZykblCvX4bkbsO1jgAbjY7P7bKoQas0kkmcTj59K64Y43y9TLl9FfuYbSKYjvnomduxdWNYbsMyDaOU3eN40lfKVSASmeQjl0v9SqV4DgGUdh2nug+u9gGnuF5Le5sx1NzIx+T7qjX8zt143UNVhBvv/Sq12G677ErZ9OHpLOhag0XieSvUvSL9Kvng+c9kglSCA+RGEsHDsE9C0eW1l6/WHqVb/ga5vi2Ud2tYe3y8yPfVFytWrmy9TYDaOcyqWfSj1+kMY5h6Yxt5tZV13nErlSoSwcZxTcL3VjI2/GSnrYXbHRde2Q1O3olH/O1LWMK2DSKXORQKV8rWo6mAw8+jC9s947nps+2j0FmmLoD1PUK3dSrVyO43GfYjWo5eRgE48cRYx5+1oWvsBedXafdRr96AbO2CZB3dhW65cSTD7OxlVnXvZpJRUq7fRcB+nXLoG32s/Kjl4rkk8/gESyU8GCgrNsh6Vyg243gtY1uEYHQc2NhqrqFSvR1Xn49jH0cpOlrJGuXw1nj+BYx+P1iFtUa8/QrV6J7q+TYht6zgvhXGnKo5zCqqabbmvpFa7K8DW2A3T3LcdW2+CSnkW25PbpDp62esi2wUg/TLT05+kVrmZ2f0v8eRnicVPp167l8nxt9MabFPVrcj2X4Wq9uF7E0xPfZh67X6Cs4QMhNKH6z3P7BS4yadBwbSOIJX5HxTFwXVXMz35ftzGs4CLDM8+aLWA1BZDShc79laSqa8jhEaj/hjTkx/C8zeGj/Hx8ZkNsgoURJjWlPjE4x8llvgkQghq1duZmfpEsE9M1kHoSNGH7RyDri6mUroY1302fAkVEqmv4sQCvdxy6UoKM18CPKRsoBk7gdKP665C1ZYjG4/ge2vDyluk0j/Gdo4FoFg4j1Lhx4BAygaWfSypzPcRwsRtPMvU5Afw3GeaKebWvgj2cGlhINfDib+XRPJLCKFQr93H9NRH8P0pkD6atpR07iJUdT6Vyk2Uir/Aa/wnqHMoEBJYEGNR0IEaUrroxq6ksxegqv343mSI7X3hS6iTTH8L2zkegFLxYor5bxAEekstNIk57IK/TRQlQyr7U0xzP6SUFPPfpVS8IGxPA9s5hWT6myG2/w6x3QAyyI6mcxei6yuQskF++nNUylchhI6U5RD3qOfqaPr2ZLIXomrz8f0iM1NnUKveEbZHIZH6Ck7snSG2fwqxDfg4hrkv6ezPUZQ0nreJ6ckP0Kg/hhCBwFoy/UMs+9AQ259RKvyoBdtjQmwt3MZzTE2ejue+BEIERN3s+RjGbkjpU5j5GuXS7xBCDbCNvZtE6ishtg8wPfXhQPdISjRtMensRWg9tqg0++D14nymJz9KtXIDrenA2c6dmfoUdKU9QdW2oX/wNiZGj6XReIzWaH/rIOxWADQxrUNJZ89nbONe+P5GaPtabqassHFi7yOeOIOxjXu2pcRly9+ipXxr2WTqGxjm3oyPvrFjq4SKogzi+yWgSFcmRthkchcj0JmceEdHWQPD3JNM7gpGN6xEyqmOnhJk+27A81YxM/3pjrIWtnMSyfTXGd24O9KfovX13VJfxBNnYTsnM75p344sjwh4WkP3MzP1KaqVv0CHREhvfDQ0fVv6Bm5hYux4GvVHaMvkCJts35VIf4qpydM7CJdzf0dj4NA/cDvV6q0UZs6lbVwJGyd2GvHExxnbuEcX3UGIFP1DD1DMf5dy6ZK2sptvT/hzZR6qksJ1n6Nt46qwyWR/jRA2kxNv68BHRzf2INv3RyZG3xhSP7y2sn39N9JoPMnM9KcisD2BZPpbIbaTtGIrRIz+wXsol35HsfDT9r7AJp78BLbzthDb1viZCJaDQ/dvJnD/Okm1+34+HJydcgEVCvlv0+sECc99nmrlFhruE5G/Ezn4AKhRq/6VauXGcIB1frWUYE0tq933lRUqpV+HcaTuEyaivrqtZUuFn+I2nonYYOjh+xs67tBZ9mdB0LErC1enXrufSukPEY4HQFLIfxXpT0eUrVIp/wnD3AdkrefzI18oWaFU/AXBrKM7bS1lmWrlBqqV6+nimES3MjQXdxbbtiXp7K2rlIsX4HmbutqzZQzKTE+dhec9T9cHTVaolH6Dqi4Kl4mdLXKplq+jXL6kq+zccxR6Zeikvw7Xj9hNLyuUCuchlHg45lqtQaP+ELXqX/G81XR9lGSdUvFXNOoP9MD2agxz/0hspfQol/9EqXhhV3ugQql4AaD1wLZCrfo3LPvIyLZuyV4zAWffnyb6jHGCF6ZnulUES5OI9OeWdp0IoeG6q3rc20fXV9KLoyJlBc9dvxmuTm/z/fGQTPnK+DYQ8KG8HlIQQhjU6v/sWdZtPLdZWQzXXR0pu9DrKz5r0p/C89YRRSSU0sVzX6S3XMrcM7p/poXYRn1ZJa67Bt/b0ON+gs0N70b9rp5lpazie+uJmmkjq3j+OqJVB4KkhK5tv8WxF2Wetx7PW0vUGBBCDz5YkelyD89bg98TW4HrvhSJLVTx3HVIORNZUvrTIbZRUisuvhctxfFy7DXjfFR1hGj+hIJu7Mnmhr9lHdlDUsNAUQYAtRc7Ast6EzJC1R+M4EvSo6SqLsK09qZTHP7lmG7sgmEeABEbFzdvGoa5f/AVi+grKRtY1qE9S6vaEgxjd6L6UlGSmOaBEPkBEKja1qhKtLyIpm+PYewNUX0hBIZ1CFFn3bcuj6J6OZBL6Y2taR2EYe5LLxmQXN+fIp8bWLBNI8pUdQGGuXeP9L+FbuyD0kNqxdB3xY69C14xFyvA1jQPJCoDKmUD0z4qmtQqLAzzIPSe2MYxzYOJUhwUIoZp7Y3WQ2pF01dgmj3GuRDoHQmUV2KvGecjhEYi9VVoIy2pCOGQTJ+NE3sfUVwdJ3Y6mr6UWPzDHYNFR1FS9PX/jXT2F3SdXiBsEskvoxsrgmlj23ODY2x7HxZok0x/HcM8EE3bjnZ+TJAiDxyeQnsXB4HVROrL2M7JqOoAbQNN2PQmsCkIESeeOINY4sMIJUHbqlk4xJOfwrKPBaLTn4nU2SSSX6BL7kHYJFLnoBu7hk6kvS80fQdyuSvw/c7tHgCCRPKrWPaRaOoi2nkzNqZ5MIaxI4nU1zruG2AhEej6biFRtN1M6w1o+lLiiY92lNVQlCSx2PvC4H0HwVHYxJNfwjT3wrKPoXefzmYG2/simf4GhnkAmr6CdmxtNH0nTHNfkqmvd9RpDlvHOSl01C/3zLCAEhFPfAwn/sFg6dWGrU08+XF0fSlO7F0dz9VRlBxO7B0kkp+nixAobBKpr2GYu2AY+3WUtVC1pZjWoSTS54bXWgIVwiaZOhfTOhxVW0wrtkLYmOaB6C3Z6Fdqr6mAM0Ctegelwk/xvHXoxp7Ek58Mz4yCSuUGijPfxvPWo6oDxJOfwbJPQAgRpD0rf6ZcvBDfn8Sw3kA8cSaKkqUw/Vmq5avCDIuLouTaMgRSepRLl1IpXYyUVUz7cMrFi4hecqlk+6/BCD2+lFVKxV9RKf8BENjO24jFgw2h9drtlPLfouG+BKgYxh4k019HC1Pmvj9NqfBzqpUbEEoMJ3YaQskyM/XhMB7UYPZIHts5iXjik6hhWtXzNlDM/4R67Q4UpZ9Y4sPNtbfbWMvkxInh0gFAJ578Kro2GHBA1CFKhfNo1B9CVRcSS34c09w3bE+DcvFiKuVLkTSw7ZOJxU+nVPo1xfwP6J5+W2T6fodp7ofvlygVL6BavgohTOzYqTixdzWX07XqnSG2a9GNPYglPh5sy/CnGN+4F36bpjEILPqG7kMoOWrVv1Aq/CLE9hDiiY+Hzhtcdw2lwg+p1+5BUYeJJ87AtN4QtscnP/0FKuVL6F5em9jOO/D9UdzGv1G1ZcQTn8QId+oH2P4vlfIVLdiexizRr167j2Lhx3juKjR9J+LJT6GHKXPfn6FU+DmV8h/x/U20B3ltTOuIcEvRJgxzP+KJT7Rgu5Fi4SfUq7ejKH0htkeFdZJUK1dRKl6E9AuY1uHEEx9FCU9xcRvPUyz8iEb9gRZs95vDtvRbKqXfh9i+mVj8A4gwZd6oP0Yx/0Nc9yk0fVviiU+hGzuG7SlTLl5ApXIVAgM79k6c2Lt7hkrm2vo6CDjPmqJkUNUBBBU0bRClZTYjaCBkAVXUEXIG6U00eQhCCFQ1i6b24wuBpgYvWrnwE2qVaxGiEfp0AXKaWuXqpvMBBU3tQ9P6kX4FTZ2HEGZbwHFO3yeOIlrZ1Bqa2oeu9oX36Qc06tUbKcycBbISnkLg4TXuwWs813Q+Qpio6iCamkMocVQ1i2EeijFwB+XyFbj1/yD9YIC69fuplq/Fib8XoQSERU0bxHdzKOpAGwtY0+eTSn+HcvHnSH8aRV1CpXAO1ZC+IKUIZhVqFlUbQG1jh6uoWn/Yjkbwggsdr/Ecs45nti8kIIXEc1eDuR/B7vh+NK0fgRme6TT3FVaUDJo6gKCMpg6iKgmE0KhUrkMIGSHEKqhVr8eOvbdZNsB2gNatBIpwUNUhNHW2L9Jt9zCt/alVLgMZnE3RdANCwbQOoVL4IULmoeM8eNBDbPsBEbZn7pVRlFQwzuRMOFbnlCuFMFDVQXRtAVL24Xob8P1JhEgRS3wUw9iLSukifNywPS3jXFhBW9UcitKOrRACVcmiqwP4wmiO87kmxYKjq9VcBLYaqtoXYltvYjtXNh5woOQYmjrURiAUQkNV+8NxboanVrzy7TSt9pqa+VQrN1KY/lgYlfeZZaVmBm6mVr2d0sx/0xkdMJ13k0x/i3LxIkr57zAXJLRQ1EF8bwaYjnxePP0LbOdYCjNfplq+HJrBYxuhpHH9SZDVuVMZRBjEFCbp7GVoxu7kJ99DvfavuecKB8M8BLf+YJi+7zSVzMBtqOp8psaOxXNXtZW1ndOIp75ApXQlxZnP0CVwroyQ7vsjM+On4PsTNIO8wiae/Cp27FRK+R9SLv08IvMRZUF7UpmLMKxDyE+dSa1yIzQ3ejroxm5o5lEUC19FCTMxs7NNhCCR/imWfTzTE6fgNh6be65wsOwTSKS/R616C/nJj4T1bcG2/2Yq5UupFH8cUTdBLPE5EA6lwjdb2mOhqP1k+m9BygpTY4ch/XzYVwKwSKR/iOUcR2HmbKrlS5vYzmoMQRonfhqV4g+6nppI/wzTPp785GnU6/9sa49hHkwycyGN+r+YmXxPwM/CI2DP26T7r0dVFzI9fhxu47k2bC3nXcSTX6ZauYrizH+HWS0Z9IWSJtv/VxAaU2OH4XvjHdiejR17F6XCjykXz2vrC1VbQKbvRnx/nKmxw8P9iPWwnSbJ7AWY1hvJT32CWvUvbeNcN3YjlbsMt/FvpidODt89D1CDcZ67Ck1fwczEW2k0HmnrC9M+jmS6u//aEHw98Hyk9JnYtAuyS2pAxbRPpla5nugd24LswH1Mjh5A1JJgjvUbUVJkSPddy9TYoXRlaoSDYb4pBMujU7BN1bYlnvo6M5PvbgFztqzd4kC7zbAOw7SOpDDzxe6ymGQGbmd67FBkpEi9gqbvgtv4N10C58Ih238bk6Pd0glbMkUZIZn9DdPjx9OV5REOifR55Kc+iIiIg2n6HtjxD1Kc/njEXiqLdP+NzEy8BdmVjVEx7TcjRIZq+YLIeiWzl5CffD9R2DqJj+N7m6iWL6GL8iDSpPuuZ2rsjXT3hUUi/X0KM5+HLqkOQMRIZX/HzOSpEdg6pHOXk5/6OL7XKfYuMMw3YtrHhveOwvY2pscOj5AI0bFjpyFEnHLxZ911Fg7Z/tvDcd7ZHptY8iu49fuoVa+lc9wpyhDJ7O+YHj+Wrn4UDsnMBZQLP2iK6bWapu+Gk/gY+amPQgS2mf4bmzP5KHtdLLt8bx3Sj3IuHo3aHfSSigBJrXJdyDLtHKBVEHHocdKEpEa9egMItTvdIssEx9LqILp3IXvuM9Rr/4ieXcgGwZQ02vk0avcARsTgBIROvXJ9zx3+4Aezi0hOkxL2hdEjQ9TbfH+Ceu1WImVAZJlG/T56bbR1G/dTmLq/x50F9erNPRypR6N2J6q2VY+yGtXSJUQH/qvUq38NZ39RfJwGteoNQfauqy+q1Ku3RTseAFmiXruzB7Y16tXb8bt0p8Kn1u8JMl2R2GrUK3/pgW2DevVv4fKrGzuBSjWUU+nGtkK9dkv4Qeq+t+9PUa8FUh/dVS5Tr96J23g0ok7gNh6hUf1HhOMJa12/e7POZ3P22sl2KQl6afYIJUvv9aVAUUdCBcNu0/Wd6NlM6SLUkR7XNRS1P3BMkWagKMH6N+qabh7YoxwIJdmkAHRdAxR1OIKA2H7/KJPSRVHn8WrkRUAGdYo81sUMNoi+CikPIdQgLd1LRkJJB/0cmfb2qUdq7gTWGQ9pM+kG/Rh5Xw1FHYj4eeu9c0RiK0yE0k+v8SiUZBgIj8JWbBZboebCvug2Kd0wIB2FrRLGuqKUHQAkqjJENI3CQFH7e1JGhIgh1ByRp4sIFaFkejxzy/aacT6KksaI4jgIByf+IUz7lB7lBjCsY1DVRXQBLmycxFnEkmfTPcnT0c19sexjiZa20DGtoyLYpuFVY1cs+wSiyHNCCBLp/0GN5E7Y2LHTsWOn0p0CFgHvwj4Ozdgl8rnw/7T3nuGWFFX7929V5x1OniFnEAQlI1Ek55yDRAmimDCB+qgoBkBEMCBZQZScJUgQDBhIiiRJCkqaPCfs2N31fqja5+zQ+xB8fGb4v3td11wzc/pUd9W6q1dXrXCXT5g7pC1kCuDgemsQRLtbY/1W0tx8/HAnwqgLRYgowtzeRLkP0o12o/vTHMJoD/xwazqxjcgVPkyUPxo6uGiMS1syCb1M26hwDLnC8dBBI+Hh+RtPg61LmD8Ex31Pdo/dtSwdSgZzJkKY25Mg2ptO42SwDXPZ2Db8JJ6/Ph3zUXLk8h8mKhzbBdt3EYS7I2qYztc2IModSZQ/PqOtb7b50R5k8vmIQ5jblzB3GJ3YhoS5Iwhz+3f5CLsE0+SVvZEsNsYHoDh4rk2UCjGnKwREuaMJon0oDpyJ52/b8vuiZjIwcjNKKfqHL8dx3wUSmbYSkS9+CT/YmCj/IYJoP5pzGBx3JfoGf4CIz8Dw1ShnWfNlt/QHfYM/RKezkC6JgIKPcoboH/opIoNM0oCoEfqHr8BxBhgcuQUv2IYpygXMNk6nOO4qFAfONm2kCJJDOcvTP3I1Ig79gxfal6P5tXYIc/tR6P8y+eJnm/QU4Xpr0T90KSKKgeErcZyVQHKT9w5zR+KHu+GHB+D5zUf3CI67KsWBMxGVo3/4SkTNhEnqhAH6By8xROZ9J+OHO2BeuqhJF+albCkvkDxKLWXHE1Ic+B6ev1EbtkcRRPvh+etT6Pt6U38txQWadnoKIx754hfwg03xw93IFU7A5FcVgRDXW5e+oR8i4jEwfE0HtsXB7+O6K9M/fDUirWeNi4zgOqszNv9DSIvxCQ22Q1egVD/F/tPsxzKYHE+Y248ofwyutxrFge/RoJ8w2C7HwPA1iDj0DV6A663dpIuQXOFEgmhH/GBL8sXPtWDreO+mb+hSRMRg67ZiW+j/Jp6/NmHuEKLcYS198vxNKA6chaiI/uErUWqJJmz76R+8GMdZknzf5wjCnVraBtEu5Ps+bcjwBy9ApM+OJ49SS9I/fBX/CZnYGzqcReQSYDdgltb6PfZnQ8BVwIrAP4EDdHZBUYu8mTwfgFrlHpL63/HC7XG91Vqvle+mMnEJylmasPhFXHdq2ae1pla+hTR5hSDaA+UuDUC99jCjcw5CU5oMEQs58v3fJLSnRaRpTK18Legx/NwBKNVPvfpnRucdBnoCjW5q6+BH+1IcPNu2naBaugYQgtwBKNVEnZCWmP/6Zmg9D01iX6UIP9yO4tB5pMk8qqVrEWcQP9wHpZy28dxJvWb8IkoK1Eo/JU3+jeOuiZ87kiR5AeUsjx/tQistRkK9cgNpMpcgt8/kcj6u/ZWFc/br0EWu/yt2NQZpWqVWvgZ0DT93YMcpBfXqg9Sqd1Mev6DDAa1x8LyNCHL74Ef7oVTraqdWuZek/jReuF2HryBNXqdauh7lLEmt8jC1yuU0rz60jQwV+s8izLeSwMX1F6hX7kS5qxBEO7TeN42pVa5FJ2MEuf1QTutWoVy6nnr1Hnz/AyhnhLH5H26KjjXeD4/BmQ/juMMtbeuVB4jrf8ELtsT1W1dSaTKfaukaRPVbXbRhW7mTNP4HXrTzZC5bQ5L439TKt6CcZfGj3TKwvYk0md2C7ZQunqZeuQfHWws/3KpNFzVq5avQumbnausRSvXqg8S1P+P6G+MFG7a1HaNWuhokysQ2S/6jaJeIbIkpsb6syficAczTWn9bRE4GBrXWn3+jjryR8UmTeUzMO5wkfgZw7eQ/mKj/a4BmbPZupPHfmntHbuAc/NzeJPGLTMz9IGk6C3BA1wiLnyYsnsCC2fuQ1v/c8QXVMsTgkn8hqT/OxLwjbYhSgJio/wz8aA8WvLYxWr+GtBFr54evwg82pV75NRPzP0rDmScockMX4gWbodMxRmfvaqMiU/QU5l8hucInqI6fa/0s2mS5Dl+O472bNHmN8bkftI5Np8n52eYvsH4Y5SxNYfgKlLM0Sf1Zxud9EJ0uBBToOlH/lwnyh7Fw9kEk9d916oI+Bpf6G0ntYSbmfcj60ARIyQ9+Hy/cHq3LTMw7gbj6e9NnPUEK6CYDoezW0WwhffJDl+L665Om85mYezhJ/HeLbRU/dxBR/2mICJXxi6mMftvqIkWkSJzOpRHRUy1P8AkKxxEWPgYSUhk9jerETzFHTMcoZ2UKw5ejnBnEtb8xMe+INmy/TZDbxyTdzf8U9codpq2ugxRJ9Kymp03NNZEc+aGL8YIt0Ok44/M+RFJ7xOqihhftQm7gu4i4VCeuprzwS9bPkprs9OHLcLw1SZPXLbYvWWyrBPljCPtONroYO4fK2PfteBKTODl0BcpdhqT+nMV2wSS2Yd+XCAtHGC6shadQK11nxxPjeGuSH/4JSg0QVx+02DY+GJr8wDl40Y4moXLeCcTV39q2NdxwK/KDppC5Vr6d0oJPWY1oBI/88KW4b1Be8R+H2kVkReDWJuPzd2ArrfWrIrIUcJ/WevXp7gFvbHzG536QuPoA7dQJUd/XSJPXqGbkZICiuMSzTMzZnjT5Jy0OOYnID13K2NwjECotC3htv/l9SzzM+KxtMgrrQooz76A6finV0k/bXlYXL7c/UfGzjM7avDMqIjn6lvgT5QVfol65meYoQyPJTRPhkNAeyRE1Qt8SDzI+Zx+S+mNMR5zfKg7KXYPijNsYfX1jdFtWLRJRGL6K0TkHIJQ7dKFR9M+4n7E5O2eGVPuW+A2VsfOolX5OazTGQeOSkuCQ0ukQDelf8jEm5h9PXP0dndh+FcddlfF5H2zTo4AMkegJFKYau3P75eJ461qOoHLrz/0NKQxfwehrG6D1go4+FWfcRq1yK9WxH9Eaflakls9JQeemT3L0LfFHygu/Qr2dhUFCwsIn8cJtGJu9Bx0nUKhhi+3+JPW/0EqLkSM3cBYieSbmH08H1Yr7Looz7mD09U3Q6WtkYRvXHqMy+o02Xfi4wVbkB89l4esbdMH2firjF1Cb+Bmt2IYE+cPx80cyNmubjvEgBfqXeHgyQzpL/huh9iW01o2S4NeA7Cq7tyBpOp+4+gey6CuqExdZHpLMltQmzu3g42m0rY1faqk0WyeR2LVMXLm35cs9JTG1iSupV27JmPQx9dJ1xseUWZQKtdLN1Cu30x7elMnNTr3jGpiU/lrpJpL6k7x5wwOQkMbPUyvfZMPabffWVaoTP0NlFFQ2+lSv/iazT5BSnbiBWvlKOsPACUryhPmjqY5/P6NthdLCL5vVUia2FxvHfIdjXwMVCv3foLzwCxnPBYhJ6g9n9DkmqT1idJEZBa1TK11JrXw9nflDaRNGGaJjSgtOJa7cmjGeCtWJn9hK7870AK2r1Mu3kGSdxqJLVMcvspQa7SH+hDT5p8V2tLNvukJ14jKS2sN0VuLXiKv3USvflD0eUqql66mVOs+egwrV0s9BimRH2TT16l340Z5d7j29/McOZ22WTl2XTyJynIg8JCIPzZ7dnc5Bp+OZkSNzbXTaI2rSZC7dQp9pOteG8TP6hotO55Kt2Jg0nYdOu1Fm1KhX/0BHoh+Ark1zX/NkU+iaDahOZ3UJi76BiItOsrKqAVLTpy6k9YIyq7/MMHAdred1jfxpXbIEZNnGsl6+lW5TTaejHQRXU6LMtWlPL+ky9cRFJ7PJ1nFisO2Su2KMj0t2DK9GXLmJbkXHWo9b7LN0oUmT17piq9MF03xkHbuazeqTRqdzMxIXGyKmT5nY1swzu2XD67LFNmueJ3Zr//bk7Rqf1+12C/v3rG6/qLW+QGu9odZ6wxkzupGJg3KWsdXg7eLihdvhBdt1bRsWTyS7CDTEi3bBi/Yka6ii+vHCPbJzUCRnHN7BZnQLJCfVX5MZehYPL9oB5azQcUkDIkPk+r5AZt6MjvGiPXmrJ0E0xMvtTSbXjER40c544Q5kjUfUIGmSVbVu24bb4HjrZ152/Y3xwm0zrxkZR1rqrSZb4oXb4oY70xkuB3QdP9qXt7YCtF2WEC+aDtsdcP1sbJX7bvID3yWLI8pItxwshRe8Hy/aYRps9+6CrY8X7YQX7kx27pjGj7phm8MLd8ENtiYzv8iZgRvsROY8lpzFNnNnhONvhBdunT0ewA3en/nzNyNv1/jcDBxh/30E0G1N96ZFRJEbONPmKTQUGCJqkLD4CaKB06CpcK8hXu4IHHcZor6v0EoJEKHcZQlyhxAWPmYTwxqgCuAR9Z2K4y1HkP8QrfkREY63Dl64PVH/l+lOyeCivNVagZEcXrgrrrcWuYEz7H0bk82cgeQ6S1Md/zHmmJMm4yURQfFEHHdpov5v2bYNiEI7/uaTMhr3VUBE1H8ajrMkYd9nWnUhEY67Kn60F1Hf5xAZaNKF0bVOJ6iXLsG86M0UEzlcf3Ncf1OigW9gOHsa+vBBCkT9X8UNPkDXHCA1koFtgKgBwuInCfL7o9wVmDJAhs4h7DsF5c4g6vsqnfkr7dI8nohc/xk47rIEhWPbXpwIx3vvJLYmrNxYWXnW9/Jt/GhvvHCnri9dp/iIFAn7voAX7oLjrtnaZ4kICh/BcZci6j/d6moKW3FGCArHE+SPtMmRDV0q6xs7DeUsQdj3uY557jgr4+f2Iur7LKL6W3UhEbmBM3H91fBz+3fMVdffFNffnNzAaZnY5vq/hhtsietv3NHWzx1kwv5vU95MtOsXwFbACPA68BXgRuBqYHngRUyovdt6cVLeTKg9qT9DdeJi0vhFnGAzgvxhKJtFmaYlKqPfoV65A1H9hMVP40dTK6K49ijViUvRyWzccHuC3EGTzrA0foWx2XugtVmKm6NjAvIj1+B476ZeuZ9a6edoXcKP9sCL9qJBYl+a/wVq5cszlBMRFr+Ccgaola4BFH5uf7xwp8nQaBL/g+r4xaTxc4AiqT2EWD+D4fvxUd7aKGcGfv4wPEttARDXn6A6fgk6eRk32JogfzBIYEK4E5dTm/gx5ius8KMDiQa+NfncuPpHqhOXodMFeNGu+Ll9J6uf02Qu1YmfktT+TFx/HDqc7R7KXRnlLI2f2xcv3A2xSWZp/DLViYtJ6k/geGsTFI62LwtUJq6nsvAztG5JwslIm8H2EtL4nzjBpgT5wyex1bpMdeIa4srtiBomyB+BG2zUgm1l7IfEHSUgEV7uINAlktofTQpG3xcNob6VeuU31EpXoNMJ/NyeLdimyetUJy4lqT2KctcgKByN465g+5RSr9xBdfyCTgdxQ9QSuO6qOP761nDMtG1r1Mo3UC/djKiixXbzyWZJ/Ukq45egk3/jBlsS5D9oDzk0H4Jq6RfElbsRZ0mC/FEt44mrf7LYzseLdsHP7deE7TyL7R9R7soE+Q/heKvaPmni6j1UJ34B1PGjffCi3duwvYSk/jiO916L7dK2bUy9fAu18g0IAX7+INxgm5YUgCyZzuH8hisfrfXBWuultNae1npZrfXFWuu5Wutttdaraa23ezOG581KGv+TtP4EOn4WXX/c7tttX5KXSSq/QtJ/Q/wElYX/Q1x7stFP0voz6PpT6Pg50vqTLVGO6vj3ET0HhTbhYKqgRynP/xha10nrfyetP4WuP2OiJ03+AMdfF3MKRdvCVad44Ra2v39Hx0+T1p+m2XGn43+h60+i42dJaw9MGh4AIUWooOt/Q9efIq0/3cKVq+Pn0fUn7Hj+hk7nIRIQV24nnrgARd2OJyEuX0N1/AKri5Sk/nd03NDF47bqu9HtWUa38d+RTD9BHeIX0PVnSetPtfgD0uTfdrzmvmkyRekaRNvi+ltgTrgQhBx+4aPE1QcZffW9TMzZn6Ryr8X2CXQytVvX6UJ0bO6r46dI4mdpfBgNts9C8iKOGkSpZRH6Uc7KhMUvkFQfIClfC8lLpLU/U5p7CGn8T9s2Jo3/jq4/jY6fJak/0VJnppPXJsej48fRjRM/AHSFtP4kpK+3pVo0xMeRsGk8U5SiOh0nrTXmcSe2aQu2T9gatUbbeQaz+Dl0/UnS+LkmXbRj+0QXbO19kxeb+lsjqT9t5mr9GdL4KZpr0NLk5cnnmravTDXVpcn3I42fJqk/TXeyvTcni01VO0B14jKqo99omuwKJCQ/cgvIIBOz3kfnftujsMQfqI1fQG3icqa8/Q4ifeRn3o3WY0zM2pps52SAE2xKUvtT03M9xFmKwsy7SWqPUZp3WMsLaDzsLmHfqcTlX5gXY9LghChvLfIj11Mv30JlwWfofq56u0S40Y7kBs+lOvZDkwPUoos8hRl3MD57D9Dt3DPm2X1LP0N5/ueol29q0oWLqCEKM+8hTV5mYs7eTNE5TIX/Ycq4ToWYA5S7IvkZt5FUH6A0/9g2x3NEbvgSHH9DxmfthE7+xZRzMsSsFlI6Vw1ma5UfuRlRI0zM3s7mrlh8JcKL9icaOI3Kwm9Rm/gJrdgWyc+8m+rY2dRLV3SqQi1D35J/oDTveOLqfW3YLklhxt0k8ROU5h7a6myVkHDgXLxweybm7Ela/zsNbKdoX02yoyJu+qmYuTp8FcpdjfHZ21nj2nhBI9xwe3JDP6A69iOq4+e0YZujMMPkG43P2gFT9JpM6sLPH0PY91nKC06mXr6hqa2LqEGL7asW23JTvyLC/q/j5fanNPcQGxFr4OdbbG8nqf6BUgd7QGixfR8Ts3cijV9qwdYJ3kd++Gedum+Sd0RVu9Z1qqOnt3ndUxNGHDvLOqOzIzGV0XOJy1fS6pFP0HqC2sQlpHE2KXfj95LqH2gNM9bR6Rzq5ZtM7kPG6Qgi/ShxSON/tLWtkMZPEVd/T3X0a7x5wwNQJi7fTpJ/iurYOW1tUxuO/WEXw2OeHdeeNpOzpU8xOh2lNvEL4toDGeMxoWXd8v+GVEmTfxNX7qI6ekZGxKtMZeHXCAofRqev0orBdGPXJtQ+9h2UtyY6HaMFX12mXroSL384tYlL2sZjsR2/mHrpuuzbpy+b7OPKr9v6UUenc6mXb6RWurIzyqMrVEdPRfBI4+dbnmu04qG8jdDxE23bVTOeyug3cMPd0ck8WlcGZeLKncT1J9sMDxhsy1THf2ASNPUELcZal6mNX4AX7UG9dC2tOo7R6Ri1iZ+T1P7cZnjMc6uj30DcFUnqj7bpomaxvZPq2HfpxKtCZeGpBMWP2VVQK7ZJ7UGS2l9xmraEb0UWH+OTvEJ2VCMlqT2CZDibG5LU/mRCyB3h+BpJ9Q+WxrKLyBAw3mmbdIm4+ie7jcrq8FwqC79AZihXV0lqf7Yhyrco4hJX7zXh2A57mZBU/4RxKGblvYht65NFIxHX/kBSy6ZOoKnYokP0hCFHS17IbJnGzxDXHiSTRmJa0SS1R224NmM8EpBU7u4ynjpxrUuqg5Wk9nuTvpGFbe2PZkuZ1avkVZL6I2TTSKR4wUbU6n/Ofmb9cUSNkHnyhbgklV/T7QSKuPonS6mRFdHyqVfu6TLPDbZp/W9kfWS1LpNUH8gOteuSwTZ+PnM8afwscbULtjolqb9947PYFJaKGs4Oi2JKB1RXzhdwvHWzQ5AoxF3RFBZ2kaD4MbJD6T7KXQFxRjKuNaRLHo+EJsw+ba5Ot2sa5a7eZTyg3OVRXjfSbhfHW4NsI+6inBVRzpLZXcbF9bcn+7SHAMdd3kbJMtqqYZtW0O2kiO4izlIodyWyX8gY5b27K7bKWQHpcqIGCI63Nl2xdVbsjq1EKGc5Mk8XkRBxlu+ae6TUTJS7It1oT5T7rgzj0bi2nI36ZX0AapYlIZtXXDkrIiobW3Pvlbv0OUQ5y3VJhQBRQyh3ebJTSlzEBhvejixGxqdg83HaBikRfvFjBH2fphvvTjTwRWt925UbEBSOJSh8LCNU6+IEO+HnD7M0Be10HB5+7kD8wolvIszb0hCRAC+3K37u8Iy2EUHfNwkHvk+nAXJQzjK44ba44VZ0vMwS4Rc+Qtj/pYyxuih3NUQGUM5KnfcWD79wJEHxExl9CvFyh5Ib+iHZk7uGG+yAX/hw5nj8wgl4uf3o5AIyBQpdRSKC4sfx80fRmc7godw18MKtcfz1Mq77BMXjCfu/nvkMx1uP+sQlGdtEQFz8/MEEhY9njyf/Ibxod/uyNt9bEHz8aDf83BFddPFx/NyhGR8eB+UsiRtuhxtuSxYdR1A4kaBwAp2JoD5OsAluuLX9CLdj609h25EvFeLl9seLdqLj1BKw83wf/PwJneMRi220b8Z4FCJFm1v09mSxMT4A4cA38KK9mKRskH7Cvq/ihdvieKsTDV5A89lQomaQH7kFUQPkhi6yuSY+Jj9oJtHQD3G8tXDDLQn7TrNf7qlJrKv3Up3/YXJDP8HxN7DXAsRZkdzwFShnSfzcIXaSmmLJbBHb1ke5a5EbuR6RkKDv8/i5gzA5OhFIgaDvM/jRTtTHvtyhfHGWJTf8C0SEaOAc3HAnMx6JEDVE2H8GbrAxrr8+4cC51mg28kVSSF6kOv9QhBjH38jqIkCcpckNXYLjroQX7UJQ/AJY6goI8HL7E/Z/mbT2R1RGBrQiIKn9Fr/wYfxGTpTkTK5H4QT8/NEoZ5j88JUoZxWLn4/y1iUcvMB87XGsnpTVlUIISKu/RakRckMX2i93iKlHej/54Z8CkBu6EHeSD6gZ2/fgRTsQ9J9p8XExdV2bmAhj/Y+ollWg14KtlzuQoPAJ01ZMzpWfP4yg+ClE5cmPXIty17DPtdjOuB5REUHfZ/Fzh7RhexJ+fl+Uuyy5ocsQZ7lJXTj+xuSGr7TYfg832rkJ20HCgdNxg01w/HUstiMYjiMfN9yW3OB5iAi5octxgs2nsFVLkxu6CMddBS/amaD/iyB9TdjuR9j/FVPkO3I9ylu7aTyrkR+5GlED+IXj8fPHTeKK5PDzx+Pnj0E5Q8aR7qzahO065Eeu441Or5hOFqtoF5jQaFy5Ax2/gBNsieOv23I9rj5KffxsdLoQJ9weP//BySWj1hXi8i3o5HWccEecdjqO8cuojZ4K1JvyE3ycYEuCgbNNhEhP4IS747jLNPVJk9QeoDp6ui32bNtuSYGg8AlEXLzc3pbMq9E2IancQxo/jfI3xvHfR23s28QTF2PKFpqPVAnJLfEoYikstK4Rl3+JTv6NE2yD46/V8tik/ndqo18nqf4RkeatiYvyN8cNd0breTjBbjjeVLa1Gc9DJLUHUO67cMMdEHGoT1xMbfTbQG2yXw09ufljCfq+ZEK91ftJ6o/heOvhBO9vpXtIXiMu34T54u5lk95sKB2HyrxjSGsPNmHgIWqEaMZdpMlsksptiDOCG+3ZwhWjdYW4dAtp+jpuuANOGx1HUnuMpHo/4qxAbewsSP/Zcl1rjaglCEdumDyiphnbtPYQynsPTrA1zYfr6WQO9fKNgGRiG1fvIa0/heO/D8ffpEUXSfwvksqtIEWTW6QKTW1rxJXbSOOXcINtcNroOJLa08TVu1DO0rjRrjSfUKHTEnHlJnQ6DyfYFcdbsW08D5PUfo9yV7PYuk1tF1Av3QDUcKO9Wg4/1FqTVO8nrf8V5a2LE2zZhu3rxOUbO7CdTt4RBPIAafwSlbn7mxoVnQBiktEGLwBcqgs+RVK5oa1VgWjGbWg9SmXuIUAy6Ttyc/vi930DSKjOP4GkejfZfhoP82Vu8C6neMVP4Bc+ik4nqMw7hDR+BnSCpgoaUuucFXHNCqaxn9Ypfv/peLm9DLn53P0NKb5OQBTKfQ86HUMn2c5Or+9U/PyRpPVnKc870DharaPQCbcnGDgHEGoLPkNc+SXTRpQkB1oDKW7+SIK+L6B1lcq8o0jrj5hrlgozHL4WHT9HZd7RdDpxPfz+03HDbSnPPcDkwtjxiLMy0fAvENVHbfwi6mNnYDixBUjwB36AF21PGv+L8tx9IM2qxAkRb210/a+YkLU5yC8cuhzHX4+k/rjFNp7CNtobv/9bFtuPklTvB7R11GdzdhsJ8Iofxy+caLE9lDT+O+jU6mIJouFrEWeYeulqagu/xCSLn07x+7+Jl9uXNJllsZ3dhO2ahMM/QySiNnY29fHzMGF0Q0MRDl6IE2xBGj9Pee4BJjJlx+OE2xIMfN9gu/BzxOVbLIZmNRcNX4ny3k1Se5DKvCPNWHVqsT0cv/hFoEZl3tEWWzseGSAcuRblLE29fDu1BZ+0fTLtvb4v4uePQKcLLbb/suNxEGcFouErEdVPbfwS6mPfbsP2XLxox2l0/Q4yPuU5e1iPfbOBCPGKJ6HcVajOP5ZM4+G+H9K/d05syRH0f5c0eZX6+BmdYdVpJSQcuZa4dA1x6Re0vpAKLQXEWwdqf6QzOhEQzfwt1QWfIa39nlYHcABqSUhfJFMkRzTzESpzdkE38QAZifD7v4rgUx3NOvliOokIhy4iqT1IffzHtBotB+VvRDDwA8qzNmp7ppFw5A7q4+eRVG5rG6+HG+2Dlz+a8pw9yTxlYok/U5l3BGn9L5n3bvShw1Guhohm/InK7PdbGokmkRxB/3dIk9nmpciKLnWViHD4KuLyDcQdFCEuTrANft9XKM/ehs4oXEA08zfUFp5MUv0trT6yADd/JG64A5W5H+zsk+TJLfEI5dm7opPn6cC278uIylFdcHJHW3GWIRy5z+DTThEiOYLB80lrj1Ifb6cIcVDeBoRD51N6fVOy8Ilm/JLa2A/MKq0D273w8sdRzjr5wmI73QronZHnk8y2oc9241IhLv0CcVfJuGYl/n22U1iXqJd+gU5feYuGB6BGXLqWuGyWqK2SInocag+RneUpxOWbSWsP0Bl5qtrJk/GyAaBIytejk1fpfFHLxKUrgOBthLVN3kxae4jOSZSQ1h62NBEhnS+yorrgc+j4cToxqBNXbgY1SLYuHOLSjaT1JzLG0xDzJe0QXSMpX5ddra1L1Es/t8fxvFVsq9RLPyep3E6ncYlJqvcSl9fr2t+4fHOG4TH3jcvXQjpK9opUiEvX2SzqLthKPnM8Op1PXL4m45mYcHnpKtJaex4PQEJaf9RsHbPSDoipl24iqfySTvzqZgWmZmZcA1DElbtMsOFtyGLjcDbsat0cuvWMPI9mmS6qUukatjbikh0WTW1ItFsFc0r3Sd9o200E8dbufllXoEvNjKEWme7e05wiOe14gHQq67ntAjrO8HVN3jex9864LqnZqk4X9Zrmmtal7td1dRpsXbrrIiUpXzONAddoGocBdrY1Y+3O92PmavZ1rct0pY5hOmzV9O+ArtK93EEgrZHNPZXYOdWNOSCh+9l3DV6qtyeLjfERtVSXnAEfJ9wdN9qbbpNJhXuTPUEj3Ggf3GgPuh5x03dGdlvJ4Ua74gTbdn1udxHcaGeUt2bGvV3ccEcbws+iXaiggh3IquCHEDfaCyfci+wKcg8JDyezCl9yuNGeOOEumdfFXQU32o1uL00WjbsRByfYykZvMvqkU5xwD8RZpvMaAHmccF+ydaxxc/uTOU1lemzFWYJwxu/olm8jk6yLHTFHlLe+pbbIYjNwLLZZOUSucYZHu3XBto4b7Wsr6dslxA0b2Galdri40X5kGolJbHfN7LO4K+Lmdicb2xAv2gnlv59OXSic4AMm6tpxughAihNslfHzNyeLj/ERIRg4lynaCIAc4iyPX/gobrQnyn8f7V0WZxXC/lOtIzZkUvmSQ/nr4kb74uWPR9wVmyaEOU1CqRno8pUW1JDJcLDkcIOdUP7m+H3/Y+k4Gm3fKOcnxCucYCqK+88yIe1GG8khzpL4xc+b6FWwFZ07X6E+/wgbPs4x+WJJDuWuhpc/Ei9/iDFszeORiGDgPFT8pw4dQYDjb4YT7oRfPMmcVTbZNgQpEgycjXKXwyt+skkXzb3KOkciB2oIv/9UlLcRbrQXU3QPjtFF8fM47pIGHym0jEecFfAHvk9a+SWdL5WP338WSvVlY+utjZvbDy9/HOKu3DSewPhABs7FcZfG7zuVbsmPxgA5U23FpHcEA2egvNVx80cxRWtiaEu8/HGGpL7/TBPSbsZWLYFfPBkn2Bon2KapTy4Q4vefhnIGCQZ/0IZtHuWuilc4Gi9/MMpbqxPbwe+jnD78/u906MLxN8EJd8EvfgpxlmUqHcXQsAQD30M5y+AVT6J1nke4uf1x/PUI+k+zW+fGcxvYfg3lbYAb7ZOB7WcnGQ3ejixWDmcAncylXr4WnfzLhC/DnRAbSTJh3vuol66GdBQ32gMvf9Bk2zR5mbh0LTqdixN8ACfYapIuQOs6SeVO4ur9JOXbEGpIUxGjEx2Ilgh0GTfcEeVvPBlm1LpsfDj1xxDnXdTHvkvm+e8yRDh8OY43FTbV6ULqpevQyQsob13caLcp+oN4FpXZm00Sek+94BFu38k44Y7GR5C+Yo3HVNhU64SkejdJ9beIWhI3tx9J6Rpie9SubioXFRkinPkgSjXaVknKvySpP4I4K+Hl9mk5/C2tP0W9fCNJ+RZIX2kxOuauvjWeW5qQ+GRqgCatP0RcuR1DjrUPqikkrtN51EvXopOXcPyNcMKdqc7ZzVR+NxW5Aih3baIZtzRh+4rFdo5JwQi27sA2qf0RcZbFi/ZFmk50iCu/pTr/SCCeHMvkmGQJ3L5PTWJrwul9k22T2mPGp4XgRnvgNGWXG2yvRyfPo7x1cKPdJ7HVWpPW/kBc+RVIAS+3j8kynhzPLDueV3D8TS22XhO295BUf4eoGbi5/Vpe8jR+ibh8rU032RbH32IyPUDrKknlNkPd4qyEl9u3DdunbepADTfc1ea3NcYzTr18Izp+CuWuiRvt1Ybtw8SV2yy2e6O8N6Rtf2c4nMEMMC7fSDJxEaTz0bVHEDUTJ9jEXI+fIR47A+K/AxDX/0RcuoJg6HxEzSCe+DlJ6WegJ6D+NMpZCvHWBCCtP0o8fp5RbAcHbpmkdBmmbiYmTl7Cc5ZFbD5IWv0tyfiP0clLiFoSJ9zWRn2Mz0cs2YboCZLxi1D9X0bUkB3PbSQTF0I6G+38EaWGccKt7X3vtC3bVyplksq9kI6STFwCehRd/5sZjz1MUNefIB4/H11/DKSIEBOXbqXhQG1ZqehR0tpvUY3n1v5EPPFjdPw8qBFEPNzcYYgIOl1IPHExafmX1ji3Hvts7pqgq3eRxE8hqh832tU8Jn2VePwC0ur9gEuczsfr+yKi+owuSjdaXcxH1x4GGUbHzzXpsMkoxE+gdQ1zPHCdpPRzkomfgR5H15+y2K5lsf0L8fiP0fHToAYQBDd/LCIKnU6QVu6w3NXtenZQ3qok4+ejkxcRtSSJyuNaB6pO5pBMXERa+RUASTIL1fdlxBm22N5ux/N6E7bb2LYvGl3Ufg/iE+tRvL5TEInMR7R8LcnExaAXouuPIc5SOP76dp4/abH96yS2UvgYIi5aV4knLiMpX2V8g/FzqL6lEcvZk9b+bNrGzzZhe7jFdtRieyuQEsevoPqXQWzJTVL5NenEBejkZbSzLKIGJrElfc1ie5/Fdh5e35daDPVblcVq5VMf/S5x6aK2yFRIMPxzcGZSnb1DppNQnBUQbx07SZq8/ZIjGLkD9AKqcw7kzUdFFEg/4cz7SGt/pjb/Y233jZBgF9Lq70GbEPDU2sBDnGUJZvyKeOJy4vEzO8bjD12ActekMvsDZBcvOuCsAsm/2vocEYzcAOJSnbN7x32RsDMMO9nnPOGMe0njF6jNO6p1PES4xY/h5o+nOmcndPxPphyJjYLTxtal3ekZ4g18ByfYisrsrSCdx5Sx8hD3XQQjtxCPn0M8fkHbeBrb6+xcJRXsSDD0Y2rzP0VSuYNObG8DPUa1kTPTNB4n/0G84ilU5+6Prv+NTkeua8cUt40pwu37Em5uP6qzt7Wc2PFkG3GWIZhxN3HpZ8SjZ3SMxx/6Mcpbm8qsbUCPNunCR/nrEQxfSW3hqSSlq+jE9jqQwGJbarmvE+2OP3AG1XkfMvNuss9isb2bNHmR2twj6MT2o7j5E6jO2QUdv8AUtg6oEcKZvyYp30l94Sm0U2p4/WfihNtYbJt5yT3EXY1g5NZpCcXeESsfk8HabngAKtTHzkbcd9GVwDx5zVbFt58mUCOeuBCdvMxbo7ZIMSH+a0lKV3a21WV07X68vv8hXvg5Ouk4ZpFU7iEe/172eEbPxAl3pPt57AqSf9L5wlSJx39At8pmcz8/ox1mRVe6nLT6x87xUCYe/yHirp6hRw1EONEuZjWWUS1fHzvDVKanJVqjInV08g+S6m+JJ9oNj+2zWgbS18hypKbV+0iqj2aHxHWNeOIiQ+CVQfORTFyGE2yDjp/M0Icg3vqQzkF3VOqXicfPQqTPshI0YxSj0zkklbuJx87JHE999EycaFfbp2Zd1Ehrj5FUHyTJPCmiSn2SUqOT2iIp30SSO5C0+kBbWw26Rn3iMnRmGkWZePw8xF3LhvibsU1Aj5GUb7Xj6XxuPH4GMA7pBJ3Y/pO09kecYFPejiw2DmdDvJRtQdP4GXTcnnzY8ht0q4pOLWNf9xyTbh0qW3a6l7o8ch7xxE/JpILQFTPpu+QW6eQfpPXHs9sCKtiJ7ArklLT+pM2ZyYp6RIizcufPAaiS1v9m6VwzO2VWCJkpAmW0DEC3Q2mTf9mXPJt2wWQud5MaNJUstEpMfcHnyJ6msWF3jJ8iE1txSWsPkz2nNMpZ2hraDEkXksZPZ69KdZk0frLLihXzQtYfJ/NjJ4q0/iCdBbgAqWEtrD9BdspCQFr7E9lMCTX0G2L7WHZaQoOhMH258xqgk5cNm2MmtonZ3r1NWWyMjzgzuuQhgHJXRdy1mL67WW1dlLcW4q6WcW3qd7LvGyHemiZ6kNnhfoi7vVQO4r67S3jSbBNNGD4rCuNYoqqsHBSFeGug3HeTaWx1Fa//a2SHlwUITGQou1NGx5lGL2epOroX1oq7OpmRQHGmzWlS7qo44R5kL8ITdPoc2dtlB+WuaVbEmRQUMcpbt8tTwzfAts/ct6mIeepahHLWoBvTgTjLo9wu2OoU5a3fJTdJDLZed2yV/74uq2Uf8d4zDbbK+McyjV7OOI670HGIWgpx1yCbXsSxyb9vTxYf4yMRTv5IsigB3OKncPNHd3mZFU7uQFS4HZ10HD5u/hi8QhbVQIQKtsPNf8Is/VvyIxRIYEK5fZ/tvC8RKtw1456TD8YJt8MtnJg5Hq/4GdzcwXRSNgCkSPIPso2pj1f4KG7hhAwjYfwCTrCRTUlov67R1d9YnprO8bj543HCrS0/TpsuVB4V7kL31aM2YXbVfNoGNPxfTrAlbu6ojBe2ge2RdDtPTHUzeOLjFo612HbSUzi5g1HBZvbD06wLsdjun42tRLjFT+BGO9pQerMhMJSlTrS9wTaLmqT4WdzcQXY8zX33EW9NnGATnNx+nW0lxCuc2B3bcFccf0OLbTvVioeXPwyv+Ons8eSPNdFBtRSt2Dqgcjjh7njFz5D1jrjFz5hcqi7YKv/tbblgMTI+gAGueCJY0ipxV8UfOh/H38AcgzN8NeI2WNMEZBi375t4fV/DH/guTu5QGtQX4q1DMPQLlLsCyl8Xf+hC+5UEpN/4N6q/JZ34ITJ5aJ2helD+pgQjNyCqHyfcEW/gO1NfSTXTOiT3B+myUrMhcTd/LG7f50EZ0ipxVsAb+B5OuJU5KmX4epS/CVN5JEwSlU9NWxsFct+NP/xTlLcmylsNf+hniPseq4cCTv4ovP5vAeAPXWC/VrTcRaiiK3fiDZyOOCvZC0PGABRORMQhGLkGJ9yJRrGtCrYiGLkBpXJdt3TiroGoIsHwjTZZzQE8nHAXguGrEBHc4qdxCx+bwtZZBX/oxzj+RlPYeq3nfkvL3x7mxTLZ4QbblVD+2vhDlzRh24db+LCJxIgQDF2OE+2JMUAK5W9msR3ACXdow3YGbvGLNjoUEI7cgAq2pUHVocLtCIavNxGk/DG4xZObsF0eb+BsY8CdYYKRZmwDnGhvgqGfmJH0nYqbP9YaN6M/f/ASlLeWySEaugLx3tuE7RF4A6dbbM/HyR2AMRSC8jYiGL7GRMuCTfAHfzSFkwzhFj6JW/gEIopg5Oo2bLckGL4BUTnc3L5m1dxYAaml8Pq/gZvbC1EFi+2WGdi+fROyWEW7AHS6gKR0E2nyL2N0wu2a8h80uvZ76uM/M+F2CXGiXXHyh5twbvI6SflGdDIXJ3w/4m/elP8Qk1bvIa0+DHqCtHwD7ftyjY/KHY4b7YR46zXl+VRJy7eR1p9EeauiQpPBWp2zowlXt6xSfPOy2hC/TsdIy7eQxv9A+e9FhTsi9iuvtUbXHyQp30tS+imS6QNSSHQwTrgVqiVvKSWt3k9SfQDlzMSJ9mrJbanO3hPiv6HRrcmBUsQdONc4Gmt/Qbkr4kR7tIRM0/pzJseHGCfaaZI5ManeT23e8bT6qgL8oUsnnY5p7a8klTuBACe3e0tui04XkpRutNiujwq3b8P2AeoLvgzpPzL0EKFyB6JxccMtkJbclpi0ei9p9SHzEub2bKW+iF8kLt2E1iXcaHvEW78N29vtcTEG22bqi7T+FEn5NkBwol1Q3pRR1+kYaeVW0voLKP89qHCnNmwfIi7fg0jevMTuclNtk7kk5ZtIk1dxgo1RLXlLKWn1NyTV36OcGTjR3i3Y6uRlktJN6HQUJ/wA0kTloXWdtHIXae1RxF0eJ9qzFdv4eZLSzWhdx83t3MKKqXWZtHwrSf3vON4aqGjXFloTg+2vAA8nt0cLtt3kHVPVntYfpz73ELuvrYDkEWc5vOGrQULi+ceTVn9Hq8feBWcZ3OLJxAtPwlAU1EByiLcB3tDFJhow90BTJa5LTJJvdROJUOEeuP3fhHQOtTl7mxC2LgERqBz+8HUgPtU5e0I6dbyP4OEUP4lbOIE0foH6nP1shKhsVmVqBH/kepAB4gWfIq3e1dUx3dqnHOKujjf8cwDq845A1x+3fQpAFN7gxahgE5LyHcQLPkZ2vU4AzkwTNtUlu/z38IavQnmrE49fTDJ2FpNnyUuAyn0Qr+8UdPIytdm7N4WQFUgB8TcGXULrGOp/xRgnQxrm9J2Cmz+MtP4k9bkHW39HxYzHWRZv+FqQyGBb+2MXX1fDeHpN2K5vsCWmPudAE7XSJUzKgYM3dDnKX5e4dA3Jwi9bXSQgISrcDbf/25DOpTZ3b0jnN2Eb4Q9fh7grEI+ebfJ4qNk+eDiFj+IWP9oF22GL7SDxgk+TVu40Y7V1Zk7/N3Fze5HWHqY+70g7z6sW23dZbBX1eUdaB3Eztheigs0stifZ8dQxmfzvxx38Iehx6nP2s4XUzdheifLWIB6/lGTszCls8VG5Q/H6v4hOXqE2Zx9Ix4EShlCsiD9yPeIsRX3h10hLV1psHcDF6fs8br5xdmiXaftOMD5aa+qzt88Iffqo/LEobxXiBV8k2/nY8J20rxwi3P5T0ckrJOPnZVyfRiSHN3ghSelq0sqttL7ICvE3xu37MvU5e9MZ2fDxZ9xJfcGnbKSnWccuKtofFW5nDMRbqk4PcYongQQkoxk0EmoYb+Re6rM37eqwRoas8WiOagnivhtv6Hxqs7YjM5dn5GqSse+SVn/LWzu+OMCf+Rvq8w6dTCicEh+V/5Axegu/0KXPAeZlaf9YRLj9X0Ens0hsVneLOMviDd9Ifdbmndckhzd4PknpetKKWeFNiUL89+H2nUp9zh6dbQnxZvySeMHn0PVHaMXWQ0X74IQ7UV/w0YzxhHgz/0B9zs42vaD1mlP8BEiBZOybnR8kGcSbeT/1WZtk3DeHO3AGae1R0tLltKcWiLsG3tDF1GZlUYSEeMNXkoyfaxMIm/WsUMF2OIUPU597KJ3vXoA/8z6kiZCsXd4ReT6kr9l8nHapkVZuQtdXpnuSYI3sUHuZpHw9JK/zlgwPgC6TlG81K5OOly1F1/5MUr6T7KreGrWFX4X643Q6aWPSyu1mAnU1PF1ydaiQlq+3zswMXegKaeU6urryZABDItV+b20O1CvfSnZEq0ZSvuNtGB5AHJLyTej4X5n3Tcs3oeN3ddFFhMofQTpxMZ3Gp0xSus4mvmVgm8wlLd+IIRdrzxEqWWx/RWeVf4quPUhauYPssSakldvRmdxEddNO17PHIw5p+TpIF3Zeo2JcAZLvshKukZauJRvbEmn5JtL6Y2TNGx0/T1K6ha7YVm4nrf6GTh2npNVfg7sCXVMHqr/GyR3Uee1NyGLkcHbpFk0R3DfBFdstDNxgKXyrIjY02a2tmInd7bm139E1OiSOvXdWNX0elTuM6c6Hn+7ki+7tABL7snYTj2wqD0X3lIQ3EG3v21UXLtJtPOLYCvBs2gatx+h+QkiaETVqiPoPsG1wUHeLwjnTzwsJ6B41fANsu46HNxgPoPwu2Db4x7u9P9Ngr4X/ZP2y2BgfcWbYiEV7l0JU7gBU7gC6nyIRkElBITkThs8dSGd4WcBZDskdTqYCxUQoVLQHmSdFBFtNS0FhfFEr0jkhfFS4N060L93ygNJkDtm8OxEqd5D50mTpQg2ion3pOpE6zmRviIN46+BEe3TJtXJwot1Q4Y5Mb9yyJMXJ7YV4a5CFrRPtPw22LloGM35uRGQQFVmC/tYr1tm6F9m+vQa2jShY6zNVsCVOuFtGf4040a6IvynZ2O6Fk9unC7YaFe0NzlJ0YhShcgfj5A7O1oX0W2yz6UVUtJ8J4XekHSjEey9OuDtkulg8nGh3VCaFiIcKd8GJds+4BpCgwm0zfv7mZLExPgDe4Lkm21XyGCqBHOJvgJM/GhVsjwr3xCi3GbgQp/80vKFLMCcy2LaEqHAXVLiziYb5G1tQfescHMIrfgFVf7hJCY69f4CTPw7lr4Nb/BzirtrUp7xxcPd/A3GXR/wtsgcjCie3vwldNo/HWxO3+ElUsLFd4QT2Tw4kwimeDNU7yTJq4q1pjGm0NyrYBvPSBeb+0oc3eD5KhXiD5xuHIQ3aBsOJnC0RqBG8gbMRZwSn/3R7z2jy/k7xMyhvVdz+r4KzXJOOu30tffv8EHfgu4jqxxs4B9RwG7br4RSOQQXbmpeyZTx5vKELUO4g2dxFAt57cPKHIsEmbdgO4g7+CFEF3IHvm/aTFBaBeaa/Hm7xsyYPqAXbpXH7v4W4y+H0/Q+TJ6lgToNw+k5FnKXxBs4Apx3bNXCLn0L570PljujA1hv8EUrl8AbPs1vghh4jVLC5xXYPVNDIWWvCduh8lAqasM3be4fGhxh8AKdwAuKvY683dDEDb+B7iDPcBduTUN5quP1fseeRTelCnBVx+7+M8tYw/ij7vIYu3YGzWirm36osNg7nhmht/Ask/0T8zVD+Bq0nAtT+jq7ejU7ngerHCbZG+SZcqNOSpYGYgwTb4vhNYVGtSWuPomu/N0bD25B07i6TafJam6A0Mow7fA3KW761bfW36PpfEO/dqGCbybBoWn+O+pzdyeL69Zf4PUgfaeVudPws4m+A8jdtPRGg/oKJiqgiTrQHSekakrEzyNpqqPwJNjGuoYsn0NV7wVkSJ9qt9bSHdMzqYgFp9c/o+m8ytO2hcgfj9n1xMuQNmGru8i1A3dzXWbpJFylp9T4TaVMzScZ/ZMsuBHQdlfsQ6DFEQlThOJQz3IbtnZD8IxPbtP4MaeUuUMPmuaqA1lVqr29sneTNEuLNuAVlM2yT6qPo2u8QdzlUuPNkyNvoYgFJ+WZIJ8yqxW3H9nfo+qOIu7pN7Zha0Zj0DeMvcaI9WkPeOp7C1lvfJDW2jOcfxgdksW0OeRtak9sg+TcSbNlx6mdSe9Jiu8S02KpwB5S3atN9NWntQXTtj4i7is05a8Z2LknlZtA1nGj3rtiK915U8IG2kzxetn7BACe3R0s6Qzd5ZzicMZMzHT0Nyub8bV26nLR4ilnGAmn1AfTCkyF91SbjOaQT55N670X1n40e+yZU7zFty1eR9p+GCrY0bSu3oEdPAz2BBrS7WovjVaSRDTOXdP5hyOAPEO+9BszSJejx74Ouo0WR5o5G2cQtEcFxRiznMiBCql3cgbNA+knHvoMu/QxI0aWAtHASTv6Dpo+1R0gXfg6SVwBNUr0X/A9glrj1NvouQZLXJ/+XVu5Bj34Z0gWA4Y5RfachKodOF5Au+Kz1OwlKciRNTmxLAAIkSPkaUnFRxZMNZUP8b5KFn7Ehc0gqt+L0fwfx3mV0MfFD9MSFJqVBXNz8CeBtjOhRdPwMevxMGludtHwZDJyPCrc0+Sej34TyNU3YnoyT29di+wfShSfbtAVNWrsf1X86ovpwB88jmX/UFP+SBskfNmV4yreix74O6TgaQyuh+r6CSIBOZpvx1P5sx3MjzsCZkyUfaekn6PFzQdcMtvGRqMKnDB1H/ALJgk9D/LRpW70Np/8sxF0RrRPSse+iS5cbbMUnLXwKJ3+4xfZRi+2/bdt7jB6dYZNbNPplsEZNl68gLX4FFe1ssf01evRLTdg+gOr7xhS2Cz8H1d8CQlq5Fun/llnZA2n5GvTY6aAraIS0/giqeIrBNnmFZMFJGdiubrE9Dz1xAegYLS5p/nhU/gRDx1F/mmThpyF+wY7nTpyBs1qM11uVxWrlkyz8Irp8E+1l/WrwR4izNMmcvekaape+jBByiDN8HTqdRzr/2Lb7vlGuTx5n5G7S6v3osVNpp2yQwodRuSNJZn/A+lIaejQUB2rgxyY6VLqMduoE1f9txF+PZM5ObVERF5yVSJJ/IbpsjIS0bTGHLgNxSeYe0jaeAAk2xxm8gHjO3vaFmVo9aSDVACkKabtvhOQORBU/TzJ7K2sAGroRkCLOjPtJy1ejOyr1I6T4ecTfgHTu7lmKRM38K3rsW+iOxM4INfgDxFmWpOPkCw+8tXGHryKed6Q1Hu3YXoNOF1psW6ktJNwJ1X8GyZwdIXmJlsiV5HFG7jKr2dGv0o6PFI5D5T5ksV3AFLYK1KDRxfiP0BOXdrbt+wYq2Mg8tx1bdyWc4dtIF34SXbmb1tVyiDP0E5CQZO5BbbrwEX9znKELiefsC/GTtKyMJcIZvgUdP0e64FOdusgdgCqeQjJ7a8wJL03zXvpwZtxHWr4OPfbdzvEUP4uK9jBtW4j8FaglcWbcO20w6B2x8tHpOLp8I53blwrp+A9sjU43cu0a6DmZP09LF3eh1JjG8ADo2HxFyldnhD7L6ImLSNUMOsnENehx0vlHYZzGnacUpOPnIuEOdBYYxpC+jFP4JHr82xkelQrp+Hk2YtJJyaCrvyet/AaS52jftgkuylkG0pcmSzhaxlO6Eu2thznzqlk32qz4Kjejx3/cRRc/Qle6sdpp0vFzoXx9Rp/LpOPfN0W4GScnUH+CtPI7e0pIO/Y10omL0enrZFFb6Mpt6HBn+7K1hcx13RjS8nUZbcvoiYtJ1VJ0EsGnJp2hfDu69JMubX9AmuxMZwFoDMnL6Nr96MpdGeNpYJunU081dO0Bg238DJ3UMXXS0mWGoC1LF6Wr0d6G1niknW3LN6HHz+synvNISTPmagp6Ibr6W8SS1L1VWWyMjyGh6uIUTV5G4/KWc0xI0fE/IMk6qA6mHKZZq78qxP+AZHbGNcz2LX6JTKoBYFpW//R1u3zNojgQhLqJ3mUcfqeT563DL4tGwrdfxWx6EeWuiK4vJJtwLDFEU10oNdL6P+lKqZHOBWlPmmt+9D/IPrYFi21INkWIayr8xaOT4yY1/U3nZT9TvGmoVGpvgG3ZrpayaCTKhmup2+kkk9hmXRd0/SmDU0Z7nbw4LbY6ftKE8jOOv9HxC9DY+mcNKX4+w4AAlM1zdRc9pnMh/ieZeT46ntxWvh1ZfKJdzpIgWS+NKRKVybPHu0lW5MVD/Pch/rpkhyhD8Lbscr8c4m8IjYLFdlFLGsqGLNqFNxJ3TfA3IrsqPkb8LTO+nFaSV8Fdjczvhq5BsFWXSRaC/77u46EO7nvJpF2QPCpYz6YOZIi7KhJs3uW+IOFu2f1twTaLgqKOBFt1edEb2K5H9jROkeD9XVIHcuBtCF43bGeaAyGzTqCQCLwNLNl6hrjv7o6tbmCb9RF1EH8DM+e6YCvB1l2xFf990MQd3trnwEZ7szDIobz1oFFo3NGtVRB//Wxd2DD+25XFxviI+EjhU205DmJyGAqfROUOty9651EnSA6CXWgFXIHkULkjUIWP27yLNj9H4RM4Q+ebCdNyX9dwAUd74PSdTGeoN0QVv2CWm86yTG8U2yXCKX7W5GyoIq0TLUSCbVD+WkjheLINah2S15g6VaFpPLmjUN4aSLhLW58dUAWT7+S+u0u/PNBzjWFsMQQ+qCWRYHtU8Ytk6+IUpHASmQZEzcTJ7W6ud2AbogqfQuU/aCd323iivVDe6kjukLa2Ftv8UajCx7KxzZ+I8t5rjWJznw22KtoTp3hK9/EEW4GzAq3YBuCsjAq2QLq0dYqfQ0X7gOqjE9utLLYfztZF/iOo/DHZusgdYXQR7UbrPHfsPD8Yp/hpOo2e8duIvxG476EDW2dJJNwe1felbF30nYKEO2IODmz+MAXgrWP+vE1ZrBzOAGnldtLxH0LyOuKtiyp+2iaogU5eIR07C91IBZeZEH7ARBjUUqSlX6BLl0K6EAk2RxU+PUkCr+vPkI5/B117FJyZxosf7kIy/yioPUzLstJZFWf455OhRF17xBRbxs+Au7wxhsH7zbV03ESASj8nm90uD+6KJqLlvRun8GmTiwHmlNbx76Gr94BESHQIKn8UIi5pGpPOWiPjfgA+zshtJpJW+xOoQSR/LCraz0QmdGJ8AKXLQJfMpC98CnGWJBk7Ez1xfuY9VfGzSO5g0vHz0OXrgRgJd0UVPj4ZJk6rfyAdP9tsW9xVcIonma8ukCazjMOz/jCgwN8UZBDiR8BZFvE2QFfvhuQ1xFsbVfwM4r27CdvvGmxV0bxsuQ+aqJPWpKUr0aVLLLabWWyXa8L2LHTtEXBmoPInoCLj/Na6TjpxEdoWRUqwA6r4CUQNT2E7fhbUnwF3OYvtlq3Ylm8GQKK9UfmPICpndXEf6dg5ZuvhrWGxXdeOZw7p+NkW29Bie7Qlgdfoyk2kE+dDMgfxNzS6sNE7Hb9o5nntDxbbY1DR/k3YXm6xnUCCD6AKJ02SwOv6EyRj3zGlPc6SqMLHUeH2VhdVi+11bwLblS22G1tdLCQdPwdduR3wkGg/VOH4lpSGLHlHOJwbIu4aiLcRqJfMNqE5lKeGEf996HSOeZmT16FyC6lEqMKHUf7apPEGkMwF733gjEy1dZayIeHEvgjvRtd+C/WMI2aTF9HJnKk8Bmd58+WQELx3tbK32Qpr7b8A1QeYOuHR8J5I8RRI/gHxc+CvD020CqgBs8xOZ4MUUf56k5EDk2tiQu6dSorMl8jfBNEVcJZAee+ZjGCJOChvHVJvQ9ALEe99NKhKxd8CPdEegQNTULk5ECD+BmYCEpv+NWWPi7uSMTZSAO+9LVsxUcOo3CHoSp+pcK/9wfY/geQl4xD1NkC8mRbbpoMELbakC8EZRHnrTOaYiAjKfy9pvCEkcyy2U/k2Btv3ITqexHayT+Kh/PVJ42fNy+pvCNJ0trizAuJtDDSwncqZQfKGYyh+CRq8z00rFnFWNX2Oh8Bftw3bfjNn0jkghTZsBdw1EW9DUK+CvzGopuJMx+hHdGkabDdowrZpC+gsgzR4hNwV21g8fYNt8g+zjevAdmW7PSuYLVzzVkwK5veTV0F8sxV7Syv+TlmsVj5p9Xek8z+MiRLFQAiqD2f4ZlAFkrkH2Jeis7oWZznr/Goc7RqBuzzO8LWgyyaUm87HGBr7YgdbQPXu7M44q+CM3AbJv0jm7mujPDXTTjycoZ+Duxbpws+gq3c1hVU9QzAVbIW4a6DHT2fqmOIAJIczcqNJ0Jt3uC0+LUOD5rTwMZzC8YaTZcGJdDpiA8gdCtVfWwdjBbNE95H+03GiXUkmfoIe+w4mamII4PFWxxn6OTqZSzpnGzqMmr8V7tBFJKNfb4vw5ZBgS9TA9yF+hmTegXY8NUyKQ4AzfA04K5Mu+LD5Wr8ZipAWbIsG2+QF29aOp/gFnPwhJKUb0KP/04btsjhD1wFVi+28FmzVwPdR4dYk49+3uSuVKV346+EMXgrJv0nm7mOvVTOw/Sy6+qspbCVCwt1w+r+Frv2FZP7hbdhGOMM3grOkxfZvTdiGSOGjOIUPk1buJl3wyabxhOCM4AzfBDhmviWv2LYNbL9pklAnLkOPnWnHqo0xdFfDGfoFpAtI5u5paTEaVB4eztBFiL8xyehp6PJVbdhugRr4IcTPksw7IAPbq8FZtQnbJl1Eh+D0nTItyu8YSo1k9hYmWtAiLhIdBO6qJnnqTR9/AxAixc+YiErpZ3S8cJKz4dQsB6CPGjgXXboKXbufjhCl+16cvi+bSdbRJxfBQzcmSIsoJNwZCbYnXfgFOiMqAWrkXpt9nVGL5ayMhLvZrVM7VUQBNXIX6eytOq8RofpPRdf+aHOp2sYsAxDsDpWr6IjUSIQzeBHJ2HftlqrlIvibofIfMsbyLVGEuEh0ILiro8e+RaceQ9SM+0nnbJ1x3xApngTJ62YL0o6tGkYN3UA6Z3uyKDVU/1no8nUmi7gD27Vw+r5GMu+DmX1yhq8iWfhZG/ZueSgS7IiEO5GOnpLR5wA1cg/p3N0yIo4+kj8GJG+SHjv6nDdtZ38g41qEKn4FXX/Ipqu0BSuc5VADF5HOzaAIkQg1cIFJh6g/2NYnAX8TVP540gUfyRyPM3Ib4q5AN3lnbLvSV7pQDcRm3xw/z1szPGDyPW63uR5ZYe3pcn1q6Oo9xtpn5QTFT5BU7iObqiNGZxaGAqTo6m8xRimLdsFFV28mu7AUSF9Hl37a5bkayjfZ0HRnTo2u3IGu/YVMY6sXQOVnZIZ5ddmMtf5I9jNrf0I7q7xFwwOT2Cb/JBNbcaF8A9lxkQa2c8nGtoyu3JodmtYldPUudO33ZGP7lOW2ycY2rdxr52O7pGYrL262LsRFV24hOwxfQ1fu6JLnAyDGsGRhqy228eNkzpvkdbQ9+LBDdIW08uuMjwoYbP+Mdlfvgq3YcqXuxmc6WWyiXWYv3cUYqAKi+rOvvdFtVT+ZFe9gnhcd2uWaY3wDXSvpXeuoe6tV3pgVlwzQnXdnuHuoXU9kr4jAhHDVMNm5LQJqANR0qQHdVsEeIn10O/McCTOiO29SJI9IN2y1HU/2vBAZACl2aRpbn11WxNCx+s8KHwO4GH7lLGxdUP10xy5n22ZdF3CGu4TaMTrsdgKoThBnhGmx7Zr2ocEZIDv/y0WcfroR+COhHU8W84Mzzbv1xrLYGB9RQ+BvQOcgIyQ6AskdynSnRZh2nTQFkjsclTsyw4g44K2L0/f5LhPYQ+X2Q3JZlA0+Eu1uIyrZld3S5ecm3f1QS/OR5bALzH3dd5E1WVqOQW4RBe4KSLRHl0kYoKKDkdxhGeN5oz47qNyeSLQPnQYoQKIDUNFemf01kgNbUdYqNoScz8JWjPEP97Bh3ra2Epn6rswTTxzw3otEu5NtED0TGeyGbbjrtNiqaDcTfu7Ar4HtQRnXwJDQ7w7u6nTqKkLljrTV8O3jUcaRHu7e5WUPUblDLLbtbV3E38LyjmeNxkFFeyHhvmRju7/FNvvDIsH/I5QaTv/3TAKd5KySAyTaw/D5BJsihROZpCiY7LpjfA6DV4Bayrx4jbaFD5ucjGgfJNwH40QrmPu7q+AMnINIgOQ+0tEXiQ5C3FVRhY8hwRZMcQaF4K2HKn4ZcWaiBs6d6q8UmDIP7UZCmT6F26LyxyLeWkjxC1P3tRzAztCliHg4gz8CZ3lz72lXFMaJjbMszsD5iDg4gz8BNaNVF8XPIP56qNwRSLgzU3QPdrwdffYmdaX6v4M4S6P6TgF/Q6MDqwvxNzXpEO6KSP+3gWhKF9KPGrwMZ/ha1MgdJseoBdvdULmDEH9jpPCxJnzyoJbAGboUpRycwYtBLd00Hh/JH4cKtkTCvZAGj80ktivjDHwfkQBn6FKQwSZ8QqTvq4j3LlTho0iwZRO2EXjrmqJUZ8Q42ZuxlbypM1RDqL6vm2hfY7wESLA1Kn884r0b6ftSK7YyhDP0kyZsV2jShY/kDjJGL9wGyR/d2tZZBmfwAovtpcYYt2D7KcRfH5U7bApbKZgPrrsGauAMRBVxBi80H9rJ8USo/jMRZxlU38kmAtmELf4mJv3CXR7pP70N2z6cwYuQaVfS08ti43BuiNYaXb0P4mch2KaFLgAgTV6H8i1o6QMqiB5Hgi0Qb220To0fIHkVol1QbRW3af15U/XuroIE25i8iWQWevZ26DafgxAhM+61S13D3E/tj2ZyBhu33jct2Up8QVNExv6H5vC9xkOivSE6GOWv1TaeuVC5afIrr1QT/YHW6MqvjEO1/lBHTZYmhHAHJNgWCXdqKRbVOkFXbjZpB9GeqObQNJDWnza6mrhwqlp88r4+5I5FnAGI9kU1neYAkFYfMj4C/30of7228SyEyg1ACNE+KDW1AjDY3m9OHgm2RrVlGDewxZmJhLu10jlMYvuKxXaZ1rb1F0zksgnbyWtpHSo3QjoG0V4op5UKIq09ZtIC3gBbo4vWlUVafcBELIPNUG0Zxmkyzzy3K7Z3GX9XsD3Ka80wTuN/QeV2u+LZOQPbWyy2e2RiS/V+cN+NClsz+NO0auvsahDug3JaV/1p9WGoP9QF2zGoWBrfcG+Umj7HB3hnRLvAJHXpBR+Hmj1SVtehcBySPxERIS1dB2OnWUdxI4SpQHzwNrJ1KM9j0shTKH4RldsfgHT8RzB+3tR9/fWRge9D+QZ0Jn+OzdHJHYwe/ZoBrFGTE26H9J+OiI+uPWT6PBmCLEL+GKjcAvUXMTVN42bvrGuQOxgpnmLGU/4VjJ4CaOMHcJZCBs9H3BXQ6Xz0/I+acK043Z25UjDj8d6NDJxnKBvif6PnHw/Jv6wuNPSdhop2NZN+7Dum2n6yZiplanWlTV9JrH4DZOB7SLAJWtfRC78IldvMBNRViPZA+r5mkueqv0cv+BRTJ18MIYPnGcqGdBy94BOmOr2BQf4YpPBxi+2NMHaqeaaOTY7K4PmIs5T5QMw/wXyQxNb4Fb9gt66Qjp8P4z8013Qd/PWQgR+Y45Ti59HzP2zq+0QBDtJ/JhJubQza6NehfK3FtmqxPcNi+wh6kuRfgxSQgR8i/jpoXUUv+IxJeZDAYnuQxVahK3cZ+hdSM1+dpZDBHxs6jnSBxfYxq4sYCp9AFT5kxjNxBYydYXGvg7eGxXYEnbxssI1fasL2a6hod4vtd6H0kykdB5si/WcjKo+uP4me/xEbaWtgezYSbGqwHf0SlH85DbYnYZzlGmTQYtstEdZOz3eK8Unnf9RY7OZogBiaApzl0PMOI7PAzfyi/bt5PBEydCmks9ELPkdrRMUHfzPw1oaJc7NvmTvGOPLGf9jWNoTcgUjhI+jZGWFgKcDIfTD/WIgfbbtpBMXPmpd5zj5t4xFQSyAz7kPPO8JGl9qNYsNH0a4HF7y1kaFfoOdsb3Oe0pZ2MnyVIQEbPa1TF+7qEOwIEz/ovLdEyMg9hkKidHnb9dB8IKL90LN3pCNqJQPIzN+hF3zavKgtkZ4I6T8N3BXQcz/Ydl8FzkrIyG3ouftYipCkte3QxZDOQy/4bNtzPfA3RQZ/jJ69pY2INc+LEBm51USAxr9PJ7b7I4WPo2dv1Zm1Lnlkxm/RY982kcWWyFQExU8jwRboOXuRje2v0fOPtpX69Za2MvA9kMgYl5Y+ueCthQxdjZ6zg/modGB7pSlaHf0aHdiGOyD930TPen9nsEIiZORuk3ha+ikd2OaPQXIHoOfs2Jm/Jf3IzN9Nm+X8jgi163Rhp+EBE0acuAjcVZj+BIosI1pBT/zEhPE7Qrk1qD0A3vrdb5kuNFuiDJoCSlehnRWyw/U6hfknZBgezL1Kl5hK4g7DokGPmZBr/S8Z1wF3eUDM1qVFYqg/Ydqmc+iMENVMCUjtwYzx1OwhjP1kVy8npsSg/POM6xWYuAyNIjtfqo6u3JZheMBQNlxoHbDt11JIXkVX7rRh7fZ7V4wxTOdkjKcOtT8aXegynXMjNomU5Rsz2lagdA3aWbkrtrpya4bhMeNh4hJL4dIerWzCtvYwndjaeS75jD7FUP+70UUL11JDaujSFVB7JKNtDSq/QvtbZPTJjqd8Y3dsS5ejxe8SoYsNruFOGdfeWBYb40M6SjZdAObLlRToHgruJtokLSZdTmyYPGXAIZvSITb9ypSapWTIWolVIc7Km7CSLrDH+XQJuSb/JvPIFzDZq2kX6gTx7Fcxu8qb5DWb5d1F6g90uVAzuVLdtn56zNKWZOSv6MRmYneJbaTzrC4yXnRRduuYRamhzTO7UUGIa1d/WXMmNs+cDtu0G7Y1O9Yu2OmFNlE260UHkpfteDJ0lc4ByaoPxI7nDbDNpEoBEDNnMiviq2asGfQtps9jdp5nYRsz/Wko08viE+1yliY7BOxAsDkEW3e5Pp0EhmIieD/dQq6EO3S5ljP0B21Ot6lurYIEm5KdK9Igou8i/kZI8AEyc4h0fZoviTdJrZktCYS7ZE9sIqNDf2Oy6UUiuucsOUiwWfeKeG9tUz2eSbsABNt2yS9SZusbbEUmtrpux5P10gQQbg1+N2xdCHbo8sXOGf37XVa9zopmvFknUIgP/uatNYdTF8Hb0ETQMnURQ7gjZMa8XQi2tPM8K0yfQLhzF12EFltb09Uuqh/8rbOvSc6cxOGu1XkNTMpCsFmX8Yips3ubstgYHxEH+r6KyVNoDfdK4WNI7kBbKJrxUksO1Aq05jj4plgxdyhS+IhxBE++XKbWhr4vmyjD5MkJzfd00N46xuksOabyMhTGV/EV8yL767U9N7JbuW7Z0y5S/CxEu5l6tObxSAS5Q1Hu8lD8QluffLsk73ZfgcLnUO6ykD+6rU+BoU6I9kKKn7b3cafaEULuKLqegaVGwN8C6fuKvW9TmoPkTFg52Npun5r6LBFEO5uoVvGr9loDW9di+3Ekd4AtFG3TReEElLsMFD9JJ7ZDFtsPt2GLeU7xf1DeyhDt29Y2NCwD4Q7dse37qglgeBvSga2/KeKvj/SdasfT0IVrdfF5CBvYtukidxDKXQE6qEk8U4iaPw7JH24LRZsNUASFz1hsP0QntkuZdJLCpzKxlb5TUf6aEG7X9sELDYVKsCXS92U6sCVC+v7HfBzcNTrHE+6IeM2Fq29NFiuHM4Cu/cX4AZJ/g78xkj96ii4gHTVh58rdxqnrrGSt+qbGOtd+Z308cyHYBskfMZkZrZNZ6IlLTEjVWQbJH2MrcyFNE5iztV0uN/P1jiAz7oJklilOrP8N3NXMJPFWN/fVdXTpeqiYcKxE+0O0N3reB000o2Vv78DgRShLvKXTktmrV243L2L+UAh2mAyr6tqf0eMXQ/qaWb2Fu8PcfclcAqtlUTPvtX3SUL3X6CodhXAn86LakLlOXkGPX2TC5c4KSOFYcNc0zvOOY3xdGL4e1aA1iZ9Dj19gHMDemkYX7sr2uTVDXVG+CSQwSXxNIXNd+6vF9l+majv/oSZsxyy2dxkaidzhLfScuvo76+OZC8HWFtsBO57Z6ImLLbZLW2w3mNJF5XZLeVIy/ckfgthVjY5fstg+ZkjR8sc3YRtbbK9twnavyep0XX/SjCd+Abx1kPyxUzQfaQld+gVUfmmc1PkPtmH7oOlz8ioEmyO5oyfTOnQ638zj6n2gZph3INhsSheVBrYLjRHNHdaE7asW2wcnsW2Q5WudQuVmdOkqs4KK9kJyByD2MEKD7YUQP2Wip/nj27C9ymLrm8VAuHtLOkSWTOdwXmxWPlNSM/t7XTHOwpYyg8T+vGomYfVXULoQFn4cPXEeOi3bNlXMfr15yR1PXZv8ncYjf2+rotv4etNxKN8O1Keeqyu0GhQNlCf7rHUZSJHB8yH4AFNnZjnmhWtZrqdTY23co1ka49BVSMvmZfPWojM7VtlnNbctN/W5RMuKScdNfS6DriHiIEOXgVqRqRMqFQS7IW5TDoquTekvrbRtAxLr4K02jatZp9WmfrVjGzf119yj5cM42aZxj3Zsm/Bp8ZVpo8OGHqm0tW0aj67QathToNSEbal1PLreNJ72eZEavevGszOwndRjmRYfkU5a+9Q0Hq11G7Zt81zXbZ8b928ej0anlbY+pa1tdakJ2+a2DWytLtJ2bN+6LFYrn7R0E4w2J+i5JhQ4fAOoAfSc3a2DK8un0VhqNkD0DV/OyK2gJ9Bz9rQvYeN6CH1fQeX2JZ2zL8R/y+5UuLtJXtNVDFA2P2LwPPA3NeH/+t+a+hyBvyEyeBFU7zO5LZPXxPRr6BrEW8GEY5NXmIqaRBDtjer/KunEz2D8TKbCm67ZXgxeDAs+Bmn7ufYRFD+Byh9NOvotKF3JVOTDB2cJZPhmSF9Dz92vbdKG0H8mKtqRdP4JUP1dU59Ck2cy9AuoP4KedwyTdA6NrO2hn4D3HvTcA2xkqkkXwdaowe+Rlm+BhV9suma3bMPXgxpCz9mtFVuJIHcEqniSIVaf+HGTLrwmbMvoOXtkYPs/qNz+pAtPMXlJk20DcJc3cyp+Fj3vkAxsfwT+5uh5h9tjZpqxXR8ZvARq96Pnf5wp2hIFEiJDV4K7osX25TZs90T1f4104hcw9u0mfOwWdORmEN/qYiFTxiyCwsdRhQ+Rjp5uIlO6GduZFttZFttyG7ano6KdbSrL75qeGxoOo6GroP4oet7RTNF8WCqPoZ+AtzZ67oEmz6oF2w+gBrukqVh5R6x8tI5NAmFLhCE2hmP8XLOETefR/QSLBgdQQ2qQLkRPXI4e/wEmX6P5egXGvklaf2byXKZO8Y1hsasZ21OgYhIPa3+A+Im2Ppeh/pBJPhz9ats1DVRhwQno0s0mQtESri1D+TrS+B8w/p2mCdbQxZip8g53otPJWoaxs0njF6F0Ba0hVxOZ043jUXSJ1lVhBca+ZrK4qw+09aliWP6qvzFjpjl0bZI99ehpJnM8+UenLqr3ktaetLlFzdcSi+052djqMkxcShq/BOM/atNFvQnbH3bB9tuk9WehfGtb26oxCpXb0KPf6oLtqRbb5o+KHU/9UbNlWngqU0bY6kKXDO1L+RYb4WvH9gbS+AUYP4NWfGLQ4+jx8+3WcpTWVVQZxs+x2F7eNp4aJHPQ5WvRY2d3wfbrpLW/tRkeey1+Dqq/NsmWNK+EUquLBrbNHxXbp+p9JrfobcriE2pPXiXbsKRQ+1PGi/pmpAq139pQYVbUI4HKvRg1ZEURpPuJAMmL6OqfyQw/67qZvOms7Lbpy/ZI5PacDExfKneRHRGJzRZRArIpN6ow9oOpTOwWqZiD5uqPkblcTkft5MzSU8nQtXbkFjW69SS6+sdsXQDU7m97YSYfajKekzlkYiseVO4kmyKkZsaj53XpcwLVe7PTN3QJXf291UVW03+ha3/O7rOumjKbDt4pK/W/oFU/2dg6FtssaWCbI/M9ENfqYhps4yfIDEikY1D9DdlUKiUzj7t9gOMnu89ztEmEbWKOfCuy2Kx8UAN0pxoYMVSZb7m7YkKibbUvk6JjQ32Z6TQTyB1o+pV56xCcJciutPdtf6cRXSObpgBTUNqNUsNZopVys12qt5MdEVNGF12PuNXmetbpFYT2dJEu9BXSZ65nhYjFsXSp3ehSRsDthm1iIlOZuhCjYzUNto5NyOwQz+piILstvi3ezErtCOxYu0UGB02Bc1bagogpKM0Ml2Puax3wHaJjS1mbpUfHjmc4uy0a3GW6YBuYOTUttkuQHWV2DX5vUxYb4yOqaPJBOgYZIYXjkfwRvPHROe3DCZDcUUj+uIycGh+CDxhqBMnTOUmVCR3njqLTwIQQHYREu2YbLnHMCRLuezqvASb9f3M6J7AykZ5wB3v8SvtkiUxEpXBMxlib7i39dDqlfST3QcgflzGeAKLdkGjnjGcCogxVRyYdRwT5o0zhbMfRR9aHEu5k86kysM0fh+SysHUMd3awHXir06mrEMlbbDvG40OwhdGjFOnUlWsiVx1ha3NfcgfbUyIyKEIa2Eb7kamL3DGWqiMjKCADFtuN6Ypt/kMZ97XlFeH21rC139tDch9E8sdnzPMAwl1stXv2x0GivSB3ePZ48kdMi63JS3p7stgYHwDp/5ZJtJrMaYmgcKKp2PbeA/3fMpZY8hjwbGKcswwUTgZvPQydQN5Mur6vI/46SLgdFD5pgJG8uX+wuS0OdZGhK8BZldYJnsDoN8y2IHcQU7QLvnlRi59GVD8y+BND90Bk/jjLIUOXG6qBgTPJVrFjwr2D52LoHnLm/u4ayOBl5gz4ge/ZSdoYTx6KnzMV/P77wFkl476AaOg71SYEBube0o8MfBfxVjMTrXAsU9QJvklL6PsqIiEy9DP7hY2MvtSSyOAliBoylCbRXk26CCC3nzEgzhLI4IWWyiNn7u+shAxfYY5F6jstA9uPItEuiLcm9J/ehG1gktsGL0ZETOTQW7cN268h/npIuA0UT2rF1t8M6f+OjeD9DNxV7XhzJvdr8EeIuyySO9zwYTePJ9rV0I+oPmTop23YLmuxLSB9J1vfm9+ki8OR3MGIuwIy+H2QoSZsV0eGmrHdZEoXkrP1fu83pPN9X5nCnMCQ7g/+yOhi6FKbENjQRT/Y89YJd7cfl2Zst0b6v2aoYyaxbehiCWTwIsQZRgofhQZf0+R49kXyH0acGRbbmda4hSYRc/hnk2H6tyOLVbQLsLQL9xpHWBbtQvyKyZ1QM8yf6h2AY77M3jroyi+NfyjcxSRlNbetP2v8AO7KSLBdK+1C/DLM2Y5ObuMcMvA9NANQ/5PJ5vU3aW2bjFkaCWWoBpypbN609EsY/Zz9nwsipuI62MK2nQ2Vm42BiPZoAdPQSPwKkhch3AHVFPLWlbtsBXnb/l8thcy4D1O/dItx5Ia7o9zWrVpaexJqvzH5HP6WbRQUJVv3VO9Cu/Bnc+qHtwEqaA1kpMkCQyNBiOT2bik6NNj+2nAf+1uh/DVa2zawdWYi4a4tZ4AbGonbTXQw3BnVfFIEkMbPQeUey3G9bRsdRw1duhEYg3AvlNO6PTF0KX+w2G76prE14/mdOSXW3xTlr92mizfAtnqXOQ002N4kRLaM56UmSo2d7GkmjbZ1U1+WzIVwN5TbulVL608ZH4/7LiTYqg3bssW2arFtZU402D4C3obZ2JZvND7HaK8OepEsecdUtetklglvpq9Bg1oh3Anp/zYiDunYuTBxQZMDsuELsCFsHLOvBtM2fxSqeJKlTviiiXzg2h3aiPmKOUuayNS8o+laMa+WMKFPcYDUgDp4CaKKpOU7YOHn7TUNaENhEG5tqBPmHWmPKkmBBJyVzRc/3NYkvo2d1bQXd8yXyF/H0mIcbmqxNEAdov1sljEmUlO+jCkfgABFZPhnQIqedxSThknHUPgYqnCcSZxbcJKlgrCUDM6y5qushkwy34ITmVyx6djQceT2QKcT6PnHQv0Js93UCfjrGuoLiQzlyehXW3wLMvAjU8GfzLbYvtqE7Q6WvsIhHf8BjP94qq2EyOBPDB1H/Lyp8m9UmOsYckeYbG20pYK4pQ3bywwdR+1h9PzjJrFBx1A8GZU/1Bil+R+xNB+OwchdDRm61GL7K1j42aYtR2Kx3QadLpzCFjG6CDZFBr6PiE868VMY+w7N9YOT2CYvmxSNSWxjiPa2WdOYiFnpZ026KJrxuCuaxMYObE9EFY632H7GRKcmsV3GrKadYUuLcaLtj6Vx6fs6KrenxfY4w00kyujCW9tgq3Kkpeth9CtN49GGXqQp+TFL3jHGJ517qKWRaKVOoPhZxF3JTJS3QiIvETJwDjqeBWPfaGvrWAqKn6BnbU7XwrrG77b0yYdwZ6T4afTsHeg0WiEy8z70wv8xWaoZXEFmKV+l8zSBfmTm702+RvwMrQ7GCOn/OoiPXvj5tmiMmCX18K0w+/10FlyGyNAl5tDE8e+39dk1W5WBs9CztiTrxAYZ+SV64se2mrt5tRVAdACSP9TkUmWcFCEzfmf4eOoP0YntpxF3VXO9/blqCUNNMneHjCJRQ0Gh0zkZFCEOeO9Bhi5Hz9osA9sQGb7arB4mftrWZ8+UDRQ/j569Xed4CA0txuhXzSq6BdsQ8h8yH5a5h9BJTdKHzHzA5kM9TSe2p4Lk0As/2wXbX8KcLW0lP61thy5C1x6D8XPoxHYTo6vZ78+I4AUW2wstWX8ztr754OWPNLlUHeMx2Eob2VzLr7wzKDXm2YSu9ohXGUpXoN2VecunV+gyeuLn9mvb3jYxFBTlW3njTM32PtVMnoi7Bt2iOLp8q6WRyIrU1MkO7YPZLt1sluMd9y7bI4D8jEmkzXazcjPZKQlVkx7ffjqrfSa1P1hdZEWHEnOtfDOdYeAqVK5HqzzZIW8xbTs+KmY8Btt3kYmtHjeUJh18PKatLl1hq8+zsH3abDszsa2ZUzvLWbqqQ+VOtPueLm0xRqvD8ABUoHyVmctd0kYMts/TFVvJTY9tZspCxZS11P9CNrZ/MhjobtjenPFRwfy/ciNaDdK1Sr96D0R7Ztz3jWWxMT4m4zZLORiFT7syme6+493zT3BsJmk342PLIjINRWL7lGVckrffX3gDepFxup80oOx4svRo+GS6G3Ax+SCZBiS24+liMHUN0uYM4+ZrKehRusY2psVWMDQR3dpOh60yesxc2af2md3yxhI6ExcbEhsMuqUO6Kq9d9Z1/QbYTpiAQZaIsowGXbBNx+ikHZlsbLHvgm06TtfkXV2zushqm3Yxhm9OFp9ol1qqS56CB+H2EOxC99MrukloKBkyTxrAHFMS7tolj8SD/AnmVNMsNXlr28LHLEPgIMH2lgDtLYqOIdoju78EhlZhkgC+XZSJRmXmkUQmRBxsQ+Y3x1kWiXbq0qnQRJW8Deic/GKW9eHWZOOTGgwy80FcCLY3/cqkF0kg3JvsN7UZ24z0AFUw2GYZEMkhwQ7gd8HWXcuOJwsD10RP3XdlXFM2fWMHMikodAzR7mRTwzSw3aXLdWVWGN2wjabDdmnDUpklEiHRtja1IwvbjZFgm2x80DZl5O3JYmN8RAQZOIPJ8DmYf6sZSOEEJLc3eO9iij+noahG6Na17Zyptu6qSG4/k//QkhDoYvbYp6PcpaDwMVrpHgRIYOInptxAQqYmhAmtSt/XTLVwtFvrRJMIcgeYsHb/t2zfuh0p4za1VeYZxc+gnBFk4HT7zMZkimw1/lEmX8ddoWlCOECI9H/bkKNPUjaoqT557zF+qsInbaJh83hySP+3EHdFm+8RTelCcsb4e+tbn4QNw4K5h/QZOgZ/M1PcKs34RJA/FuUua7CVDGyLHzUvlbtGE7ZWF31fRjmD0Hea7a8zNR53ZVORnT/OJnQ2dOFZbM8wUaDCx2mlisiZUxqCDyB9p5hQdTu2/aeZ1I5oz9aXTiLjA/FWR/q/ORXab+hCDSLFz0GwnTHUHdiehHJm2Hneju3SFtuDM7Gl75smStf3pVZsiUyxcbgrUviE/YA36UJyZl54K8LkEVJN2AbbGg6ivlNNCkMLtkWL7cbgZ2H7ockq/rcji5XDGTBRnvKVEL9ovqjRXpPHc2hdh8od6MrdRsnRrlB/1iy9o72QdK7Z+6azzZc63GWKLiAtmWOCaw+Au5w9Gmf5qefW/oouXW2I3zv2zQFEBxnfkbu6OebEZk1rraH2gD2mVpk8mqZQvE5eN3v50i/sErWOmeQO9P8IYdyeVFlEcvsj3nubdPFPM57kZSR4vyH0blBB6CqUbzWnQThLmj65U+FaXX/SjEcvMF/5cIcpKoh03Pg8ag/Zl/ggpCkjW9ceRJevB103Z181heJ1Mtec911/0jh1cwfYw/lM+Jjq/fak0ACJ9p2ktjBtXzZ1XPGL5osa7d2G7Z3mRAc1hOQObCEn1/Fzpm0y26xKwl2nsNVlE0qfDtvytaAnTLJdMBWK1+lCo6f6X6fB9iZAumB7lSm49NY1+NlD/7ROoHr3NNi+aMfzsuFKyu2BWINjsP2lOcXFWcJiO7WKbsV2e4ut14Tt9SaC565s8o4ysa1ZbD8wNZ50nvUdPWmSGnMHToPtPoif6Udukf+aw1lEdgLOwZjni7TW3/5P7qe1RtcehMqvLLXjAvDXBmVBa3D61h4wX53an8zRI+LD+LmGpzZ+HPQomhjx1jXp+WB+r3qHKRSNh83xvs5y5vgcXTW5RdVf0ZU6s3ILpijxRfOlcbaxnR4zxrB6PyBoVTSTrHG4W/0v1jmZgLOsSQ7032uyRgE9dqapy5EQrWaYF0B8m0PyR6jeBel8tC4h3jo22xdTf1S500SQpB/tLGeS+kRMyLV6v63GL6M1iL+OLXPA5FBV7jS8LfGzZgsR7Wr6k5bQlXug8msgQUtkVngyaNs+btomL5mcG++9hmkSQC8wuSvV34C4xlHprTVlMKsPmdqmdJYJM/trg1q7DdvfgxTQztIm7C2OzYn5rcnj0aNo6hZbm/cU/8PUytUfg3gI7azUhG3N5BZV7wFdQ+MaPTozLT5PG9zj5yy2a4KzrR3PuNFF9T6LbaEN27+a5yavmFovf227fQHS2caQVn8LEkyLLXoC/HWgYWyTf1tsH2zDVllsf2PHU0JrbcbTyGmLn4fKHRbb5yy2uzVhe28TtjnTtoFt/XHz7iUvGqPovde6HRrY3p2B7Vt1hUzJ2175iMl6egbYHvg38CBwsNb6yW5t3jDUPn5RxmkCETL8C1Aj6Dm7TOPMaxcFkkdGfgnpKHru/h33pXA8qvAR0nlH2dME3mzhagj930TCnQz9QfIvppyxvvniDN9oVheT1cJTbWXoEnDfZU4ESBcw5cwLINgCNXge6dh3bRi4qc+SM1QQuOi5DRqJBn6RYcrrO4V0wSdtwWzjucqE8GfcDvG/Mk4BiUz2dO4Qo6f4aaYckK7ZEozchq7cDws/3TmewXPB3wQ9eydbTNvws9hM5aEr0KVLYeycDgwMtjPQc3ZuwzY0yYQDp5Mu/IoNAzeeK2Z71KBLmbtfm+M5gsKxqMKJpPM+ZFYBk9g6Jst5xHyIzEkRreOh7zQk2sWEl1uI/r0mbG+E0VM72srQxeCuYbGd34RtCMGmqMHzScfONlv6DmyvB3yL7UQbtvuj+r5EuuAkQ6bXgm0fMuMOY7TmHtahY4qfRnKHoecdCPWnmnThmVXzyO3dsR04B4JNzbuXvNaG7VrI0C9akhjb5b+18nkf8JzW+gX7kCuBPYGuxmc60boGE+1H1ABU0OPnmpNM28mPphVD1KUnLrWcOe0rmjJMnE/qb2pZ/9+s4TF9YuwMc7he+jqtUaAaJC+ZL/XYdzKeWzGrnWAHE91oiSJUofp7c4jdxKWdfdJV9PiPTbSrg6irDKWfk4a7mxVCS1tL91C60qwWs3QxfrZZMSTP0Rr5iE1eSeVXMH529nhGT0fyx9rIVLODtwrxE2Y12/FRaejie6YqugPbClRuI60dYQ/tayXFMmkUl1gS+azxXEjqb2FP62jWRQLpmNlKla/NHA/jZ6AlsikazdjWzQte/Y2hPMnE9gzjNE7H6aC2qP6hCdu2trqCHj/PrKoysb2KNNzLVsW3Y1u2J5M8TKeOyzB+jklniJ9pa1s3aQyVO2D83C7j+TaiP2wpT9qxfdqkUDRtrd+K/CfGZxngX03//zew8du+W/Jal7CoNhm16RjduXy6Sd2UASSzyI6YKKj+6S13FTBf+PrjdJzrBCbcWv9r9xBy/Kytxs7Y4oljUv0zaSQSc1/xyT5tw7Pblqy2Vag9ar98GaKrZiJlRf50yZz3lfyr8xpA8k90/a/ZYW+t7aqyS+g5ftL6wrJoJDyo/Y7JQ/laJIbaX0DPzb63KEN9ISoD+rLZDsfPZ48nnWu371nYls32Ll2Y3TZ+zuh5WmzdjD6lFtuI7Aidb90N3bB9ZBps68YwdcO29jezjc6S5EWTvJiJbWIM0Ns0Pv/1aJeIHCciD4nIQ7Nnz56mJ8N0PY7EWc4WB3aLGnUTx4S7G36fdtEx+GtA5rJRgVoGZCC7rRTtfTNCqhIaf0S3ojtnKbOSywzlakPqnXkChZhnuiuTCZ2umahWJjWJZ3ThLJtxDXM/d1WyaRciEwnrRtmgZlj/S0aIWBwTpcw6AwtMf9z2ol4rOjZ+h0xdKPBWtoWSGaJjG0HLksDo0Fki+7LkzH2zwuUSGe7wbrlWask3gW0X7ihnRZue0QVb9z3ZBgTP6NDthq2At1o2thIh3krdqTHUiO1Thm9H3Gnm0xvLf2J8Xgaa42zL2p+1iNb6Aq31hlrrDWfM6MK9AibqkUlTECKFE5H8kUxPqZElniEpL3w0875EeyL+B2zlctvklxwycp0NW7crPoL88YaCQprDnjDpawp37ErHYU5sOJDO0yI841gMtrD5K+19DpD8CZZGol0XgSnEDTa3jsu2iSauoV2YTCtoG0/ugyZ/pYOOQ8yLFu5m8p6ydFH4qKVd8GnNFTF8LxJsDbkDMp4bmpNJ8kd09hcfvHVQwabgb0pnXlOA5I4xJ5NkYru7OR7HWYZObD1LqfHxzrYSQf44i21ziB7zb8mZfKhMOo4IKX7CnMbR8aJ7htA92MJWw2dgW/iI2b5mYrslKtzMcni3XRfXkMh3xfYQk6ujBujAFt9Ww3+kczwSQf6jpmhbPFqxdUzKhr8Fb1f+E+PzILCaiKwkJuZ5EHDzf3A/pO+LkDuEyVwfNRP6T0eCzRB3JWToIlOYiYuZnJuAu4EhjQr3tolUvrnurIgMXoi4qxqagv6zzFcJFxrHHfd9xeQXDf+s6WwvxySZDf0cUUOo3J5Q/LxdAXlmT144wRg1iZDhq+1ROa75478PGb7a0EgUToTCMUxSgKgh6PsKEu6IOEtauoc1mMxRCrY2RY0iJkeoQXGAC2oZZOAcQxHirWl4hp3lbNvAGNKB7xg9Dl5kck3wrC5WQwZ/amgkwq2h7+v2S2fyQMgdjhRPMvQiw1daugc7Hm8dZPhKQyOROwyKH2fyqBrph+JJSHSAoRcZvtJyGDlWF5saPYpjz70/dCrXR82E/m8jweaIu6Jx1DqrTOki3NHwZAMyeI6NxjWwXcGce+6tZsK9/WdZnpsGtgcgfadaCorLLZVHA9s1kaGfIc4IKre7OaJIBqewzR9vKEIkNNzG3gZNuthoCtv8Rww1SQNbGYK+L5oKdGeJDGy3QoZ+arH9hj3Sx+b6qKUstusi3rvNuCex9Y0hHTjL6uICCNux/QniLmeMbd9pdkvvGV3nDjMUIeIafml/06bxrG2xLSK5Q6H4CZC+KWwLnzJhftVnsPXe24TtZtbZ/FZ3I03v+3+S5yMiuwDfsz26RGv9jel+/83k+YDN+dBlkx+RsSXS6ZjJNcjY1mhdA1015GQd12yJgUSTeRGt1yug48xCOa1T27aQqXCdlkAkM/SodWz2zFLIPGpEp+Pma5yxlJ9OF1PjCafRRa3LeBptcy3UFVPXy6DTyTyc1mu2fESKXcYzAeJMhthb2zZ08faxNXrspotu2FZB198+toCozm3Yfxfb8TfQxXTYjpoV+NvGtpsuumObJe+Yqvae9KQn/2/JO+L0ip70pCf//5Ke8elJT3qySKRnfHrSk54sEukZn570pCeLRHrGpyc96ckikZ7x6UlPerJIpGd8etKTniwS6RmfnvSkJ4tEesanJz3pySKRnvHpSU96skikZ3x60pOeLBLpGZ+e9KQni0R6xqcnPenJIpGe8elJT3qySKRnfHrSk54sEukZn570pCeLRHrGpyc96ckikZ7x6UlPerJIpGd8etKTniwS6RmfnvSkJ4tEesanJz3pySKRnvHpSU96skikZ3x60pOeLBLpGZ+e9KQni0R6xqcnPenJIpGe8elJT3qySKRnfHrSk54sEukZn570pCeLRHrGpyc96ckikZ7x6UlPerJIpGd8etKTniwS6RmfnvSkJ4tEesanJz3pySKRnvHpSU96skikZ3x60pOeLBLpGZ+e9KQni0REa/1/9zCR2cCLb/LXR4A5/8XuvF1ZHPvV69Obk16f3pz8b/ZpBa31jKwL/6fG562IiDyktd5wUfejXRbHfvX69Oak16c3J/9Xfeptu3rSk54sEukZn570pCeLRBZn43PBou5AF1kc+9Xr05uTXp/enPyf9Gmx9fn0pCc9+X9bFueVT0960pP/h2WxND4ispOI/F1EnhORkxd1fwBE5J8i8jcR+YuIPLQI+3GJiMwSkcebfjYkIneJyLP278HFoE9fFZGXrb7+IiK7/B/3aTkR+bWIPCkiT4jIJ+zPF5mupunTItOViIQi8mcR+avt06n25yuJyJ/sO3iViPj/6w/XWi9WfwAHeB5YGfCBvwJrLgb9+icwshj0Y0tgfeDxpp+dAZxs/30ycPpi0KevAp9ZhHpaCljf/rsIPAOsuSh1NU2fFpmuAAEK9t8e8CdgE+Bq4CD78x8DJ/xvP3txXPm8D3hOa/2C1roGXAnsuYj7tNiI1vo3wLy2H+8J/NT++6fAXotBnxapaK1f1Vo/Yv89BjwFLMMi1NU0fVpkoo2M2/969o8GtgGutT//r+hpcTQ+ywD/avr/v1nEAFnRwK9E5GEROW5Rd6ZNltBav2r//RqwxKLsTJOcKCKP2W3Z/+lWsFlEZEVgPcxXfbHQVVufYBHqSkQcEfkLMAu4C7PzWKC1ju2v/FfewcXR+CyusoXWen1gZ+CjIrLlou5QlmizTl4cQpjnAasA6wKvAmctik6ISAG4Dvik1nq0+dqi0lVGnxaprrTWidZ6XWBZzM5jjf+L5y6OxudlYLmm/y9rf7ZIRWv9sv17FnADBqTFRV4XkaUA7N+zFnF/0Fq/bid1ClzIItCXiHiYl/wKrfX19seLVFdZfVocdGX7sQD4NbApMCAirr30X3kHF0fj8yCwmvW2+8BBwM2LskMikheRYuPfwA7A49O3+j+Vm4Ej7L+PAG5ahH0BJl/shuzN/7G+RESAi4GntNbfbbq0yHTVrU+LUlciMkNEBuy/I2B7jC/q18B+9tf+O3paFB72N+GB3wUTCXge+OJi0J+VMVG3vwJPLMo+Ab/ALM3rmL34h4Bh4B7gWeBuYGgx6NPlwN+AxzAv/FL/x33aArOlegz4i/2zy6LU1TR9WmS6AtYGHrXPfhz4sv35ysCfgeeAa4Dgf/vZvQznnvSkJ4tEFsdtV0960pP/H0jP+PSkJz1ZJNIzPj3pSU8WifSMT0960pNFIj3j05Oe9GSRSM/49KQnPVkk0jM+PelJTxaJ9IxPT3rSk0Ui/x9PCadZv6wOcwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "s = 33\n", - "plt.figure(figsize=(10,10))\n", - "plt.subplot(1,2,1)\n", - "plt.scatter(proj_xcoords[src_flatten], proj_ycoords[src_flatten], c=proj_pe[0,:,s])\n", - "# plt.subplot(1,2,2)\n", - "plt.scatter(target_xcoords[dst_flatten], target_ycoords[dst_flatten], c=img_pe[0,:,s])\n", - "plt.axis('equal');" + "if not exists('./models/trec_kanji/kanji_trec.ckpt'):\n", + " wget.download('https://cloud.mpi-cbg.de/index.php/s/0ksUkIsWsQfzsXv/download',\n", + " out='./models/trec_kanji/kanji_trec.ckpt')\n", + " \n", + "if not exists('./models/trec_kanji/kanji_trec_fbp.ckpt'):\n", + " wget.download('https://cloud.mpi-cbg.de/index.php/s/GQWwEYarKse69W1/download',\n", + " out='./models/trec_kanji/kanji_trec_fbp.ckpt')" ] }, { "cell_type": "code", "execution_count": 11, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True, used: True\n", - "TPU available: None, using: 0 TPU cores\n", - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" - ] - } - ], + "metadata": {}, + "outputs": [], "source": [ - "trainer = Trainer(max_epochs=1, \n", - " gpus=1,\n", - " checkpoint_callback=ModelCheckpoint(\n", - " filepath=None,\n", - " save_top_k=1,\n", - " verbose=False,\n", - " save_last=True,\n", - " monitor='Train/avg_val_mse',\n", - " mode='min',\n", - " prefix='best_val_loss_'\n", - " ), \n", - " deterministic=True)" + "if with_fbp:\n", + " path = './models/trec_kanji/kanji_trec_fbp.ckpt'\n", + "else:\n", + " path = './models/trec_kanji/kanji_trec.ckpt'" ] }, { "cell_type": "code", "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model = TRecTransformerModule.load_from_checkpoint(path, \n", + " sinogram_coords=(proj_r, proj_phi),\n", + " target_coords=(target_r, target_phi),\n", + " src_flatten_coords=src_flatten, \n", + " dst_flatten_coords=dst_flatten, \n", + " dst_order=order, angles=angles, strict=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, "metadata": { "scrolled": true }, @@ -197,218 +213,151 @@ "name": "stderr", "output_type": "stream", "text": [ - "\n", - " | Name | Type | Params\n", - "-----------------------------------------\n", - "0 | trec | TRecTransformer | 11.1 M\n", - "-----------------------------------------\n", - "11.1 M Trainable params\n", - "0 Non-trainable params\n", - "11.1 M Total params\n", - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, val dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + "/home/tibuch/Applications/miniconda3/envs/fit/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 8 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " warnings.warn(*args, **kwargs)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "", + "model_id": "513407a1a8404a56b96c7a76b3dbb97a", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(HTML(value='Validation sanity check'), FloatProgress(value=1.0, bar_style='info', layout=Layout…" + "HBox(children=(HTML(value='Testing'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), max=…" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, train dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n" + "bin_factor set to 1.\n" ] }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "aeb907b02d664aa488338ff94cfb05f8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Training'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), max…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/tbuchhol/Gitrepos/FourierImageTransformer/fit/utils/RAdam.py:119: UserWarning: This overload of addcmul_ is deprecated:\n", - "\taddcmul_(Number value, Tensor tensor1, Tensor tensor2)\n", - "Consider using one of the following signatures instead:\n", - "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:882.)\n", - " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n", - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: Detected KeyboardInterrupt, attempting graceful shutdown...\n", - " warnings.warn(*args, **kwargs)\n", - "Saving latest checkpoint...\n" + "/home/tibuch/Applications/miniconda3/envs/fit/lib/python3.7/site-packages/torch/nn/functional.py:1628: UserWarning: nn.functional.tanh is deprecated. Use torch.tanh instead.\n", + " warnings.warn(\"nn.functional.tanh is deprecated. Use torch.tanh instead.\")\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\n" + "\n", + "--------------------------------------------------------------------------------\n", + "DATALOADER:0 TEST RESULTS\n", + "{'Mean PSNR': array(30.720855712890625, dtype=float32),\n", + " 'SEM PSNR': array(0.031072383746504784, dtype=float32)}\n", + "--------------------------------------------------------------------------------\n" ] } ], "source": [ - "trainer.fit(model, datamodule=dm);" + "test_res = trainer.test(model, datamodule=dm)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "model = TRecTransformerModule.load_from_checkpoint('lightning_logs/version_11/checkpoints/best_val_loss_-last.ckpt', \n", - " y_coords_proj=model.y_coords_proj,\n", - " x_coords_proj=model.x_coords_proj,\n", - " y_coords_img=model.y_coords_img,\n", - " x_coords_img=model.x_coords_img,\n", - " angles=model.angles,\n", - " src_flatten_coords=model.src_flatten_coords,\n", - " dst_flatten_coords=model.dst_flatten_coords,\n", - " dst_order=model.dst_order)" + "for x_fc, fbp_fc, y_fc, y_real, (amp_min, amp_max) in dm.test_dataloader():\n", + " break" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, + "outputs": [], + "source": [ + "model.cpu();" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fea349840d4b46b8b8013b2e44688a51", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Testing'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), max=…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "bin_factor set to 1.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "DATALOADER:0 TEST RESULTS\n", - "{'Mean PSNR': array(27.06388282775879, dtype=float32),\n", - " 'SEM PSNR': array(0.019822554662823677, dtype=float32),\n", - " 'Train/avg_bin_mse': tensor(0.0074, device='cuda:0'),\n", - " 'Train/avg_val_amp_loss': tensor(13.1782, device='cuda:0'),\n", - " 'Train/avg_val_loss': tensor(19.0442, device='cuda:0'),\n", - " 'Train/avg_val_mse': tensor(0.0295, device='cuda:0'),\n", - " 'Train/avg_val_phi_loss': tensor(1.4367, device='cuda:0'),\n", - " 'bin_mse': tensor(0.0075, device='cuda:0'),\n", - " 'val_loss': tensor(19.0353, device='cuda:0'),\n", - " 'val_mse': tensor(0.0295, device='cuda:0')}\n", - "--------------------------------------------------------------------------------\n" + "/home/tibuch/Gitrepos/FourierImageTransformer/fit/modules/TRecTransformerModule.py:357: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at /opt/conda/conda-bld/pytorch_1607370128159/work/aten/src/ATen/native/Copy.cpp:162.)\n", + " pred_fc_[:, :tmp.shape[1]] = tmp\n" ] } ], "source": [ - "test_res = trainer.test(model, datamodule=dm)" + "pred_img, pred_img_before_conv = model.get_imgs(x_fc, fbp_fc, y_fc, amp_min, amp_max)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ - "model = TRecTransformerModule.load_from_checkpoint('lightning_logs/version_8/checkpoints/best_val_loss_-epoch=99-step=170181.ckpt', \n", - " y_coords_proj=model.y_coords_proj,\n", - " x_coords_proj=model.x_coords_proj,\n", - " y_coords_img=model.y_coords_img,\n", - " x_coords_img=model.x_coords_img,\n", - " angles=model.angles,\n", - " src_flatten_coords=model.src_flatten_coords,\n", - " dst_flatten_coords=model.dst_flatten_coords,\n", - " dst_order=model.dst_order)" + "# Before the projection we normalized the image, now we undo this for the visualization.\n", + "# After denormalization we set all pixels outside of the projection-area to zero\n", + "pred_img = denormalize(pred_img, dm.mean, dm.std) * dm.__get_circle__()\n", + "y_real = denormalize(y_real, dm.mean, dm.std) * dm.__get_circle__()" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "dft_fbp = convert2DFT(x=fbp_fc[:,model.dst_flatten_order], amp_min=amp_min, amp_max=amp_max,\n", + " dst_flatten_order=model.dst_flatten_order, img_shape=model.hparams.img_shape)\n", + "fbp_img = torch.roll(torch.fft.irfftn(model.mask * dft_fbp[0], s=2 * (model.hparams.img_shape,)),\n", + " 2 * (model.hparams.img_shape // 2,), (0, 1))\n", + "\n", + "fbp_img = (fbp_img - fbp_img.min())*255/(fbp_img.max() - fbp_img.min())\n", + "fbp_img = fbp_img * dm.__get_circle__()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n" - ] - }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1b42ee7c6bfa41a7b5edde7ce188ede0", - "version_major": 2, - "version_minor": 0 - }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAElCAYAAABgRJorAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABnLElEQVR4nO29eZgV1bX+/65rYgBFBpknQUABFQENIKAEFdQ4gHGIYzDJlXhNHBKNQ0w0mpiY/H6Oyb0mJiqoJM6zUSTOKIKAIMgs8ywgStBoNPv7xzl09nq7+1SfPn1OV3e/n+fxsd6uU1W7qvZep4qz3r0shAAhhBBCCCGEELXLf9V2A4QQQgghhBBC6OVMCCGEEEIIIVKBXs6EEEIIIYQQIgXo5UwIIYQQQgghUoBezoQQQgghhBAiBejlTAghhBBCCCFSgF7OioyZ/cPM9s4ujzezX9ZiW142s/8u8TG/ZmZrSnSsP5jZz+rKfoUQxSOOt2Z2qJktquZ+NP6FECXDzLqaWTCzL9XCsVeY2ZGlPq7w6OWshsh26E+yL2M7/+sQQtg9hLCsgs+X7KWlKpjZz83sX1HbF5jZSbXdrnwIIZwXQvhFIfsws3PMbEpN71cIUTEUOzdmX6p2r8ljhBBeCyHsW4W2aPwL0QAws9PMbJqZ7TCzTdnl883MarttuaBnzH/Tc+eZee6rVn8wEJWjl7Oa5fjsy9jO/9YV60BF+heVB3a2HcDFAO4zs7ZFOE61MLNdarsNQoiicHw27gwAcDCAn8Yra+NfkIUQ9RMzuwTArQD+PwDtALQFcB6AoQB2rWSbVDx/xM+YAFbBP3dO3Pk5xcy6jV7Oikz2p+ke9LfdADwLoEP8K5uZ/ZeZXWFm75nZFjN70MxaZrfZ+TP3d81sFYAXs3//TvZXrg/MbJKZ7RUdZ6SZLTSzD83s9wCq/C9CIYRJALYD6J7dVwsze9rM3s8e62kz6xQdq6WZ3W1m67LrH6/kelxoZvPNrNPOXw/N7Cdmtjn7L+hnRp8db2a3m9nfzGwHgBFm1jubnrnNzN41sxPo87+M9HFmNjv72TfMrG+0rrOZPZo9ny1m9nsz6w3gDwAOyd6TbZXs91wzW2pmW83sSTPrEK0LZnaemS3JHvd/0/4vcUKkhRDCWmRi4/7ZsfR9M1sCYAmQOKb7m9ksM9tuZg8AaBStc5kKGv9CNEzMrBmA6wCcH0J4OISwPWR4O4RwZgjh0+zn8n3+cLYRo1/hc8UGM9vFzP7/7HPQMgDHVuO8dj5PXW5mGwDczW2I2tHDzMYBOBPAZdl491T0sX5m9o5lnh0fMLNGECVFL2e1QAhhB4BjAKyjX9kuADAGwHAAHQB8AOB/afPhAHoDOMrMRgP4CYBvAGgN4DUAfwUAM2sF4FFk/gW6FYD3kPlXoUQsw7HI/AvS/Oyf/wvA3QD2AtAFwCcAfh9tdi+AJgD2A9AGwM0V7PdqAOcAGB5C2Pmg1C7bvo4AxgK4w8zi9KMzAFwPoCmAaQCeAvB89hgXAJhIn995rP4A7gLwPQB7AvgjgCfN7CuW+RewpwGsBNA1e+z7QwgLkPnXs6nZe9K8gv0eDuDXAE4F0D67j/vpY8cB+CqAvtnPHcX7EUKUx8w6A/g6gLezfxoDYBCAPgljelcAjyMTh1oCeAhAhWnZGv9CNGgOAfAVAE9U4bPVev7IQWWx4dzsuv7IZA6cnMc+Y9ohE//2AjAu1wdDCHcAmAjgt9l4d3y0+lQARwPolm3rOdVsj6gmejmrWR7P/ovINqvkl6MEzgNwVQhhTfZfb34O4GTzP0//PISwI4TwSfbzvw4hLAghfA7gV8j8i8deyDzgvJv9l6F/AbgFwIaE45+a/dfifwB4EsCvQgjbACCEsCWE8EgI4eMQwnZkAtZwADCz9si8bJ4XQvgghPCvEMIr0X7NzG4CMArAiBDC+3Tcn4UQPs1u8wwygWEnT4QQXg8h/BtAPwC7A7ghhPBZCOFFZB6yTq/gXMYB+GMIYVoI4YsQwgQAnwIYDGAgMi+/P85ey3+GEKZUsI+KOBPAXSGEWdl7dCUy/9LeNfrMDSGEbSGEVQBeyrZbCFE5j2djzxQAryATy4BMfNuajXe5xvRgAF8GcEs2/jwM4K1KjqXxL0TDpRWAzdlnJgBA9lf4bZbxbx0Wfba6zx+VUVlsOBWZ2LU6hLAVmX8Aqg7/BnBN9nnqk2ruAwBuCyGsy7blKSiGlRzlpNYsY0IIfy9g+70APGZm/47+9gUy+dA7WU2fv9XMboz+Zsj8S3CH+LMhhGBm8bYV8WAI4Swgk0YJ4Gkz+zCE8Ecza4LMr2FHA2iR/XzT7L9CdwawNYTwQSX7bY7Mg9U3Qwgf0roPsr8k7mRltu0VnW8HAKuzgTL+fMcKjrkXgLFmdkH0t12z+/gCwMo4OOdBBwCzdooQwj/MbEu2DSuyf45fgj9GJqALISqnXOzMZvxwvKtsTAcAa0MIIVq3spJjdYbGvxANlS0AWpnZl3bGgBDCEADIpj7HP1pU9/mjMiqLDe55DZXHriTeDyH8s5rbxnA7O1T2QVEc9MtZ7REq+NtqAMeEEJpH/zXK+jAq2m41gO/R5xuHEN4AsB6ZhxAAmZ+uYp3YuBBWIOP92PlT9yUA9gUwKISwB4Cd/7pk2Xa0NLPmlezuA2R+sr/bzDi1soVlPHg76QIgnkglPt91ADqb2X/R5+Prs5PVAK6na9MkhPDX7LouVrFhtqL7ErMOmYdEAGX+wT0raYMQojA43lU2ptcD6Ej+ri6V7FPjX4iGy1RkfnEfXYXP5vP8sQMZa8dO2uXRJve8hspjVxIcv1ybzIzblBTvRC2hl7PaYyOAPbPm1J38AcD12bREmFnrrK+sMv4A4Eoz2y/7+WZmdkp23TMA9jOzb2QfQi5EHsHCMpN9HA3g3eyfmiLjM9tmmUlKrtn52RDCemRe5P7PMhOHfJlSAxBCeBmZlKBHzWwgHe5aM9vVzA5F5iXuoUqaNQ2Zf8W5LHuMryHz8sieDwD4E4DzzGxQ1kO3m5kda2ZNAUxHJhjekP17o+ilcSOATlkPS0X8FcC3zayfmX0FmfSradmXWSFE8cg1pqcC+BzAhdnY8A1k0hcrQuNfiAZK1qpxLTLPKyebWVPLTMbWD8BuOTZNev6YDeAbZtbEMpPAfTePZj2ITOzqZGYtAFyRx7a5mIPMc2A/y0zq8XNavxHA3jV0LFGD6OWslgghLETmi35ZNte5AzJTuz4J4Hkz2w7gTWTM8JXt4zEAvwFwv5l9BGAeMt4vhBA2AzgFwA3I/IzfE8DrCc36pmVnj0TGr/E6MkEMyHjWGgPYnG3Xc7Tt2QD+BWAhgE3ITMXP7Z0M4DsAnjKzAdk/b0Dml7V1yJhTz8tem4rO9zNkguEx2Xb8H4BvVfT5EMIMZEy2v8/ufymyptYQwhfZ/fRAZiraNQC+md30RWReSDeY2eYK9vt3AD8D8AgyD3jdAZxWUXuFEDVHwpj+DJmJkc4BsBWZ8fxoJfvR+BeiARNC+C2AHwG4DJkXlI3ITDB0OYA3Ktkm6fnjZgCfZfc1AZnnmaryJwCTkHmZmoVKYle+hBAWIzMz5d+RmfGWvbV3IjPZUnXnSRBFwnyKvhClI/svT/eFEDolfLSq+7sHwNIQwnU1sT8hhBBCCCFKiX45E/WCbOrmvgCW13ZbhBBCCCGEqA56ORP1hQ0AtiGTbiSEEEIIIUSdQ2mNQgghhBBCCJECCvrlzMyONrNFZrbUzGpqdhkhhCgYxSchRBpRbBJC5KLav5xliw8vBjASmdmu3gJweghhfs01Twgh8kfxSQiRRhSbhBBJVFSEs6oMRGZmvGUAYGb3I1PUr9IAY2bKoWwA7Lbbf0qF7NixoxZbIkpFCMGSP1VS8opPik0NgyZN/lMj9uOPP67FlohSUddjU/Yzik8NAMWnhkdl8amQl7OOAFZHeg1y1OQSDYd+/fqVLb/+elJpNSGKguKTKEevXr3KlmfNmlWLLRENGMUmUSGKT2InhbycVQkzGwdgXLGPI4QQ+aDYJIRIK4pPQjRcCnk5Wwugc6Q7Zf/mCCHcAeAOQD/N1xb777+/09/4xjecHjx4sNM9evRwetGiRU4///zzTi9dutTpLVu2lC337dvXrYt/tgeAzz//vLJmAwD++c9/Or377rs7HadQAsALL7yQc3+iwZAYnxSbap8BAwY4fdFFFznNsWrXXXd1muPDnXfe6fSLL77o9Lp16yo99r///W+n/+u/Cqs0w9vPmDGjoP2JeoOeneoIHCNuvfVWp4cNG+Y0z+HAzzfXXnut088++2yVj11s9Etduijk2+ctAD3NrJuZ7QrgNABP1kyzhBCiIBSfhBBpRLFJCJGTav9yFkL43Mx+AGASgF0A3BVCeLfGWiaEENVE8UkIkUYUm4QQSRTkOQsh/A3A32qoLUIIUWMoPgkh0ohikxAiF0WfEETUPKNGjXKa85w/+eQTp1etWuX0kiVLnO7fv7/THTt2dPrTTz91unv37k4vX77c6di7wZ4Q9mHwevaU/OMf/3C6WbNmTm/cuNHpeKZIAGjUqFHO/c2bNw9CiJrhuOOOc5rH99atW3Nu//jjjzs9ZswYpzk+cOzr1q2b0xwLc1Gox4xhD1u+HhJ5QISoWQr1cf3whz90+rnnnnN6zz33dPrLX/6y06NHj3Y6l+es1Cg+pYua/TYSQgghhBBCCFEt9HImhBBCCCGEEClAL2dCCCGEEEIIkQLkOUsJJ510Utkye7jYV7Vp0yan2Vf10Ucf5VzPdcu4/g7XReO8ac6r5tpjsdeicePGOdvC59K8efOc+/7Sl3J32W3btuXcnj0qfK577LFHpdtyfTchGgKnnXZa2fLixYtzfjauI1YdOPbdcccdTl944YU5t99nn32cbteundMffPBBAa0rLbk8IFwvcsqUKcVujhCppJT1wNhHeuONNzp9/fXXO21mTh9wwAHFaVgtkM91lz8tf/TLmRBCCCGEEEKkAL2cCSGEEEIIIUQK0MuZEEIIIYQQQqQAec5KRNu2bZ3u1auX05s3by5b/vjjj906zltOgj//2WefOc2+Lc4HPvLII51mf8OGDRucZp9X7FHjHG0+t3/96185j8Vw3STeno/H++M6Sdye+Fpxfbg+ffo4zZ606dOnV9ZsIVILewe4rmGSzywfeHwyXGuM6wiNGzfOaY5l69evd5o9rfUFjltJ/g95PkRdpZSesnyZNGmS06eeeqrTXHf1tddeK3aTUoniU/7olzMhhBBCCCGESAF6ORNCCCGEEEKIFKCXMyGEEEIIIYRIAcZ1n4p6MLPSHayWYX9S7CkDytffadmyZdkye7jYZ8Wwr4r9CLw9e6WY0aNHO83+uEceecRp9nXE7eHz/uSTT5zesWOH01wHZMuWLU7zdeNzb9asmdPs9WP/zNatW53eZZddypbff/995IL9bvG2QMPKow4h5GeMTBkNKTYV4uFgzxh7xGqaL774wulhw4Y5feKJJzrNdYe4RmQuks6tRYsWTnPsYm9v06ZNnebY1rt3b6cff/xxpzn2xe1J8u4lodhUt1B8qhvsu+++Tt9zzz1O//SnP3V68uTJRW9TZbBft3v37k63bt3a6dWrVzvNNSO5vm4hKD7plzMhhBBCCCGESAV6ORNCCCGEEEKIFKCXMyGEEEIIIYRIAfKcVZNTTjnFac6/XbRokdPsnWjfvr3TcW0h9ojttttuTrO3if0H7H1g/ZWvfMVprovWtWtXpzt37uz0o48+6jSfS5y7zHWH2A/HPo6ePXs63aFDh0r3DQDNmzd3mvszt43vA9d0iu/bM88849axB409J+xBY89Ko0aNnJ4xYwbqC3Xd11GfYtOgQYOc5n7JlNpHVgjcNvb2zps3L+f28RjkuMh+WObggw92+qijjnJ67733dprjJscq9nzwfeD79vbbb5ct//rXv3bruPZkofewPnk+6npsAupXfKrLnrJ8GTFihNPTpk1zmp+HCqFLly5ODx06NGdb+vbt63Rcn7Yitm/f7nTjxo2dnjp1atnyxRdfnHNfhdIQ4lN6v4WFEEIIIYQQogGhlzMhhBBCCCGESAFKa6wie+21l9NDhgxx+h//+IfTPGU7pyryNKWff/552TJPocxTMnN6HKfqxfsCyqfr8P44vWbPPfd0mtMgX3/9dad5eus43YevC7d9jz32cLpVq1ZOc1pip06dnOapspPSR+OSBUD5qf7j6WA57ZCnvV24cKHTnCLJbeFp/zmtavbs2air1PXUobocmzhNiMtHcL9bvny503UprZFTsDnWcco3j8Fx48aVLXMs4hjPJUf2228/p3l7vm58bF7PbU0iPleOPZdddpnTnE7ekNMc63psAupXfBKVM2rUqLJlfjY65phjnOY4z9YaLtXBsZO/B7p165azbfwMu+uuu1a6/2XLlrl1P/zhD51eu3ZtzmPlS32MT+n9FhZCCCGEEEKIBoRezoQQQgghhBAiBejlTAghhBBCCCFSgDxnlcDTJsdeJAD40Y9+5DRPnT9p0iSnecpU9nnF+cMrVqxw63hK5iSPCHvE2PfF+2OvRY8ePZxmXxbnE5900klOx1N582c515ino+frzNNT83TU7M/jPGg+N54uln0h8fZ8z5YuXer09OnTnX7ppZec5hxthu8L++3efPPNnNunibru66hLsYk9HBwPbrvtNqdfeeUVpx955BGn8/Ej8bGYpH0l+WN5fB555JFOczxYsmSJ0xxPrrvuOqdjPy1PVc+xhKenZ0/HV7/6Vac5pnP8YO8fx2nenj2p8bXh67ZgwQKnH3jgAae5LAgfK1/qksejrscmoG7HJx7Tzz33nNOjR492mr8X0wyX/uG5CNasWeM0+9J5yvkk31cMe9Rfe+01p8eOHet0kueVY0LS1Pr5sG3bNqcvv/xyp2u6rFB9iE/65UwIIYQQQgghUoBezoQQQgghhBAiBejlTAghhBBCCCFSQGGJ5/WIESNGOM1+BM7P7d69e879zZ071+l169Y5zfm/cY0I9iqw5jpkvXr1yql32203p7l+Bq/nc+O86TZt2jjN9X9iP8T8+fPdumnTpjnNHpHVq1c7zfXguK0ffvih01zLY8yYMU4PHz7caa4VEue7sx/z0EMPdbpZs2ZOv/fee06zR409LOyP2759u9ODBw92ui550ETNkVQniGNTv379nGYvwYsvvug0j6FcJHnK2AvFseGMM85wmv2tHJtY87nw8bi+F8fKOD688MILbt3999/vNPtjOQ5zzUT2yrDPgmPZRRdd5PSxxx7rNHvSYjh29O3b12mO4exP4fqQ+da64z5ZlzweomZJik88Rrl+4Pnnn+/0b3/725ppWDW4/vrrnd5///2d5njE51KTNSLZm8fxiuM48/DDDzvN8Yk9ZfzMe/LJJzt95ZVX5jxeLniugN/97ndOH3744U5zbd58qQ/xSb+cCSGEEEIIIUQK0MuZEEIIIYQQQqSAxJczM7vLzDaZ2bzoby3NbLKZLcn+v0VxmymEEOVRfBJCpBHFJiFEdamK52w8gN8DuCf62xUAXggh3GBmV2T15RVsm1oOPPBAp99//32n2U/E/iOu18PeCSYpFznOyeXaGQcccIDTXF+H17PPguttsf+NNdf7YX8Cf37YsGFOx/4F9jqwF4+vI+cac746wzXYGjVq5PTMmTOdZj8O+3ViknwY7DnhPpTkMeM8bG47n7s8aBUyHvUsPiV5OBgeQxyr2Pe1detWp3ONAcD3W/YtsAfj2muvdXro0KFOJ9UZZN8De1a51tjy5cudXrlypdNXX3210/G5/uUvf3HrFi9e7HRSDdBNmzblXM/jnb19XIts1KhRTueqRcZtY68tw/Xg+L4V6pWpDx6PIjAe9Sw2AfnHJ4a/V/l7rSZp2rSp05deeqnThxxyiNP87MTwsxE/zyxcuNBpfnZ66623nP7Vr37ldFyD9qqrrsrZliSS6sVxrGX+9re/OV2I54zheFOoxyyJuhifEiNyCOFVAFvpz6MBTMguTwAwpmabJYQQySg+CSHSiGKTEKK6VPefy9qGEHZOi7UBQNtcHxZCiBKi+CSESCOKTUKIRAqeSj+EEMys0vwPMxsHYFyhxxFCiHzJFZ8Um4QQtYWenYQQlVHdl7ONZtY+hLDezNoDqDT5PoRwB4A7ACBXICo27H3g+lrs/+F8f17fuHFjp9lL0bVr15zrOec/rqfBec+cL8teBj6XRYsWOT19+nSn58yZ4zT7Pri+DucDc77wihUrnO7Tp0/ZMl8n9mlxXSI+FudFcw45+2X4PrHHjO8Dty+uNcY11fhYnLecVHOtVatWTnPdo48++qjStgDl7wt7/aZMmQIBoIrxKS2xqVAPB3sVOXZxP+zdu7fT7Ovi+PKtb32rbJn9sBxXeYywv4RrJt52221Ov/baa07z+Odz4ba2aOHnV2CPx6BBg8qWucbhsmXLch67UDjOcs03jk25SPKYsdc3l3+tIpo0aeI013hLoi56PEpEnXt2KjQ+JT0rJfm8kjjrrLPKlg8++GC3jjW3heFnp5dfftnpO+64oxotrJxcvtavf/3rTrMHrNicfvrpRdt3bfvl60J8qm5a45MAxmaXxwJ4omaaI4QQBaP4JIRII4pNQohEqjKV/l8BTAWwr5mtMbPvArgBwEgzWwLgyKwWQoiSovgkhEgjik1CiOqSmOsQQqjst80jargtQgiRF4pPQog0otgkhKguBU8IklY4p5TrYXH+P9cCY08Y+4PY/8M+LK4tNGLECKc7dOjgdJwLzfWy2Ks0depUp6dNm+b02rVrneZaG1yrg8+d87LZoxLX4gCALl26OB17NY477ji3btu2bU4n1Qri67r77rs73alTJ6f79u3rdOzlA8r7yNivF587f5b7EOejc/0o9rS0b9/eaa7ZxNeG7wv78djjxuc6b948iPRRqIeD4X7FY4b9SexluOWWW5zO5bXkPshepnfeecfpm2++2Wmut5VUxzCpBhtvz/UrBw4c6HTsd7nuuuvculNPPdXppNjEJPm6LrzwQqePPPLIvLbPBX+f/d///Z/T7CFjOK4m1UjKl7rg8RAZajo+sV+RxyzHGx4nbdq0cfqII/y7bew7/eyzz9w6jh/sKz3llFMqa3ZRGDlypNP87BRz2WWXOc3PG/n6QJMYMmSI07HXuCLyqbX46aefOs3xKYm99trLaa5nWShpjE+FVZ4UQgghhBBCCFEj6OVMCCGEEEIIIVKAXs6EEEIIIYQQIgXUK89Z7PPinHnOyed8Xc6X5fx/zpPmWh2csx/X+gLK+4M2bNhQaXu4Ns/SpUtztu29995zmj1rSbWC2D+3zz77OM21jNjnxfuL/Q1c7419FlznjH1XXCeJ/Xdcx4xzuNlvxz4vvo/xteXrzB4uvi8Me/f4XNlTxn2E70tSn+T8+sMOO6xs+dVXX83ZVlFcatrHEcP9iOF+ceKJJzrNY47rFsZjZsKECW4d+xx5fK5bt87pJI9ZEuwpueqqq5w+5phjnM5V8429LjfeeKPT5557rtNJ15m9MVwniOsS8rmwZk9HrjpoM2fOzKn5+4nJ12PGcZl9jknE4yEN/o6GTjHjE5P0LHX22Wc7zfU/V61a5XTcf+6++263jn1TXKex2LCP9Tvf+Y7T/GwWXwuu6fqnP/3J6TPPPDOvtrDv9NZbb3Wa5xbgZ2aGn63itnPtOvb6cT25JFavXp3X5wslDfFJv5wJIYQQQgghRArQy5kQQgghhBBCpAC9nAkhhBBCCCFECqhXnrMWLVqULbM/gP07nGPPedC8Pfs2uA4a5+BPnz7d6ddff91pzjWOa3Ww16Bjx45Oc82HXr16Ob19+3an+VzYf8D5wVwrjH0kL730ktOcE37wwQeXLXN9ONbss2jUqJHTfC169OjhNF/35557zmnOm+b7yPnu8fG4T7BPkD1izZs3z3lsvufclrgPVNQ2vjZxf69of3ztRP2Ex3euejMA8Mgjjzh9ww03OJ3L68R+04MOOshp9jVwLOHYwZ4wHs9cK3Dw4MFOs+f0yiuvdPrkk092+tBDDy1b5vHC9Rs5rvH4ZNiby57Tyy+/3Gn2bLAHLlctTo4lXIMxyWOWL4V6zPjacdwX9Re+90m1C6+++mqnn3322Wofm72Xo0ePdprHLD+n5cvFF1/sdPwsBJSPT+xDPeeccyrdd7t27Qpq21FHHeX07Nmznf7hD3/oNI9Rrt379ttvV3qsZs2aOc3PSvnC8achoF/OhBBCCCGEECIF6OVMCCGEEEIIIVKAXs6EEEIIIYQQIgXUac/ZyJEjnY7r8XC+bFJNKPaksd+Hc/zZs8brV65c6TTX++E6a7FXg/P5ed/sjWCPCdc9Yw444ACnu3fv7jT7wrhGFudx87WIa5vxdd60aZPT7G/hffH2XB+D65atWbPG6aR6dOyRie9TUtvYD8NtZS8Q+2s++eQTp/m+J+Xqs7eQ+8mnn35atrzvvvu6dfnWGRH5wV6DQnLmk/w+8X0Gyvdbjn3PPPOM0zwGcsHjl2ukce0d9nTMmTMn5/Zjxoxx+thjj3WafVjs42JfKNcWjP257KVlD0a+ns2JEyc6zeM9yadViC8jn3tYEcX2dOTymHGNLdU9Kz6lrGvG3kseV/y99dprr9XYsbnf8Ti55JJLnE7ynLVv395prqvG8YnjF8O+rTj+sYf93nvvzbmvJB577LGCts/lMWMK9ZilidqKT/rlTAghhBBCCCFSgF7OhBBCCCGEECIF6OVMCCGEEEIIIVJAnfKcxV4mAFi+fLnT+dReYc8X15DiOmacq5zkA+GaNbx/9iPF7eFtOSebvRLcVvbisVeK66Kxb2vevHlOsz+J97d169ZKNfvZuE4Se8KSantxPR/2mLCPi/Pd2bfFfp34PvI69vrxfeJjb9myBbl4//33neZ8dj539hZy+/g+xHnf3EcOO+wwp9lXKPKD89Jr0sOTFNc4HiTB/YzHN3ulcsFxkfssj7/vfOc7TrNH44QTTnCaa43dd999TrPHlOHviCVLlpQts2e0f//+TifVi2OS6qAVSq4+lW/dsZrePol82i4PWs1TSo8Zw89t7O9nunTp4vT8+fOrfWz+jmW/G3+nn3766U6/8847Tt90001O85j/wQ9+UK127mTFihVly1zDcezYsU4/+OCDTvMzrSgOpYpP+uVMCCGEEEIIIVKAXs6EEEIIIYQQIgXo5UwIIYQQQgghUkCd8pwxnD/MNaxiOB+3TZs2TrPPgr0T7NNq1qyZ0+z/6dChg9OcV88eoNhbwb4orgXE+fuc93z44Yc7zb4s9nGw34hrsrEnjT1wXEcpl/eCfVp8Xbi2B++bvXp8rfjYfB/Z48LXIr62vC33kR07djjNfjjuj9xf99xzT6fZC8T755pNfB9Yt2vXrmy50DpIIj0k1dLhMcH9bsSIEU6/8cYbTvOYy8XcuXNzrucxc9pppznNfZbrqN14441Oc1uTYN9YHJf5OiV9B+TrI0zyJRdCoftKOhfef8uWLZ1mf2uh+xf1F66xmUTfvn2dLsRzxv42jgesL7300pz7437PdRkLre+1cePGStfxMyM/g8pzVr9QhBRCCCGEEEKIFKCXMyGEEEIIIYRIAXo5E0IIIYQQQogUkGrP2fHHH+8016xgv1Ds++J8XPbcbN++3WnOkeftuZZQUg0r9okx3PbY58G+KvYycR41+7jY68RepalTpzod1/6pyv7YX8feqdirwdvGdTyA8h4z9rfxfeEaawzfJ/Y2cF421yaLc9Bbt27t1vF153uYBF+3Fi1aOM01m/hcuV8wfB9iXyX7Z3gsDRw40Onp06fnPFZD54gjjnCa+y2Ty4OT5BFjuB/17Nkz5/bsUUsaQ/n4gZYtW5bz2Ozp4DqGfN0mTJjg9LvvvlvltlQEe4t5TMck1UBauXJlzmPVZG27iijEp1WoByzJY5bv/mI6duzo9Nq1a51W3bP8qc26ZgzHpyQK9W3F8JhNik9JcJ2zQtu6zz77OH3ooYdWeVt5zNJBseKTfjkTQgghhBBCiBSglzMhhBBCCCGESAGpTmvk9Bv+Gfezzz5zOk5V5OnjOYWMp03mY3E6TNu2bZ3mFDL++ZynQec0j6ZNmzodTynN6XL80zunpPG58LHeeecdpydNmuQ0pxoNHjzY6ffee89pTgnl1KQ5c+aULfO03HydOFWPUypXrVrlNF8Lvq+cIsb3gfsQlzyI0xyT0sE4pYFTJvjcOFWW7xNfK05F4tREnlqXr0UMX0c+N963yA2PuSRypXklpTEyHPd4qmoeA9xPebp6Pn4hU8Bzv0qCY9Gjjz7qNPfpY445xuk41gDlU7h5DE6ZMqVs+bDDDnPreMpuHu88RnjfpZ7ePp99FbttTD7H4zRGUb+IS7pUhZpMD+ZnKS7dwaV3+Njjx493+tlnn815vEMOOcRptiqsXr3a6cWLFzv95z//uWx59OjRbh2nWef7HSTqFvrlTAghhBBCCCFSgF7OhBBCCCGEECIFJL6cmVlnM3vJzOab2btmdlH27y3NbLKZLcn+v/KcKiGEqGEUm4QQaUXxSQhRXaqStPo5gEtCCLPMrCmAmWY2GcA5AF4IIdxgZlcAuALA5TXZuI0bNzrN0+FzXnvsCWD/Dvs0OLeYvU48XTVPCc9eiNmzZzs9d+5cp3k6fD6Xli1bVtpW9nix14Hzqnl668mTJzvNPqz42AAwaNAgp3kq3KVLlzrNnrPYR/Liiy+6dez5SipxwFPt9+7d22nuA3wf2APD15Y9bHG/YS8eT7vPHhSeap+n7eY+tWjRopzrGzdu7DT3UW4f97HYd8n56dz/62j+eq3FJvZ9lhLus+w95DHB8eGpp55ymj1n+fiF2M/G/YrjMMcunpqa+yF7yMaOHes0ezouvvhipznWXXHFFWXLPH74OvJ4Tpq6ms+VPSJJXr9CfWHF2lcx9pePr6imj11Cai0+pQn2dTMcS9mHWpPw9z97zthf/7//+7957f+aa65xmkuBXHLJJTm3j0uJcFkRfuZMKt8i6jaJUS+EsD6EMCu7vB3AAgAdAYwGsLP3TAAwpkhtFEKIcig2CSHSiuKTEKK65PVPUmbWFUB/ANMAtA0h7PxnzQ0A2la2nRBCFBPFJiFEWlF8EkLkQ5VzmcxsdwCPALg4hPBRnFoTQghmVuF80GY2DsC4QhsqhBAVodgkhEgrik9CiHyp0suZmX0ZmeAyMYSwsxDNRjNrH0JYb2btAWyqaNsQwh0A7sjuJ2dBn169ejnNfiH23LAnIK5hwfUsKmiX0+zjYB8W5/dyTRz2OuXrSYm9Few14rpF7C1in9brr7+eV1v4unbq1Cmn7t+/v9PLly93OvYT8HVmXwfXaOJzad++vdMDBw7M+XnOKWfPCtcuYh23nT0pSb4t9qDxvtn/wveZc8q5lh7XxmP/Du8/hvs3H5vvE9eTSqrvUluUKjYNGDCgxtpcaB0fHo9JXiiuHcYetELg2n0cd3kM3HrrrU6zT4s9IOw36tixY07dvXt3pzk20YOxW8exg8cA14s86KCDnD777LNz7u/b3/6201yLk889H2qyRlpF+ytmnbR89z106FCn+fsuTdTF+FTT8PcWe7cvu+yykrUlyad11VVXFbR/jinDhg1zmp+d3n777Srvm9vep08fp9m/P3LkSKePO+44p7m+4KmnnlrltojK4bE4a9asau2nKrM1GoA7ASwIIcTu7ScB7HRnjwXwRLVaIIQQ1UCxSQiRVhSfhBDVpSq/nA0FcDaAuWY2O/u3nwC4AcCDZvZdACsB6LVbCFFKFJuEEGlF8UkIUS0SX85CCFMAWCWrj6jZ5gghRNVQbBJCpBXFJyFEdUlVcSP29LCnhmtQsMcn9juwT4v3zV4Ihv0A7I3gume8P/YbcF49r4/9ddxW9hI9//zzlTUbQLLHjH0a++yzj9Ps8+JreemllzrN1yquPcS+LfY+8T1mDxnXSOEabHxt2LfBPhHO/92yZUulx2dvH+fKs2+L4T7DNaG4DlqbNm2c5n6watUqpzlnnPvgXnvtVbbMHkr2AXCuvGqoFI9C/Tt8n3/wgx84zb4vHp81CfebCy64IGdbeLwl+azYJ8Gf5zFy//33O81+vLhGY7t27dw69kVxW7t16+b0IYcc4nSrVq2Qiz/+8Y9OT5w40elnnnnG6STfdEza65rlsz+O+evWrXOa47BINz/96U+d5vq1K1euLFlbuHbY1q1bneZnzCS4liH7vjg+3XLLLU5zzdi4b/OY4fjDcy5wTTWum8rPcezP/dvf/ub03Xff7fRDDz0EUTrqbHVHIYQQQgghhKhP6OVMCCGEEEIIIVKAXs6EEEIIIYQQIgWkynPWvHlzp9n3kuT7ivN7k+qYsb+H83HZ+8RtSWob++HYG8Wen1w5+bwvhmt5MVzHrEePHk7vt99+TifV51qyZInT06ZNczr2vHFON9c54/xzhtvGfgTuM4MHD3aaa4exf4GvXezz4Hxxvm7sp+M+x9eRPSnsn+E+yh4zvg/sDeSc9LhOGvdPvg6bNlVYakdkYc8e9+t8apfxWM+37hlvn69PIl/i9vGxOTbxuXCf5j7P15U9HGeccYbTPMbYl8Vx+ec//7nTseeU28LjmT2iHLPHjx/v9AMPPJDz83vvvbfTP/zhD53m+zh37lxURr51yPg+cA1RptC6aEn769u3b9kyf9euWLEi575r2g8nisv06dNruwllPPbYYwVtf9RRRzl98cUXO83PpAzXNeNrEz9bvfXWW9VoYeWwZ4zjUdu2bZ0+99xznV62bJnTM2fOrMHWCUZRTgghhBBCCCFSgF7OhBBCCCGEECIF6OVMCCGEEEIIIVJArXrOhg4d6jTXvEpi27ZtTsd1Hzinnr0KSTn37EfgPHj2SrD3gj1s7D9gb0Tsb2KvE9ej6Nq1q9Ncr4d9GFwPi2usLV682On+/fs7zV6MV1991elc3gj2E/CxuWYNewH52Px59pSxH4H3x7U/uB/E2/M9489yPTm+p9x29ttxn2T/G/dBrmvC+e3sG5s3b17ZMl+3JP8mH4u9f1xTpb4xYMAAp9ljxhTig0m7hyZX+9jjyTUTuVYY66Rafffcc4/Tl19+udPcb9nHtWjRooqaDaD8GGDYp8Wxg/1xfC58Lfg7geNDkm8rl/cvCY41tV0XjetPFgKPVa5lWR/hcxYV88tf/tLp/fff32l+9uFxwmP66aefdvr88893+qabbnKaPfI/+tGPnM7Xb1wISXUYGX7GTaqfKyqmuvEp3U8FQgghhBBCCNFA0MuZEEIIIYQQQqQAvZwJIYQQQgghRAqoVc8Z5/Oyz4U158yyj6Zx48Zly+wBYy9DkyZNnGZ/D+cC8/748x9//LHT7GfgWmM9e/Z0OvbP8bZcb4e9SRs2bKh0X0D5XGH2TrEXYtCgQU5zLbGPPvrIafa4xT6vuNYWUN4/x8dmH0ezZs2cZr9drlp3QHJdM74W8bXntvF5s3+uS5cuTrPHjOuUcZ/p3bu30+xJYX9dUj26ePxwLn2Sf42PzeNFVJ9CfQbcx2vat5Brf+wt4pqHPGYWLlzoNMeizZs352wL73/MmDFOc20ejn3c3jhWcZ8//PDDneYxM3DgQKd5fHNM52vB8PfXnDlznOb7nI+vK6lPJPWhfPtU69atnWavcb5+8pik8+ZzEWInzz77rNNvvvmm0+whK5RnnnnG6fPOO89p/t7lGJAL9oCdeeaZTvM44GNxvEqCnzu57qooLvrlTAghhBBCCCFSgF7OhBBCCCGEECIF6OVMCCGEEEIIIVJArSZrsx+JYd8Le7G4Dk3sZ+B1nLe+evVqp9lTw/m9XOMmaf9c84pz+DkHP87ZZw/ZggULnOYaU3yd2CvBXim+juzz4txlXn/UUUc5zV6MuLYHe0q4Jht7+TgHm716SX2CPSdJNSX4WsX+OvaU8T1kzxh777jP8P5Yc5/gPsn9gj/PHrT4XJK8eZyfzpSyHkt9p9AaU8W+F/m0j2MTa25rvufOfZxjGftjf/3rXzvNsTKu4ch1AXv16uV07GEGctdEBMp/JzAcq+677z6nk3zPucj3OiftO9/7xPXrCt1fPrAnWoidvP766yU9HnvkOSb84he/cJp9pkceeWTZco8ePdw6flbiMczPPvl6MXl/U6ZMyWt7UbPolzMhhBBCCCGESAF6ORNCCCGEEEKIFKCXMyGEEEIIIYRIAbXqOcvX58KeHib2J3H+Puffxr4ooLxfJylft2nTpjk/z+fGNW/22Wcfp2Mv1datW9069q+x94H9RFz7h31bueqScVsqOt7KlSudZm9VXEtsxYoVbh1fJ9ZcS4NrB5111llOd+vWzemNGzc6/dZbbznNtTvYVxL7FtmPllTXiD1i3BbOP+c+yJ4U9mnweOBrx36++PPcR3hffGzeN69vaCTdi3xI8gflu+9C/Ty8Pfej2Bs8d+7cgvadVLuL4/Bee+3lNNcS5O1nzpzpNMemhx9+uGyZYwPHaPaU8nhmjxr73bjt7DF94IEHnC6kTxXbx1hqD1s+JNXKE/WLa6+91ulrrrmmllpS/nuVv9MZjgnsiRs/fnzZMvdrfjbiZ5kkHnvsMac5lvLxavO6Cv1yJoQQQgghhBCpQC9nQgghhBBCCJEC9HImhBBCCCGEECmgVj1nixcvdnr79u1Ocx009kZxvm+8Pfuq2OvANW5irxFQ3lOWVNOG6/GwX6lFixZOc+5xvD/293Db2CfF/jqu0da9e3en+Vqwl6pTp05Os59gzZo1Ti9btszp2OfBPosk7wHXMeLrxn489tNxXSM+16TaZfF953XsI+T+yrV+eHv2DibVyuP7zveZ+z/3udg7mORzYq8Pjw/u3w2NJE9NPp6bpDFQTH9OVeDaYXEdKe4na9eudZr7JJ8L7/v44493eseOHU63atXKaY5lfN0nT57s9PLly51O8i3ngj1pCxcudJrrEHbs2NHp1157rdrHLpSk8V/TvsVCKLXnUtQt2Av6ve99r2z5j3/8Y1774u/UwYMHOz18+HCnhw4d6jQ/EyxatMhpflb6wQ9+4DT7WIsJt409Z+vWrStZW0QyimpCCCGEEEIIkQL0ciaEEEIIIYQQKUAvZ0IIIYQQQgiRAmrVc8a1vthPxB6euH4WALRv397pRo0alS2zt+CTTz5xmn1Z7Lti2C/EXif2H7EvjL0Y7H3q169f2XLr1q3dOvb/sA+Dj81eJt6ec4v5XGKPSUWafSerV6+u9PPsg+Jjcf44H4s9Y+x9Yr8Bt4X7Adfy4PvCvsYY7n+8L/ZIcr04zvHm9dwnevfu7TR7EfnzfC1j78a2bdvcuqRcd/b6cdvnzZuXc/uGRjE9N8X21HC84b5ywgknlC1zba9Zs2Y5fdBBBznNnjSOs7z9Sy+95DTHj0suucTpfffd12mO0zz+42vL15XHI39n8OebNWuWs618H1944YWcbSsmxa6DVpPHk4dM5IK9Uz/+8Y/LlvmZkJ+NBg4c6HT8zAgAS5cudfrNN990+rnnnnN6xowZTk+cONFpfp7gmFJKkmqVvvHGGyVqiagKioJCCCGEEEIIkQISX87MrJGZTTezOWb2rpldm/17NzObZmZLzewBM9s1aV9CCFFTKDYJIdKK4pMQorpU5ZezTwEcHkI4EEA/AEeb2WAAvwFwcwihB4APAHy3aK0UQojyKDYJIdKK4pMQolokes5CJpF+p8noy9n/AoDDAZyR/fsEAD8HcHs+B+/cubPTXBeGPT7sdWLi9XGtrYpgfwHD9S84Vziprhnn93LuM/uFYq8Gez64Ps4rr7ziNHvM2E/EfgGuJcZ52scee6zTTZo0yalz+cTYo8I53lzvjb1O3FbuI3xfuNYQ++3Ya8jbx9ee7zF7c7itXPOEa+WxR4019xH2XvD++D5wn47bzz7Fvffe22nu73yf+B6nwXNWzNjE9bj4+rz++utO5+vJyUWpPTccZ9u1a+d0PIbZB8l1ybjO0Icffug0x3CO0xxHv/jiC6f5O4PvS48ePZxmz1s8RnlMsIeMaxqx75JrGPXt29dpPheOTbn8cEB+/SDf/sfe3yQvTDH7ZKF+tv32289p9jHWFsWMTw2ZJUuWOB1/V3HdxF/+8pdO33jjjcVrGMp/T3J86tatm9Nz5sypdF/st+d4dOCBBzrNY5rrMPbv399pHnfTp0+vtC2i9FQp4prZLmY2G8AmAJMBvAdgWwhh5xvIGgAdK9lcCCGKgmKTECKtKD4JIapDlV7OQghfhBD6AegEYCCAXrm3+A9mNs7MZpjZjORPCyFE1VFsEkKkFcUnIUR1yCtXIYSwDcBLAA4B0NzMdv7u2gnA2kq2uSOEcHAI4eBCGiqEEJWh2CSESCuKT0KIfEj0nJlZawD/CiFsM7PGAEYiY2h9CcDJAO4HMBbAE0n7aty4satLM2XKFLeefS5cN4phP0HsR2J/TpLvinPu2QvF/gSmQ4cOTr///vs527pq1Sqn4xpv7B3itnLONXtEuN4V5+izZh8Wey/Yk8Z+HPaV7bLLLmXLcf02oLwXj+8T+7jmz5/vNJ8be1a4zhnrtm3bOs153bFmXyB7TDi/nO8T32O+7nyuvJ73z/eFazqxVzGG+xQfi68DX1f2mMU1CleuXFnpcYtJTcamJk2auH48bdq0orQ5jXBfYB9EHDu5n6xYscLpZcuWOc2+q3xhHyfXj+T1Z555ptMcm+LviCOOOMKt4+8A9nDEcQ0oXy+S4wV7yqZOneo013xL8nXlqtGWryespustcXzJp4ZbUtt5PX+Xv/vuu04PGDCgbJl9N6WkmPGpIcPPVrEvlcco18otNvyMwM8bo0aNcpqfK0eMGFG2PHz4cLeOPeb5wh76yZMnOz137tyC9i+qRlXjU1WKULcHMMHMdkHml7YHQwhPm9l8APeb2S8BvA3gzoJaLIQQ+aHYJIRIK4pPQohqUZXZGt8B0L+Cvy9DJodaCCFKjmKTECKtKD4JIapLVX45qzE++eQTzJ49u0zztOic8sbTNHPaI09tHk9Fzql+nKa1++67O83pMQz/JMwpKZxSxuk8fDxOWYuPzykhSdPN87l17do15/pOnTo5zfeB28opK5xex+1p06ZN2TKnoMTpm0D56Vs5bYrTEnj6+ffee89pnq6a28r75xSJGO5v3bt3d5r7BPffpD7F+4+vG1A+hXP58uU5j8dpwHG6B7eVU7J4rDHcJ/k+1nU+/vhjNwV3nHpQapKmVOfpmTmdrlA4zTlXaiKnWnGf5z7MaT48VT7H9D59+jjNqT18bXiqf9Y8/mN4mv8HHnjAaR5vPGU7nyvHJv7OyJeanFq/pqfGTypdU8jx8p1qPy1T6dckaYpPtQ2Xx4k1x5eBA/078KuvvlrQsXl/XJKGS30wX/3qV53mskVx6REuicTxhNOk+ZmSUyzZRsTPBKI0VDU+lbagjhBCCCGEEEKICtHLmRBCCCGEEEKkAL2cCSGEEEIIIUQKKKnnjOnWrZvTPBU55/DztOvsK4s9Z+zP4SlW2e/Dnhv2kJmZ0+zDYl8GT/kc5xIDwIIFC5yOp69mnwVP08/nwj6NkSNHIhecm8z7Z+8T5z6/8cYbTi9atMjp2J/E14nbHt8zoLzvg9vC3gbeP58be0zYk8bTZcd+G/aYcJ/ie85+G+6fPH01+7a4bdwn2ffFx2P/TtzH852umn2HfB+ef/75nPtraLAvpkuXLk7HHr9C/UBJHrNCPWncL59++umy5TFjxrh1Q4YMyXksLsNx1113Oc2+CPbD8njmc+MxceONNzr98MMPV/p5jkVJsYpjCfvfOF7UtK8rH0p97FIej8cPx3DRsIifE7kf9uzZM+e2J554otNjx451mn2i7NNijxvDzyu//e1vnZ4xQ/XFRcXolzMhhBBCCCGESAF6ORNCCCGEEEKIFKCXMyGEEEIIIYRIAbXqOWNfC/uP2L+wcOFCp7keT5yLzt4E9hNwzSqup/XBBx84zd4G9g8leaG4BhWfe5w3n+SrYK8Dt/2pp55ymn1cXAft9NNPd5qPz7XAli5d6vSKFSsqbR+3nb147ONIqqGW5L9bsmSJ0+vXr3eafWDsE4lzypN8h+yn4T7A+el8Lfjc+bqzl6JVq1bIBfeD+Nx435ybz9eBNV+L+g6PMfa/Mnw92UtVCPl61Aqte8b9MvYG87F4THC/4fHHdX14f+wxu/fee51O8sM+/vjjTvN9LAS+rjymDjjgAKc51nFsWrVqldNJdRGLSb61xGrTY8bH5u9i0bCIYy0/1yV9Zz722GM5dRIvvPCC0xy/+NmpNj1mw4cPd5qfhbhtXFdNlBb9ciaEEEIIIYQQKUAvZ0IIIYQQQgiRAvRyJoQQQgghhBApoFY9Z7Nnz3aac+7Zb8QeM/bYxDn+/Fn2B7zzzjs513OuMh+L897Zp8E+L4ZrUr377rtly+xVSPKcxTWUgGS/HOdFc72uJL8e5/izfy6+NuwJY1/GgAEDnGYfF9cZ4TpI7FNk/eqrrzo9a9Ysp7kfxB4a9r+xv4bvIcP3ga8bb891//i+sJ+Hry3f57heFfcZ9nHwtqz5WtR3kjxmpaTUNau4X7788stly/vtt59bx15E7lccFxn+PI+RJI8bx7J8vFP8Wa5ZdO655zrN9Sc7d+7sNMdNhj1rEydOdPrZZ591evXq1Tn3V5MU2sf4vnDsKoTarBcn0s/tt99etnzooYe6dcX2cfKzGpMU/wrhZz/7mdMcnzieJX2Hs2f+N7/5jdNPPPFEvk0UBaCoJ4QQQgghhBApQC9nQgghhBBCCJEC9HImhBBCCCGEECmgVj1n7F9gfxF7HzZv3pxzf3FOP/tzPvroI6fZR8XeBfbzcN475xqz74rrW/D+uX2xb4z9Lhs2bHCavRJ8nRo1auQ05/9zfQsmaX9cS4RrOsW+sNatW7t1Q4YMyblvvo5NmzbNuT7JF8YeFr4vrONzT6qvE3u6KoLPnc+V66CxT5E11z1L8ufE952PxX2A98355/nWQapvdOzY0Wm+N+wvLMQnk9Tvig3Hi1deeaVs+aSTTnLrFi1a5DR7G5NqrvG5sleYYxGPb47jgwYNytm+fffdt2x5//33d+vYY8Z+ET42f0dwWxj2pJ1xxhlOz5kzx+mVK1c6Xcx+UGifq0mPmRD5EMfeDz/80K2bOXNmjR6L41uSp42fV/gZl59L4/2ffPLJbt03v/lNp9lTxuT7nc3n8pOf/MRpfs6r6WsrPPrlTAghhBBCCCFSgF7OhBBCCCGEECIF6OVMCCGEEEIIIVJArXrO2Es1b948p7lmFef7cs2ruC4a5+vztkk59ewn4lxm9pCxT4w9aezh4c8vWbKkbJn9LUn+Hz43zkVmP9Gpp57qNHslOPeY23PEEUc4zXnTHTp0KFvmnGv2kMyfP99p9uKxZ+Xoo492umvXrjm3b9OmjdN77rmn0+wjifPX+bok1VxKqhXG95HvC2s+d+6T3B4+t7322qtseceOHTn3zbDfJslfV99Zu3ZtzvVJ8STuK0n+nLTVdYrrbcX+M6C81459luvXr3eaxwTHmvvuu89pjm0M+7huueUWp/k7pWfPnmXLSTWKXnrpJac3btzo9IoVK5y+4oornE7aP3vW+DuFrw1fu5okqc/Vtg9SiMqI5yKIazIC5cdsvnAtw8svvzyv7fk7/S9/+YvT/DwUe9L42YmfQflcJ02a5DQ/n1x77bVOJ9Vl5GcAvhbynBUXRVghhBBCCCGESAF6ORNCCCGEEEKIFKCXMyGEEEIIIYRIAbXqOeOc1qSaVrGnDCifox/nHrPXKKn+Dnty2A/AcD4v75/rSjFc7yLenn0aTN++fZ0eMWKE03vvvbfTnKvMvhBuK3utuJ7WrFmznH7zzTedjj1q7K3j68S169iXxfd46NChTm/ZssVp7lN8Lnyu3A/i+8qeD9acs81eIva/8bXYtm2b05x/zn24VatWTvN44Npb8bly7jsfmzVfd64/1dDJ14OTy2fGsaTYNaPybXvsnZoyZUrOffH45FqWhxxyiNNxfUcgf28wj5k//elPTrOHLf5OSapTllRXk+sWXnjhhU4X6jkrpscsX/L1mPF95NgXU2gNRb5uouFy++23O801WQ888ECnv/rVrzrNz1KxbxsoP+bzZfz48U4//PDDlX42rskIlK/ZmC8//vGPnc73O52ftURx0S9nQgghhBBCCJEC9HImhBBCCCGEEClAL2dCCCGEEEIIkQJq1XM2Z84cpzkfmP1DrDkHN/YrsX+Nc+bj2j0A0K5dO6fZf8D+AM6pZ58Y+7w4d7l9+/ZODxw4sGyZvUQM1x3jOmObNm1yOsk7wW1jjxnvj+8be51i/1KST4v9NuwBYz8B3wfenj0o3Pb33nvPae5T8f55W64fx23he85eiiSPGn+ez4XrAnLtLd4+rhPI9zSpZhtr9hnWd/h8BwwY4HRN1nkqtseMSbr3POZOOOGEsuXDDjvMreNalOyHXbx4sdNvv/2201w/j8dc7969nY5rKALlx9xjjz3mNI/ROFaxfyTJw8keMI4dSfB45mv32muv5bW/NJPLY8YUOpa43lNDICk+1WeaNWvm9FFHHVW2fOSRR7p1PXr0yLktx15+tvn1r3/t9KGHHur0yJEjc7aV41MujxmzfPlyp/lcli5dWuV9AeV950nwGJ42bVpe24sM1X120i9nQgghhBBCCJECqvxyZma7mNnbZvZ0Vnczs2lmttTMHjCz3OXGhRCiCCg2CSHSiuKTECJf8vnl7CIACyL9GwA3hxB6APgAwHdrsmFCCFFFFJuEEGlF8UkIkRdVSpo3s04AjgVwPYAfWcakcDiAM7IfmQDg5wBur3AHVYTrLnA+MNfEYQ9PnFPLvomkmmrsJ1qxYoXTXGOK25a0f/aJffOb33Q69qBxbu/cuXOd5tod7Cl79913nebaXnGONlDec8a1xtjLxMfncxsyZEjZMl83rrHGHjCuo9SlSxen+bqyV5Bzxjnfl72GfN/inHS+x3wdub+yd4LrnHGf5Bxw9qRwzjefO3uF2BMT10njdbwtw15Bvk9poVSxiWsush+pEJLqPNWkv60i2Gv1m9/8xumePXuWLU+aNMmtmzhxotPf+MY3nGaPGfuq9txzT6cPP/xwp4cNG+Y0j0keM+x5W7VqldM//elPy5a7devm1rEfZc2aNU5fddVVTnMNN65dyXA8ePzxx53m7xz+fisl3Oe4jxZamyzXseoTpYpP9Rmu98njJh4nXEfslltucZqfXd555x2nV65cmbMtvD7Jc8bwmOZnr1NOOaVsmZ/T+Dto3rx5Tl955ZVOd+3a1Wn+Tk/irrvucprnAxDFpapR8RYAlwHYGZH3BLAthLDz22YNgI4VbCeEEMXkFig2CSHSyS1QfBJC5Eniy5mZHQdgUwhhZnUOYGbjzGyGmc2ozvZCCFERik1CiLSi+CSEqC5VSWscCuAEM/s6gEYA9gBwK4DmZval7L8AdQKwtqKNQwh3ALgDAMystHNGCyHqM4pNQoi0ovgkhKgWiS9nIYQrAVwJAGb2NQCXhhDONLOHAJwM4H4AYwE8UWhjOPd848aNTrO/oHHjxk7H/iGu/cWa82fZz8Z1zjhXmL1TXE/ngw8+cJr9DexxW7ZsWdky+zIWLFjgNHuRuMYa+wG4rXzs2FMClPdSce7yqFGjnOZrFcM+Kc6xZs8J1zXienLs2+L7On/+fKfZc8b1vjgPOz4e90euM8Z+Nc6NZ48JewPff/99p7kP7dixw2n223Cf5LpNcY4614dK6kP51CmqLUoZm5Ly7XnM5eOjKdRzw2OE98f+OPYbHnLIIU5zPIg9sOxD4Lpk7EnjGM6+Ce7j3E85tnDb2dP629/+1mkeg/EY4/HLsWDvvfd2+s4773Sax1+uOAgAr7/+utP33ntvzv3VJPxdyXGQKaUPMvYoA+Xrvy1cuNBp9s+mlVLGp7oEj+GkOo/sK+dx+sQT/7l8v//973Pui58P8mXw4MF5fZ6fV7gmH9dBi+Mhe//5OnGc/utf/5pX25jnnnvO6bvvvrug/YnCKCTCXo6MwXUpMnnUdyZ8XgghSoFikxAirSg+CSFyUqXZGncSQngZwMvZ5WUABtZ8k4QQIj8Um4QQaUXxSQiRD/V3DlshhBBCCCGEqEPk9ctZsXnhhRec7ty5s9Ock8/5vHHOP3u+OnXq5DTntXONGvYPsJ/n9NNPd5q9FOy9GD58uNPs64p9HexvYc8Yt4XbyrWBevXq5TR7ztau9X5kzunmej+cm8z1eWJPAB9r9OjRTrOvgz0n3Bb2sLz11ltOc0730qVLc27P/SKuZcb3lD/LOeDs02KfB/fXbdu2Oc259ez7YK8FH5/9NfG5sreHvYDctunTp0P8hzfffNPpAQMGOJ2PB6cQf1pFcD+bMGFCzvW/+tWvnB43bpzTHE/iOoscg3mMMNxHx4wZ4zTXReP9cSzk2Me1B6+77jqnp06dWun+uW0/+tGPnB4xYkTOtjE8PmfO9JP03XDDDU7XZK28JAr1mCVRSB/m2pbsBWRfIX//iPLeao5PtcmBBx7o9G233eY019D8xS9+4fSJJ56Yc/9cy7AQuP4sHzupliHDz5nnnnuu00uWLKnyvs4++2ynzzrrLKd5nCTBzx9cx1FUDx6L1UW/nAkhhBBCCCFECtDLmRBCCCGEEEKkAL2cCSGEEEIIIUQKSJXnjNltt92cZv8R+w1Wr15d6bbsXWB/Dufcsw+rWbNmTnOOffv27Z0eNGiQ0/vtt5/TXLMt9jOwR4z9QJxbvHLlSqfZq8fXia8jXyuG28q1OXh/HTt2LFvmumYtWrRwmuuUsQ+Ea4HF9xgo7wVi/xsfj7fnvOv4WvM9Zs2+Rr5OSXWLuA/yfeRrx3XQeHu+lnFdNva3sH+G/W6ieNRkjSgA2LJlS879873+1re+5XQ8XoHysTDuhwcddFDObblOIdf2Yu/tu+++6/Rhhx3mNPuPGK49yHWMuI5i7Fk7+uij3Tr26fD44vHNtTFnz57tNNdcYv9JmqjpPlnIsbn/cS09UbeYM2dOzvXsSZs4caLTSTEgjkl///vf3Tr2uB555JFO87MPPz+wH/Kkk07K2RaGvd5JHrP4meG8885z6/L1v3Ht0sWLFzstj1m60S9nQgghhBBCCJEC9HImhBBCCCGEEClAL2dCCCGEEEIIkQJS7TljHxfXuGH/UFxnJskvxLC/oEmTJjnXsxeqf//+Tu+zzz5Oc60h3l/sSWNPGecpc90x9nXw5zmvmq8j07NnT6e5VlmfPn2c5nPp1q1b2TJ797gOGdcGY18V+zr43Plc+TrztYzbBpS/j/HxzQy5YE8Zf57ronEdJPawbN682Wmu0cbH42vFx4/PvU2bNm4dX6euXbvmPLbw8L3gMcX+v2LCHh2u/XfMMcc4zb4w7jfcr2KfGNf+euaZZ5xesGCB04888ojT7BFlTwbH3X79+jnNPgv2155zzjlOc2zq27dv2TJ7MP785z87zV4+jmUcm9iDmuSVyZf4PhfqEcu3rlltetLYNyjqNlzn7Morr3SaPexJDBkypGyZ/Wqsb7rpJqdfffXVvI41dOhQp5N8X9x3r776aqfZVx4/M3DbuD5lko988uTJOdsm0o1+ORNCCCGEEEKIFKCXMyGEEEIIIYRIAalOa3zppZec5qmOOe0k/jk837Qj1p9++qnTPMX73Llzneafrzklk+HPxymaM2fOdOtmzZrlNJ83pwZxGiOnJXIaE18b/rmc00d5ilZO54lT4pKmrudj83Xm1D+eGp+vM6cO8rnyT/88dW587pwSyds2bdrUaZ4qm1Mm+Vw45Yr7LJdA4JIKfO24vfH+uX9zaQlOTxO54fQ8jk2lhFPOJkyY4DSnrO67775OcxojE8eT3/3ud24dpy3y+GM4HnBa4pe//GWnOf02aX8zZsxwetmyZU7fc889ZcsbN27Mue98SZoSPunz+e6/EGo6TZHPlffPsbJ169Zly3yPGKVn5Q8/M9RmfGI4Zpx66qlO9+jRI6/9xd+r559/vlvHpToKhdOuk+BnpeXLlzv9xBNPOJ1UdkCkDx5rNYV+ORNCCCGEEEKIFKCXMyGEEEIIIYRIAXo5E0IIIYQQQogUkGrPGcMeHJ5yNfZx8RSn7E1gD06HDh2c5txiPva0adNyfn7gwIFO9+rVy2n2tMXtmT9/vlvH3iT2C7Hni6fK5nxzbiv7PD755BOnJ02a5PRrr73mNE8ZHfsJ2EPG/ha+D+xNYN8W++nYx8V+PJ6qn31ae++9d6XtYY8Zk+RvY/g6sceMNX8+ya/H/STXulyfFXUb9jXce++9Tl9yySVOc5kFJo43f//73906jiUffvhhzn3xeP3+97/vNHvQ2LvE21988cVO83T3paQ2p5uvbZLOnf24rEXD5ZZbbnH65ptvdpqfT5jY71jTHrPTTz/dafbvM9yvOb5x+Q0hKqPhfpsIIYQQQgghRIrQy5kQQgghhBBCpAC9nAkhhBBCCCFECqhTnjP2Yh188MFOx54drrvC3if2WSTVmGL/D9ffefvtt3Nu36VLF6fZOxXnSrNvI8kfx3WLDjzwQKe5PlbHjh2dZg/b1q1bnV65cmXO9eyni9vDOeDsE2TvE/u2+D7yfWCPyubNm51mjxv76dhXtmnTpkrbxrXp2HPGvgv2hLFmryCfK7eN+xS3j2uqxH2Ujz1v3jyImiOfukJJ9bCSakYlwbHulVdecZpj3c9+9rOcx7vrrrvKlrnPc6xiry8f66STTnL6oIMOcpr7KcN9nv11fDyu2Rgfj7fl8VWohyzfumciQ7HqBjVk0lz3bOrUqU7feeedTn/72992mp8hFi1aVGNt+cUvfuH0kCFDnGbPK/vhOB7m6zHr3r172fJ7772X17aiNJQqPumXMyGEEEIIIYRIAXo5E0IIIYQQQogUoJczIYQQQgghhEgBdcpzxsyYMcPpYcOGlS1v3LjRrUuqp5VUo2rNmjVOsx+I/UOcm/zqq686HdcCA7z/YcOGDW4de8ratWvnNPvXuDYYe8R4fd++fZ1m3wcfj/PVzz777Erby94m9r+88cYbTrMvgz0kXMeMfSKtWrVymj0nO3bscDrpvsew340175vXsxeIa0TxfUryIrHmc4/z4XmsiOKSy+OR5D2q6XpZ7BN7+eWXnY7jJgDst99+Ts+ZM6dsmT0V3OdizwRQPnZwbLviiiucPuaYY5w+7LDDnGaPBx+fr+3DDz9caXu4LePHj3f66aefRiHIY1Y15DErPWn2oP3pT39ymn2m7Fu98cYbq7xvfpbi+PPXv/7VafbjXnnllU6ffPLJTid5Ztm3fuuttzod16jlGq0nnHCC0/zMKYpDbcUn/XImhBBCCCGEEClAL2dCCCGEEEIIkQL0ciaEEEIIIYQQKaBOe86YuKYV17dirwLDtTPYy8R10dhPwN6lbdu2Of3ggw86zZ6z+HhcE43zpLm211NPPeU0++O6devmNNci4rayb+TEE090musDHXXUUU7H58J502+++abTbdu2dTquMwYke8I4H53vC/u6GPb3sE8s5tNPP3Waa93xuXLb2P/G94H9Oexb5GvB+2d/HvsqRf0gXy8T93Hup9dcc43THH/ifsbruE7Z4Ycf7vRll13mNNcZbNasmdMcD/r06eN0165dnX7mmWecXrx4sdMc+2Lat2+fs20tWrRwWh6PmoNjlRCVcffddzv94osvOs11WGPOO+88p9mjeumllzrNnnZm9uzZTrPnjGvKXnvttU5/7Wtfc5rnLojhZ5d+/fo5/dJLL1XeUFHn0S9nQgghhBBCCJEC9HImhBBCCCGEECmgSmmNZrYCwHYAXwD4PIRwsJm1BPAAgK4AVgA4NYSgvA8hRMlQbBJCpBXFJyFEdcjHczYihLA50lcAeCGEcIOZXZHVl9do6/IkrqHFXgj2oLFfh/1E7C9gLxTnzCfVt1i9erXT7Gfo379/2TLnGrN3iH1bXK+HPSnst2NfFa/n43GuM/vzNm/e7HRcR43bxr6r7du352wb13BjneTL4vUMX6t4/9wn+Nhc84nXcx9j2OvHfSiprhl7ZNgDxzXk6jGpj01xrZRCawoVuw7aunXrnN5///3LlrnGENf2+93vfuc099Ek2IPGdYE4jnOs5BptPGbic+UYP3/+fKfT7DHj86rpPlFs+DusntOg4lOxYY/ZqFGjypbHjBnj1nF9W65rli9Jcxfw88txxx2X1/7j5xV+vlixYkVe+xLVJw21FwuJ6KMBTMguTwAwpuDWCCFE4Sg2CSHSiuKTECInVX05CwCeN7OZZjYu+7e2IYT12eUNANpWtKGZjTOzGWY2o8C2CiEEo9gkhEgrik9CiLypalrjsBDCWjNrA2CymS2MV4YQgpmFijYMIdwB4A4AqOwzQghRTRSbhBBpRfFJCJE3VXo5CyGszf5/k5k9BmAggI1m1j6EsN7M2gPYlHMnJWbmzJlOH3zwwU5zTakQfOzjfF+uS8b1eLhexdKlS51mHxd7I+K86alTp7p1jz76qNPsVxs+fLjTa9eudZp9G0metM8++yzneq4FMmnSJKdjzwrnfLP3jj1oDHsp2AfGNZvYC8jnzm1nv03sn+Pz5j7C/hcmV800INmTxn6apDpMXIOlIVAXYxPnsyd5PDi28JhieMyw5vHP4/2UU05x+nvf+17Z8kMPPeTW3X///U5znR/2XEyfPt1p9mmytzfJy8uwX+4Pf/iD02+//XbZMseSpOuaJuqaxywNHo7aoCHEp1Jz1llnOX3BBReULfN45xppzOmnn+70448/7jR/527durWqzawQ3v6ee+5x+p133ilbXrBggVvHcVrUHGmMT4kR3sx2M7OmO5cBjAIwD8CTAMZmPzYWwBPFaqQQQjCKTUKItKL4JISoLlX55awtgMeys+B9CcBfQgjPmdlbAB40s+8CWAng1OI1UwghyqHYJIRIK4pPQohqkfhyFkJYBuDACv6+BcARxWiUEEIkodgkhEgrik9CiOqST52zOs2MGX7Co8GDBzvNfqJ//vOfTrMfgb1NnA/M27M/aMSIEU7HXg3Of+W2dejQwekjjzwy5+fZL8deJ65bxnnR7K169dVXnX7hhRecjn0iXGeM98WeL/Zpse+K13OtML7ufDz277CnJa6Txv4Zvq5J/je+53yufG3YR8I+Rb6Pzz77LETdJ8njwb7MJA8Zw/2I/bTsq/if//kfp+Mx9PTTT7t1e+yxh9M8Ptkfwn62rl27Os1jhM+VPaN8bvfee6/TkydPdprHcF0lbXXOWrVq5fTzzz9fSy0RNU3aPGjsY43rniV5zBh+Drzwwgud5u9o7tccm/n5guPNd77zHafZg19f6Natm9PLly+vpZZUTBo9ZkzdchULIYQQQgghRD1FL2dCCCGEEEIIkQL0ciaEEEIIIYQQKaDBeM6YN99802nOPWZfBnuT2NvEn+dc5R49ejjdpk2bStvGnrL999/f6aFDhzrdpUsXpzmPOcnLxPW82D/A58KeNV4f+yFiDxdQ3pvHfrft27c7zb4trovE2yd53DhHnL0bcc547969c3522bJlTnONJu4T7Mfha8H753ORx6xhwPnwBx7o5xTgPp3kN+J+yLRv395p9tPGfttmzZq5dQcddJDTZ5xxhtM8ftmnyWOCxzOvb9mypdM8RpJ0bXuzCiGOTYcffrhbx168efPmOZ3UB5h8PW3ymDUcSu1BY48Z+5lefPHFsuWePXu6dWPHjnW6V69eOffFcPz4+te/7jQ/OzH8/NO5c2en66vn7PLLL3f61ltvdZpruBWbuuAxY+ruN5UQQgghhBBC1CP0ciaEEEIIIYQQKUAvZ0IIIYQQQgiRAhqs54xhDxp7xLj+DnsvGF4/aNCgnPuPa2qtX7/erduxY4fTXDtj2rRpTj/++ONOc62wQw45xOk+ffo4zXnR7Bs54IADnOZaY7H36v3333fr2PPFsCeFP88eFPa/8bXiuiMM54zHXguuc9auXTunuT4U+zI++OADp9ljxrDPg+vJiYbJnDlznE7yeHA/5HjBnrVx48Y53bhx40r17bff7tZxH+dYs2jRIqfPPvtsp/fcc0+nv/Wtbzl9/PHHO82xiOMB+1M4rsexKmk8po04tnF9uY4dOzq9Zs0ap/k6L1261GnuM0kes7ro4RDFodgetPPPP99pHvOjRo0qW+aar8yGDRuc/sMf/uD03/72N6fXrl3r9H//9387zTUhk7jmmmuc/tnPfub09OnT89pfWnnnnXecvummm5w+6aSTnOYasYVSH+KTfjkTQgghhBBCiBSglzMhhBBCCCGESAF6ORNCCCGEEEKIFCDPWSVwTj7nUbM3ir0WrLkWGddN27x5c9ky14BgX0f8WaC8r4vbzp4T1lz3bNiwYcgF1wZhj1rsd2C/zIwZM5xmTxn7XTi/nL18fO58XdmTxprvY1zzia/7wQcf7DT7MrjuGee383quJ1Vf8s1FcUnyePCY4Tpm7LMcMWJElY/N9azWrVvn9CuvvOL0qlWrnE7yZd5///1Ot23b1umjjjoqZ/u4JtxDDz3k9JQpU8qWuW7gpEmTnOaaioXCnlImyecV+8z4O+KKK65wmus5sX+VPdQrVqxwmn2J9cHDIUpDoR60kSNHOs21DXPB/venn37aaa63lS9//vOfnWYPbZLHnWvI3nbbbU4/8cQTZcs333yzW8e1ddNMHGeB8l7iP/7xj07//Oc/d/q9997L63j1MT7plzMhhBBCCCGESAF6ORNCCCGEEEKIFKCXMyGEEEIIIYRIAfKcVRHOaT3llFOcZi8T5x5v3LjRafY3LFy4sGz5L3/5S862cM0a9piwp4zr+bAXij1qXL+L/QnsleL6X3Fede/evd06rpHGNdn4XNinwb4M9s9wXnaSB439e7Gvg8/bzJzed999ne7QoYPT7Mfhc3nggQcgRKFwbPrmN7/pNMci9nVyfj9//pFHHilbvu6669w69oMk1VRLguPkzJkznY5rGgHlxyTHD/aNDR48uGx5+PDhbt0555zj9CWXXOL0li1bnE7yiOVbOyyJXHXZOFZx7UquizZkyBCnx48f7/SECROq0UIhypOvB+2ggw5ymr/Tua7rPffcU7bM8aLYsG+VnwuT4OeXuP5XHKuA8rXDuGZakqe1lHBbeW4Ajk/33Xef0+y/v+iii5yujx4zRr+cCSGEEEIIIUQK0MuZEEIIIYQQQqQA4zSUoh7MrHQHq2X4p/k2bdo43bx5c6fjFLiVK1fm3HenTp2c5pSWr3zlK07ztMs8PTVPu3zTTTflbOvatWud5rIBcVoU/2zPU+e/8cYbOffNU21/8cUXTi9ZsiTn57ltfPytW7c6Hd+nnj17unWjR492mqco55/yTzvtNDQUQgiW/Kn00pBjE49vToGLxxinNBeb1q1bO/3kk086nW974tQfTjPk70JOneFYw7Fq+fLlTs+fP99pTu3hlFBO3+JYF6dscuy54447nG7RooXTHPd4fX2mrscmoGHFp3yn3q9N+PmC7Sq8vibhZxeevn7x4sVOc8onry8mXMIgqVwTp6vXZyqLT/rlTAghhBBCCCFSgF7OhBBCCCGEECIF6OVMCCGEEEIIIVKAPGclol+/fk7zdNWx34Cnd//000+d7tixo9M8fTR70HjqfJ5KO576Hig/XTZ70jZt2pRz+3j6ap7elX0W7NPgafyTptLnvGue7pq3Z58IX+vYc9atWze3jr04vK8zzzwTDZW67utoyLGJPWj5fCckjc9CYe8BT/nOsYmn7s91LkltZc8Xnyu3jY/FcXvbtm1OsweNPW1xeRXAl+rgcgncFvbedunSBQ2Vuh6bgIYdn+qSB42nhOdSQrUJl+Lg+MTPXmvWrHGa49X69eudjmNv586d3bqhQ4c6zXMRNCSPGSPPmRBCCCGEEEKkGL2cCSGEEEIIIUQK0MuZEEIIIYQQQqQAec5SwgknnFC2zPVxOFe4e/fuTnOuMHvOODeYawOx/+344493ev/993eaa7bFXghev2PHDreOvQ/s2+JaP+ynY3/bRx99hFywT4R9HytWrHA69uN9/PHHbl18j4Snrvs6FJsqZ9SoUWXL7NFMgscrb5+vZ439J2PHjnWa/XMc69iTlg/8XZnkk0j6PK///PPPnea4Hl8bvm7NmjXL2ZaGTF2PTYDiUy7S5EnjGrRXX3210/3793e6pj26aaUhe8qSkOdMCCGEEEIIIVKMXs6EEEIIIYQQIgVU6eXMzJqb2cNmttDMFpjZIWbW0swmm9mS7P9bFLuxQggRo9gkhEgrik9CiOpQJc+ZmU0A8FoI4c9mtiuAJgB+AmBrCOEGM7sCQIsQwuUJ+1HedA1w7LHHOr1x40an2ae1bt06p7nGBNc9a926tdPscWvatKnTI0eOdHrQoEGVHrt9+/Y528r1ef7xj384zTXeuFYHa/brcS0hvpaietSWr0OxKV187Wtfc5o9pDwe84W9C3vvvbfTHF+uv/56p5s0aVLpvpP8H/xdmeQpS/KYcR019rjKR1Yz1KbnTPEpXdS2P+2cc85x+vvf/77TdcmDJh9ZzVBtz5mZNQNwGIA7szv6LISwDcBoABOyH5sAYExNNFQIIaqCYpMQIq0oPgkhqktVXtO7AXgfwN1m9raZ/dnMdgPQNoSwcxrADQDaVrSxmY0zsxlmNqNmmiyEEAAUm4QQ6UXxSQhRLarycvYlAAMA3B5C6A9gB4Ar4g+ETL5GhT+7hxDuCCEcHEI4uNDGCiFEhGKTECKtKD4JIapFoufMzNoBeDOE0DWrD0UmwPQA8LUQwnozaw/g5RDCvgn7Ut50LcB1yho1auQ0+0K4NlGLFt6vPHfuXKeHDBni9NChQ8uW2d/WsmVLp9kzwn42rovEvgyuc8Y12kRpqA1fh2JT3adQDwh7yLg2WOfOnZ0eM2ZM2XLPnj3duj322MPpffbZx2n2gyR5xrjGI7dFlIZa9MMqPtVxiu1R47poI0aMKFseNmyYW7fbbrs5zfGL/fv5Ig9Z7VBtz1kIYQOA1Wa2M3gcAWA+gCcB7KwAOhbAEzXQTiGEqBKKTUKItKL4JISoLlV91b4AwMTsbEPLAHwbmRe7B83suwBWAji1OE0UQohKUWwSQqQVxSchRN5U6eUshDAbQEV5z0fUaGuEECIPFJuEEGlF8UkIUR2qVOesxg6mvOkGwQUXXFC2/Lvf/a4WWyJKRW3WEqoJFJsaBmeeeWbZ8sSJE2uxJaJU1PXYBCg+NRRij9usWbNqsSWiVFTbcyaEEEIIIYQQovjo5UwIIYQQQgghUoBezoQQQgghhBAiBZTac/Y+MrMTtQKwOeHjtYXaVj3UtupRH9q2VwihdbEbU0wUmwpGbaseaW4bkO72VaVtdT42AYpPNYDaVj3UtupR8LNTSV/Oyg5qNiOtVe/VtuqhtlUPtS1dpPmc1bbqobZVnzS3L81tKxZpPme1rXqobdWjvrdNaY1CCCGEEEIIkQL0ciaEEEIIIYQQKaC2Xs7uqKXjVgW1rXqobdVDbUsXaT5nta16qG3VJ83tS3PbikWaz1ltqx5qW/Wo122rFc+ZEEIIIYQQQgiP0hqFEEIIIYQQIgWU9OXMzI42s0VmttTMrijlsStpz11mtsnM5kV/a2lmk81sSfb/LWqhXZ3N7CUzm29m75rZRSlqWyMzm25mc7Jtuzb7925mNi17bx8ws11L3baojbuY2dtm9nQK27bCzOaa2Wwzm5H9W63f12w7mpvZw2a20MwWmNkhaWlbKUhTfEprbMq2Q/GpsDamMj4pNqUXxaYqt02xqbA2Kjbl37aixKaSvZyZ2S4A/hfAMQD6ADjdzPqU6viVMB7A0fS3KwC8EELoCeCFrC41nwO4JITQB8BgAN/PXqs0tO1TAIeHEA4E0A/A0WY2GMBvANwcQugB4AMA362Ftu3kIgALIp2mtgHAiBBCv2iq1TTcVwC4FcBzIYReAA5E5hqmpW1FJYXxaTzSGZsAxadCSXN8UmxKGYpNeaHYVBiKTflTnNgUQijJfwAOATAp0lcCuLJUx8/Rrq4A5kV6EYD22eX2ABaloI1PABiZtrYBaAJgFoBByBTc+1JF97rEbeqUHQyHA3gagKWlbdnjrwDQiv5W6/cVQDMAy5H1oaapbSU6/9TFp7oQm7JtUXyqeptSG58Um9L5n2JTQe1UbKp6mxSb8m9X0WJTKdMaOwJYHek12b+ljbYhhPXZ5Q0A2tZmY8ysK4D+AKYhJW3L/vQ9G8AmAJMBvAdgWwjh8+xHavPe3gLgMgD/zuo9kZ62AUAA8LyZzTSzcdm/peG+dgPwPoC7s2kNfzaz3VLStlJQF+JT6u6F4lPe3IL0xifFpnSi2FQNFJvy5hYoNuVL0WKTJgTJQci89tbadJZmtjuARwBcHEL4KF5Xm20LIXwRQuiHzL+0DATQqzbawZjZcQA2hRBm1nZbcjAshDAAmRSV75vZYfHKWryvXwIwAMDtIYT+AHaAfoqv7fEg/kMa7oXiU37Ugfik2CQKJg33QrEpPxSbqk3RYlMpX87WAugc6U7Zv6WNjWbWHgCy/99UG40wsy8jE1wmhhAeTVPbdhJC2AbgJWR+7m5uZl/KrqqtezsUwAlmtgLA/cj8PH9rStoGAAghrM3+fxOAx5AJ0Gm4r2sArAkhTMvqh5EJOmloWymoC/EpNfdC8alapDo+KTalFsWmPFBsqhaKTdWjaLGplC9nbwHomZ39ZVcApwF4soTHrypPAhibXR6LTM5ySTEzA3AngAUhhJtS1rbWZtY8u9wYmXzuBcgEmpNrs20hhCtDCJ1CCF2R6V8vhhDOTEPbAMDMdjOzpjuXAYwCMA8puK8hhA0AVpvZvtk/HQFgfhraViLqQnxKxb1QfKoeaY5Pik2pRrGpiig2VQ/FpupR1NhUk+a4pP8AfB3AYmTybK8q5bErac9fAawH8C9k3oC/i0ye7QsAlgD4O4CWtdCuYcj8DPoOgNnZ/76ekrb1BfB2tm3zAFyd/fveAKYDWArgIQBfqeV7+zUAT6epbdl2zMn+9+7OMZCG+5ptRz8AM7L39nEALdLSthKdf2riU1pjU7Ztik+FtzNV8UmxKd3/KTZVuW2KTYW3U7Epv/YVJTZZdudCCCGEEEIIIWoRTQgihBBCCCGEEClAL2dCCCGEEEIIkQL0ciaEEEIIIYQQKUAvZ0IIIYQQQgiRAvRyJoQQQgghhBApQC9nQgghhBBCCJEC9HImhBBCCCGEEClAL2dCCCGEEEIIkQL+H5GUBuTEJhG5AAAAAElFTkSuQmCC\n", "text/plain": [ - "HBox(children=(HTML(value='Testing'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), max=…" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "bin_factor set to 1.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "DATALOADER:0 TEST RESULTS\n", - "{'Mean PSNR': array(26.002174377441406, dtype=float32),\n", - " 'SEM PSNR': array(0.018735822290182114, dtype=float32),\n", - " 'Train/avg_bin_mse': tensor(0.0074, device='cuda:0'),\n", - " 'Train/avg_val_amp_loss': tensor(6.7612, device='cuda:0'),\n", - " 'Train/avg_val_loss': tensor(8.9109, device='cuda:0'),\n", - " 'Train/avg_val_mse': tensor(0.0393, device='cuda:0'),\n", - " 'Train/avg_val_phi_loss': tensor(1.2357, device='cuda:0'),\n", - " 'bin_mse': tensor(0.0075, device='cuda:0'),\n", - " 'val_loss': tensor(8.9044, device='cuda:0'),\n", - " 'val_mse': tensor(0.0393, device='cuda:0')}\n", - "--------------------------------------------------------------------------------\n" - ] } ], "source": [ - "test_res_best = trainer.test(model, datamodule=dm)" + "plt.figure(figsize=(15,5))\n", + "plt.subplot(1,3,1)\n", + "plt.imshow(fbp_img, cmap='gray', vmin=y_real[0].min(), vmax=y_real[0].max())\n", + "plt.title('Filtered Backprojection');\n", + "plt.subplot(1,3,2)\n", + "plt.imshow(pred_img[0].detach(), cmap='gray', vmin=y_real[0].min(), vmax=y_real[0].max())\n", + "plt.title('Prediction');\n", + "plt.subplot(1,3,3)\n", + "plt.imshow(y_real[0], cmap='gray')\n", + "plt.title('Ground Truth');" ] } ], diff --git a/examples/LoDoPaB - TRec Example.ipynb b/examples/LoDoPaB - TRec Example.ipynb new file mode 100644 index 0000000..eb0c71b --- /dev/null +++ b/examples/LoDoPaB - TRec Example.ipynb @@ -0,0 +1,385 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from fit.datamodules.tomo_rec import LoDoPaB_TRecFITDM\n", + "from fit.utils.tomo_utils import get_polar_rfft_coords_2D, get_polar_rfft_coords_sinogram\n", + "from fit.utils import denormalize, convert2DFT\n", + "from fit.modules import TRecTransformerModule\n", + "\n", + "from matplotlib import pyplot as plt\n", + "\n", + "import torch\n", + "\n", + "import numpy as np\n", + "\n", + "from pytorch_lightning import Trainer, seed_everything\n", + "from pytorch_lightning.callbacks import ModelCheckpoint\n", + "\n", + "import wget\n", + "from os.path import exists" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "22122020" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "seed_everything(22122020)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "dm = LoDoPaB_TRecFITDM(batch_size=4, gt_shape=111, num_angles=33)\n", + "# FIT: TRec + FBP vs FIT: TRec\n", + "with_fbp = True\n", + "\n", + "dm.prepare_data()\n", + "dm.setup()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "angles = dm.gt_ds.get_ray_trafo().geometry.angles\n", + "det_len = dm.gt_ds.get_ray_trafo().geometry.detector.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "img_shape = dm.gt_shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "proj_r, proj_phi, src_flatten = get_polar_rfft_coords_sinogram(angles=angles, \n", + " det_len=det_len)\n", + "target_r, target_phi, dst_flatten, order = get_polar_rfft_coords_2D(img_shape=img_shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "n_heads = 8\n", + "d_query = 32\n", + "model = TRecTransformerModule(d_model=n_heads * d_query, \n", + " sinogram_coords=(proj_r, proj_phi),\n", + " target_coords=(target_r, target_phi),\n", + " src_flatten_coords=src_flatten, \n", + " dst_flatten_coords=dst_flatten, \n", + " dst_order=order,\n", + " angles=angles, \n", + " img_shape=img_shape,\n", + " detector_len=det_len,\n", + " loss='prod', \n", + " use_fbp=with_fbp, \n", + " init_bin_factor=1, \n", + " bin_factor_cd=5,\n", + " lr=0.0001, \n", + " weight_decay=0.01, \n", + " attention_type='linear', \n", + " n_layers=4,\n", + " n_heads=n_heads, \n", + " d_query=d_query, \n", + " dropout=0.1, \n", + " attention_dropout=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: True, used: True\n", + "TPU available: None, using: 0 TPU cores\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" + ] + } + ], + "source": [ + "trainer = Trainer(max_epochs=350, \n", + " gpus=1,\n", + " checkpoint_callback=ModelCheckpoint(\n", + " filepath=None,\n", + " save_top_k=1,\n", + " verbose=False,\n", + " save_last=True,\n", + " monitor='Train/avg_val_mse',\n", + " mode='min',\n", + " prefix='best_val_loss_'\n", + " ), \n", + " deterministic=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Uncomment the next line if you want to train your own model. \n", + "# trainer.fit(model, datamodule=dm);" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "if not exists('./models/trec_lodopab/lodopab_trec.ckpt'):\n", + " wget.download('https://cloud.mpi-cbg.de/index.php/s/PBGWkv9qCFFRW5z/download',\n", + " out='./models/trec_lodopab/lodopab_trec.ckpt')\n", + " \n", + "if not exists('./models/trec_lodopab/lodopab_trec_fbp.ckpt'):\n", + " wget.download('https://cloud.mpi-cbg.de/index.php/s/utoq7YHxITd8VJy/download',\n", + " out='./models/trec_lodopab/lodopab_trec_fbp.ckpt')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "if with_fbp:\n", + " path = './models/trec_lodopab/lodopab_trec_fbp.ckpt'\n", + "else:\n", + " path = './models/trec_lodopab/lodopab_trec.ckpt'" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model = TRecTransformerModule.load_from_checkpoint(path, \n", + " sinogram_coords=(proj_r, proj_phi),\n", + " target_coords=(target_r, target_phi),\n", + " src_flatten_coords=src_flatten, \n", + " dst_flatten_coords=dst_flatten, \n", + " dst_order=order, angles=angles, strict=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/tibuch/Applications/miniconda3/envs/fit/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 8 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " warnings.warn(*args, **kwargs)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "08d1ef7a02d649e0853c45dffca2da6a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(HTML(value='Testing'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), max=…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bin_factor set to 1.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/tibuch/Applications/miniconda3/envs/fit/lib/python3.7/site-packages/torch/nn/functional.py:1628: UserWarning: nn.functional.tanh is deprecated. Use torch.tanh instead.\n", + " warnings.warn(\"nn.functional.tanh is deprecated. Use torch.tanh instead.\")\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--------------------------------------------------------------------------------\n", + "DATALOADER:0 TEST RESULTS\n", + "{'Mean PSNR': array(30.975671768188477, dtype=float32),\n", + " 'SEM PSNR': array(0.031926125288009644, dtype=float32)}\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "test_res = trainer.test(model, datamodule=dm)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "for x_fc, fbp_fc, y_fc, y_real, (amp_min, amp_max) in dm.test_dataloader():\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "model.cpu();" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/tibuch/Gitrepos/FourierImageTransformer/fit/modules/TRecTransformerModule.py:357: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at /opt/conda/conda-bld/pytorch_1607370128159/work/aten/src/ATen/native/Copy.cpp:162.)\n", + " pred_fc_[:, :tmp.shape[1]] = tmp\n" + ] + } + ], + "source": [ + "pred_img, pred_img_before_conv = model.get_imgs(x_fc, fbp_fc, y_fc, amp_min, amp_max)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Before the projection we normalized the image, now we undo this for the visualization.\n", + "# After denormalization we set all pixels outside of the projection-area to zero\n", + "pred_img = denormalize(pred_img, dm.mean, dm.std) * dm.__get_circle__()\n", + "y_real = denormalize(y_real, dm.mean, dm.std) * dm.__get_circle__()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "dft_fbp = convert2DFT(x=fbp_fc[:,model.dst_flatten_order], amp_min=amp_min, amp_max=amp_max,\n", + " dst_flatten_order=model.dst_flatten_order, img_shape=model.hparams.img_shape)\n", + "fbp_img = torch.roll(torch.fft.irfftn(model.mask * dft_fbp[0], s=2 * (model.hparams.img_shape,)),\n", + " 2 * (model.hparams.img_shape // 2,), (0, 1))\n", + "\n", + "fbp_img = (fbp_img - fbp_img.min())*y_real.max()/(fbp_img.max() - fbp_img.min())\n", + "fbp_img = fbp_img * dm.__get_circle__()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAElCAYAAAB3ZgriAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aZRs2XUeBn43MmPMiJzzjfVQVagCCsArEEARBQggQRCcTJGy5aWWKVlstdRSm+Zyt4dldWvqVlu2JZt2d9tSL9mWqJZldVvLlGxrokxZFE1Ry4RIUBxBYiBQpECCQBVqeEPOGTnc/pH53fziy31u3MjhvXzv3b1WrIi4wzn7TPvsb+99zsnyPEdNNdVUU0011VRTTTXVVFNNl5MaD5uBmmqqqaaaaqqppppqqqmmmtJUg7aaaqqppppqqqmmmmqqqaZLTDVoq6mmmmqqqaaaaqqppppqusRUg7aaaqqppppqqqmmmmqqqaZLTDVoq6mmmmqqqaaaaqqppppqusRUg7aaaqqppppqqqmmmmqqqaZLTDVoe0iUZdl6lmVvP/r932RZ9mceIi8/kWXZ/+EB5/nNWZb91gPK6y9mWfanHpV0a6qpposjlbdZln0sy7JfPWU69fivqaaaHihlWfZMlmV5lmXTDyHvL2VZ9m0POt+ajqkGbRdMR5186wik8XMjz/N+nue/Hjz/wMBMFcqy7E9nWbYrvH8uy7L/zcPmaxLK8/z78zz/D8+SRpZlfzDLsp8873RrqqmmmEx2fu0IbPXPM488z//XPM9fqMBLPf5rqukJoSzLfm+WZZ/Ksmwjy7LXj37/G1mWZQ+btzIyPfPAdM/vnTCth+pMqCmmGrQ9GPoXj0AaP1+9qIwuyPryN8g7gH8HwH+bZdnVC8jnVJRl2dTD5qGmmmq6EPoXj+TOSwA+COD/pjcfhrW5pppqenwpy7I/AuDPA/h/ALgG4CqA7wfwDQBaiXcuhQ6ieiaA38So7vnX+VwtNx9dqkHbQ6Ij9/bzdm0GwD8AcEO9clmWNbIs++NZlv1almVvZVn2N7MsWzx6h67yP5xl2W8C+PGj63/oyCt2N8uyf5hl2dOSz7dnWfb5LMvuZ1n2FwBUth7lef4PAawBeO4orYUsy/5+lmVvHOX197Mse0ryWsyy7K9mWfbVo/t/J1Ef/1aWZZ/NsuwpehuzLPuTWZa9eWRx/1559r/Jsuy/yrLsR7Is2wDwiSzL3n0U5nkvy7LPZFn2L9nzf0b+/44sy37x6Nl/mmXZ18m9W1mW/a2j8ryVZdlfyLLs3QD+IoCPHLXJvUS6/1qWZa9kWXYny7K/l2XZDbmXZ1n2/VmWffEo3//islvtaqrpslCe51/BoWx88Wgs/R+zLPsigC8CY8f0B7Is+/ksy9ayLPsbADpybySyoR7/NdX05FKWZXMA/gMA/0ae5/9Dnudr+SH9Qp7n35vn+c7Rc5PqICNLUDLz3JfJhyzLprIs+38e6UK/DuC7T1Eu6lR/LMuy1wD8VedB+Hg+y7LvA/C9AP7okcz7YXns/VmWfTo71B//RpZlHdT0wKgGbZeI8jzfAPDbAXzVvHL/JoB/GcDHAdwAcBfAf2GvfxzAuwH8C1mW/U4AfxLA7wKwAuB/BfDfAUCWZcsA/hYOLdbLAH4NhxaksZQd0nfj0Nr02aPLDQB/FcDTAN4GYAvAX5DX/n8AegBuA7gC4D8P0v2/A/iDAD6e5zkVqGtH/N0E8AcA/GCWZRrG9PsA/FkAAwCfAvDDAH70KI9/E8Bft+eZ1wcA/NcA/nUASwD+EoC/l2VZOzu0lv19AL8B4JmjvH8oz/PP4dDS9lNHbTIfpPstAP5jAN8D4PpRGj9kj/0OAC8D+Lqj5/4FT6emmmo6SVmW3QLwXQB+4ejSvwzgwwDeM2ZMtwD8HRzKoUUA/z2AMLy7Hv811fTE00cAtAH83QrPnkoHKaGUfPjXju59AIfRBr97gjSVruFQBj4N4PvKHszz/AcB/HUA/+mRzPsX5fb3APhOAM8e8foHT8lPTaegGrQ9GPo7R9aTe1nC0zSGvh/A/zXP8986svT8aQC/Oxt1cf/pPM838jzfOnr+P87z/HN5nu8B+I9waB15GoeKz2eOrEi7AP4cgNfG5P89R9bldQB/D8B/lOf5PQDI8/ytPM//xzzPN/M8X8OhEPs4AGRZdh2HIPT78zy/m+f5bp7n/0TSzbIs+88AfAeAT+R5/obl+6fyPN85eud/wqGwIP3dPM8/mef5AYD3A+gD+IE8z4d5nv84DpWvfzUoy/cB+Et5nn8qz/P9PM//GoAdAL8NwIdwCIr/L0d1uZ3n+U8GaUT0vQD+6zzPf/6ojf4EDi3zz8gzP5Dn+b08z38TwD8+4rummmpK0985kj0/CeCf4FCWAYfy7c6RvCsb078NQBPAnzuSP/8DgH+WyKse/zXV9GTTMoA3j/QmAMCR5/5edrg+7Jvk2dPqIClKyYfvwaH8+nKe53dwaBw6DR0A+PeOdKqtU6YBAP/vPM+/esTLD6OWYw+U6rjWB0P/cp7nP3aG958G8LezLDuQa/s4jLUmfdme//NZlv2/5FqGQ8vxDX02z/M8yzJ9N6K/mef5/xY4DMcE8PezLLuf5/lfyrKsh0Pv2XcCWDh6fnBktb4F4E6e53cT6c7jUOH6PXme37d7d488j6TfOOI9Ku8NAF8+Ep76/M0gz6cB/IEsy/5NudY6SmMfwG+owJ6AbgD4ef7J83w9y7K3jnj40tFlBcebOBTyNdVUU5pOyM6jqCGXd6kxnQP4Sp7nudz7jURet1CP/5pqepLpLQDLWZZNUw7kef5RADgKo1ZHx2l1kBSl5MOIzoa0/BpHb+R5vn3Kd5WczxupB2s6f6o9bZeP8uDalwH89jzP5+XTOVrnEb33ZQD/uj3fzfP8nwJ4FYfKCYBDV5f+H8tcnn8Jh2tL6C7/IwBeAPDhPM9nAdASlR3xsZhl2Xwiubs4dPv/1SzLPERzITtc40d6GwDdwEXL+1UAt7Isa9jzWj+kLwP4s1Y3vTzP/7uje2/L4kW6UbsofRWHyiOAYn3iUoKHmmqq6Wzk8i41pl8FcNPWj70tkWY9/muq6cmmn8Khl/53Vnh2Eh1kA4fLREjXJuBpRGdDWn6NI5dhIzxlWeY8jZN5NT0EqkHb5aOvAVg6WhBL+osA/uxReCOyLFs5WreWor8I4E9kWXb76Pm5LMv+laN7/xOA21mW/a4j5eTfwgQCJDvcZOQ7AXzm6NIAh+vY7mWHm6P8e3w2z/NXcQjw/svscMOSpoUXIM/zn8BhaNHfyrLsQ5bdv59lWSvLso/hENz99wm2PoVDi88fPcrjm3EIKn1NCQD8ZQDfn2XZh4/W6M1kWfbdWZYNAPwMDgXkDxxd7wiY/BqAp47WyET03wH432dZ9v4sy9o4DOP61BHIrammmi6Oysb0TwHYA/BvHcmG34XDMMiI6vFfU01PMB0t+/j3caiz/O4sywbZ4UZw7wcwU/LqOB3kFwH8rizLetnhBnR/eAK2/iYO5ddTWZYtAPjjE7xbRr+EQ13w/dnhZiJ/2u5/DcDbzymvms6JatB2ySjP88/jUAH49aM46hs43H727wH40SzL1gD8NA4X4afS+NsA/hMAP5Rl2SqAX8Hh2jLkef4mgH8FwA/gMBTgHQA+OYat35Md7WaJw/Ugn8ShYAMO18R1Abx5xNf/bO/+fgC7AD4P4HUcHhng/P4jAH8IwA9nWfbS0eXXcOiJ+yoOF8R+/1HdROUd4lBA/vYjPv5LAP+76Pk8z38Whwt7/8JR+q/gaCFtnuf7R+k8j8Ptcn8LwO85evXHcQhUX8uy7M0g3R8D8KcA/I84VPyeA/B7I35rqqmm86MxY3qIww2Z/iCAOzgcz38rkU49/muq6QmnPM//UwD/LoA/ikPg8jUcbm70xwD808Q743SQ/xzA8Citv4ZDnaYq/WUA/xCHIOvnkZBfk1Ke51/A4U6ZP4bDXXh9/e5fweFGT6fdi6GmC6BsNNS/ppoePh1Zqf7bPM+fGvNo1fT+vwBeyfP8PziP9GqqqaaaaqqppppqqulBUu1pq+mxpqMQ0BcA/POHzUtNNdVUU0011VRTTTWdhmrQVtPjTq8BuIfDsKWaaqqppppqqqmmmmp65OhCQFuWZd+ZZdmvZln2SpZl57VosqYnhPI8/4nzCo3M83w5z/N/Ic/zzfNIr6ZHn2r5VFNNNV1GqmVTTTXVVEbnvqbt6HyuLwD4dhwu5P5nAP7VPM8/e64Z1VRTTTVNSLV8qqmmmi4j1bKppppqGkcX4Wn7EA43ffj1ox11fgjVzryoqaaaarpoquVTTTXVdBmplk011VRTKUWHiJ6VbmL09PbfQsn29ACQZVm9heUlotFzaMuvV/XUZlmGwWCAbreLzc1NrK+vV353Eqp3Q71clOd53JkeHk0kn2rZdLkoJZvOmubMzAy63S62trawsbFRy6Yng97M83zlYTMhVOtOjzhlWXYhMmp2dha9Xg8bGxtYW1s79/TzPK/l0yWjlO50EaCtEmVZ9n0Avu9h5V9TTN1uF1//9V+PlZUVTE9Po9FojAiiqakpAMD+/n7xvb+/j4ODAxwcHIRCq9lsotFo4Pr161hcXMSdO3fw2muvFYJChQXfPTg4KK7neT6SLq/z2u7uLvb29vDGG2/gF3/xF7G9vX2BNVTT4061bLqcRNm0vLyMqampQjYBo8rSwcEBAIzIpUiWZFlWpLO0tIS5uTncv38fb7311ki+KqOYtt4rU9L29/exu7uLO3fu4Bd/8Rexs7NzPpVR03nQbzxsBk5DtXy6nNTr9fDRj34UKysrI7IpJTuqUqPRwJUrVwrd6fXXXy/SajTKg+U8T31e77322mv46Z/+aWxtbZ2Kx5oeHF0EaPsKgFvy/6mjayOU5/kPAvhBoLYWPUgaZwVqNpu4efMmbt26hWaziWazOaLkTE8fdpn9/X3keY7hcFgAt729vRMgL8uyArS1Wi1MT09jcXERc3NzyPN8RKFSHqlsAaMgzanRaGB3dxc7OztotVr4zGc+M1Yxqi1KTzSNlU+1bHo4VEU23bhxA7du3SoMSipvqJBQNu3t7eHg4AB7e3shaGs0Gpienh6RVwsLC1hYWBjJV9/1b/4mH/7M3t4ehsMh2u02PvOZz2A4HJaWsZZNTzTVutMlpnHyqdVq4datW3j22WdPPFvVkxW9p9cXFhYwPz8fPpt619OJ5FS73cbP//zPjzV41/Lp4dNFgLZ/BuAdWZY9i0OB83sB/L4LyKemCWl6ehrvec97sLS0VFw7ODgovGbAoWK0uLiIZrN5QjGampoqPG3NZhPAobJCxWhvbw/A6MBWwMf/TCPP80LRcoFDMEdgp8+o0tVoNApwee3aNXz4wx/GcDgseOYzpNdffx2f+cxnCl5reuKolk+XkKanp/Gud70Ly8vLAHBi7Od5jlarhfn5+WJMq7dNQRsNS7u7uzg4OMD09HQB5DwawGVJSilJWctdNqmsIY9TU1O4cuUKPvzhD2NnZwdTU1Mj+VLWvfHGG/jVX/3VWjY9uVTLpktKzWYTt2/fxtWrV0MZkWUZWq3WiG5FKgM644DgpEtV9LqCM3+P9/i9sLCAb/qmb8LOzs4JDyHpa1/7Wq07XQI6d9CW5/lelmX/JwD/EMAUgP86z/PPnHc+NU1OzWYTL7zwAt75zncWisL+/j6Gw+GIxbjb7WJ6erpQOKh8EHDR48b/tCZPTU2dAIEATggSVbD0GjBqxaZCpAAOOFbK6ME7ODjA1NQUlpeX0e12ked5ATgVaGZZhs997nO1YvQEUy2fLidNT0/jHe94xwnZpDKAihEBln4UNFFGNRqNkSgA9d478flxluSpqakTHjZNU/OmfJyenkaz2cTMzMzIM5RRlJlf+MIX8Gu/9mu1bHpCqZZNl5emp6fx7ne/G+9+97tLn5vEw+ZLSVKeMU93nDfO86jiHZufn8fLL78c3uP7n/3sZ2vd6RLQhaxpy/P8RwD8yEWkXdN4WllZwfXr1wsFBjgcvO12G1euXEGn0ykUmL29vSIcUcGWW7o9/IfEECMXOCqs/DcpsnirRdsVIg9x0vfo+SMvBIUEnayL5eVlvP/97y/COqkc7u/v4/XXX8edO3fOVPc1XX6q5dPDo5WVFVy9erUALqR2u43l5WW0Wq1CNqmHjLJJjT0uZ1xp4bN5no/kN6nlO6WI8eNySqMLlF+VTR55MDU1haWlJbz44ovY3d0tysu6qGXTk0G1bHq4dPXq1UJ3Ih0cHKDdbhdhiZNSWdhi9D+icWtnPa0qz1Yl9ca9733vKyIYgGOj1Ve/+lW8/vrr55ZnTWl6aBuR1HRx9Oyzz+JjH/sYms0mOp1OoTxMTU0V68r29vYKCzSVBF1vQaVBhYWGF/E6vV4kCjuCQFVmdP2aKzVudcqyDPv7+yPWb7W687qGWwKHceVUplQhorX76aefxtWrV7G3t4ednR3s7+9je3sbu7u7+Omf/ulaMaqppgukp59+upBNNLSo4YXeegCFUUnXpfFZlUNKBHs69vmOyjTKojKQ5oYhkoJI8hCFIVFGqTeN7wMYiWJoNBq4desWVlZWcHBwUMjk3d1d7O7u4md+5mdq2VRTTRdMzz33HD7xiU+EG4monkFKGYJSIZSR4TlFZR61KH3X1fisy66UzIp4Ul3v2rVr+I7v+I6Qlx/7sR+rQdsDohq0PaLUarWwsLAwYkHmAF1cXESr1So+Gs7IbyoUU1NToRUbOFZuNDxRrdcETwrA9Bn3lkUetygOW3+7Z67sfV0j4mUg6YYo5JH1sry8jKeeeupEXe/t7eHOnTtjNxGoqaaaRmUTMDqmKZtoRFGvlAIsEq9FGxa5p415Ue7wv8snNT55epGCUxXYjeOLsjalrDUaDbTb7RG5SYPT0tISbt68eYLf/f193L17t5ZNNdVUkejVd4MzACwtLRU6UxXP/EVRSkaMA3pVPXJl72te+l/3B3DQtry8jKeffvpEXe3v7+PNN9+sd809R8oeRoc8wUS9A9LEdPXqVXzTN30TZmZmRizLWZah3++j3+8Xm3ToOg8+SzBGbxs9bb7bGoCRXSSjtW3uDaOVeHt7e8TCrNZ1kqenlnR66siPhm8ybxWw+/v72NnZGXlWPW2tVqt43634+/v7WFtbw9bW1gmht7a2hh/7sR/Da6+9dr6N+ARQfvnOaZuIatk0OalsciDW6/XQ6/VGQJvKAMoSDd8GMDJWlTQEnAYkNUyp4pXneSFLdnZ2Thhzop1vNRqA9ymX1GPnfNFryDQ0bz6rYdtuxfcdMDc3N7G9vT1irNrb28PGxgb+yT/5J/ja17529oZ78ujn8jz/4MNm4ixUy6fJ6amnnsJ3f/d3YzAYnDDqdjod9Hq98L3Imz6ONOpnUk+b5hl5zDwUMuKP93TDpMj4PY7GgUjKJ6e1tTX8g3/wD/CVr5zYBLWmMZTSnWpP2yNC7Xa7ACgAMDc3h7m5OfT7/RNKD5UWJ7c4pzxkSpHV2D1mkbeL6ZWFDURu/nFW7ZSnTT8aApB6Vq1G/J6ZmQmtbFNTU5ifnx85w2RnZ6c+D66mmnAsm4DDMTo3N4fZ2dnCcAQcA55UiJF++DyAEe8Ux6x67tXbr4Yjl2VMl+lpNIBS5G2LyD1sqfW3XsYoDSW1ZFP2ZFmGbrdb1LF6C6enpzE3N1fIpjw/PIaltmzXVNMhdTodtNvt4v/8/Dzm5+fR7/cBpMe4gyJSJB+qeMBSaZwXRfpUlPdFULfbRbfbPXF9amoKc3NzWF9fL67VutPZqAZtjwBlWVbsXETFpdPpYGlpqVBCVNmgt0st1wpCdNtrDWGih4rP0KJMJccVD1WE1FJN75uuSdN0FegxREG33Nbt+pVnUiSENNzTFTgNgfRwKX3Xd6PjM9PT0/jWb/3WYg0cAPzyL/8yfu7nfu6hhE7UVNNlIZVNwHH48fz8/AhAc1AWjZvIy8U0+Q7lhu9Qy3dIHPM6pt3irZ4s5Ykg0Y1AzEMBml7nzpIaeqnXyYNv3KReQY9a4G+Va/ru3NwcPv7xj4+cl/m5z30Ov/RLv1TLppqeeMqyDO973/vw3ve+txibvV6vABhVQI6PVb2e8piljNplfEbes0nJ5aunV5buJHmWlVnv9Xo9fPzjHx8BabXudDaqQdslJY235q6Ht27dGlm47jsc6e8sy0YAi3rMfAA7iCHAUtJ1FlSa1PLtaannLhJ0vpmIkocEuKctZbXyZzU//a2KWFQH7o2bmprCtWvXCiCa5zleffVVNJvNEYUvUiRrqulxI11H22g0sLS0hFu3bo3IEFJK4fFnImMQ0/fQnpS8iNKLlJboUyZXyrxtLpvIc5lnLWWp9/RUtrqc1WeuXbuGLMuKXd1ee+21QjYpEK2ppieBVD5Rd3r66acBXMzuipOEOka6TFVeJgFgD5OUT+pO/A9gRD7x+Vo+VacatF1Cmpubw8svv4zBYFAAtOvXr4/EYOsEH+2kxkGwu7tbrNnSMEp+FOBRgERWXQVyzNvBGoARy/b09DQODg6KdXVOWhb3wClwUsuzKlm6Xs6VJgWHmp96+9RDqWtjnEfgeCJg+OS73vUudLvdYh3d2toaPv3pT4+EAdRU0+NGc3NzeOmllzA7O1uM82vXriUt19EGIhyTuimHGlM4FnVs6rjlc74bY3QGmwIoNcrweTVCeXhlim+mS1KDmL6TAqMqn8YBQz8yIHXWHGUTALzwwgvo9/vY29vD9vY2Njc38ZnPfKaWTTU99jQ3N4cPfvCD6Pf7xZiPNhcjReMvMgq5sdefiwBVavynwFZVL1gVD9UkgC7FZyoaQu+VlSkFkN/+9rej3W4X91dXV/FzP/dzWF1drczzk0w1aLuE1Ov18OKLL+LKlSsF4KHg4DbQSnofGFWKNLSR1xS4ufcMwEjIpA7SyKPm60zcUqzppRQ4erAURLo1n+RC0T2JqedIrmBFoU/undM0eej4zZs3ceXKFQyHQ6yvr+ONN97AF7/4xVoxqumxJsqmlZWVE2etEfjo2PGxqd9uhPH1bwquot0gSR4FoDLBPfo+vnVtmxp5VNapDNA1dHw/2omyTDGL7nGnyIicfz7vaaqBb2VlBbu7u9jY2MCbb76JV155pZZNNT321Ov1cPv2baysrEz03mm9Vq5fTJL2gwgPTAGnSC8a90wKOE5ad1evXsW1a9eKNF5//XV89rOfrUFbRapB2yWg69ev48aNG8Wku7CwgNnZ2QKw6WStSg4wqgRxDZoPLnqk8jwfsWADo4DIwwoUBCoQ5Htu8abCpGCNSk2j0SjWjxBMaj4EbhoWqtYqt7irZ06fH+eZ0//u2dP61bpTZc5d/1NTU2g2m5idncV73vOeEcXoK1/5Sr3jZE2PNF2/fh03b94sjDNzc3OYmZk54bUCjsc/gJHxouNIwZnKKsoH30XWNwuit8nlHkmvq4xy75R71xUwqazzcGned4ClMsNBqgLESD7rb/1EwIzpqJHN81RPZavVwuzsLG7fvo319fUizVdffbXecbKmR56eeuopvO1tbyvGxuzsbLghBsk9+0rRNV4voxRwKxvn/l507Tyoivcu5T1UisBfqr6q5K3l7na7eP/734+1tbXi/m/8xm/UO04mqAZtl4Bu3bqFj370o2g2m2i322g2m8WukCQFb24dprIUKQi8xm2m1SKrCpH/VqWhbLG+L9pXoEX+o7Qi7160xs3TixQVteh7WJMqPqoUahqsW02feftOdZofAWae52g2m3jppZdGrPyf/OQna9BW0yNNb3vb2/DRj360ODJjamoK7Xb7xIY9bggBRscMDTURiIqMIsDJ0Ebd2t+NSGosUpnoFBmrfKMT5UPXlLni4t46N/KQb/XOKe+uyKlXMAUyXe7p+14eytf5+Xm89NJLhVHv4OAAn/rUp2rQVtMjT29/+9tPHIZd1fMzDriNA2JV0+R7Ho2USi/ygo0DSGfxfEXRC6m0U9ei/Ku8BwD9fh8f+chHiv8HBwf48R//8Rq0JagGbQ+YeIhzu90uFJGlpSU0m81i10UN8YkGgAIZ/veB52E0CmxUifJBpGkwXDHyOJH0misppChM0hWsMkWEyopvlKIKYEpBi4SRK5UeMhU9qyFY2jZqhW82myPbiV+9ehXPP/98kc729ja+9rWvnTjTqaaaLgNNT09jZWWl2B670WhgcXGxCAl22RQpEm69VRnlYX7qlXMgxvdUtmh+atByoMXfCp40GkCVIjWEuZHJDTYuj6Oyu8xx+RGRpuVgtooCFskt1jXLpMfAHBwcYGVlBc8//3xRzp2dHbzxxhu1bKrp0lKz2cT169dHPGlRmPZ5U0p/OA04GudFq+Jli9IZl/Zp6icCZhEwnsQz6HxG6WVZhpWVFbzwwgvFs9vb23j11VdPLA16EqkGbQ+Yut0uPvjBD2JlZQWtVquwYFMxAkYPqNbJVr1hBF78H3mF9FkFawp4dBt8D/nRe0xX161wwme4kOcLjCpFqrjR6jscDgulisDMrdqq7OnmIwq69vb2ijK4sugCRvkHDj1wqjSS/0hx8zPxeHA3cHygLp9573vfi3e/+93FAeavvvoqfvRHf7SO3a7pUlK328XLL7+MK1euFGOfXjU1rEQWYwdpKpt4n+ReMDWEOPBSowi/SfpbQ6b1GtOhfFLPOnlRo5Dy70epRKBL5ZxaxFV2RIajSBFU8BkBUc1Hy6hl438NJ9XfpBdffBEvvPBCIZtee+01/PiP//hIiFJNNV0mmpmZwSc+8QncuHGjuKbRLmcBbqcBYinv0nmDp1Q6kWwYx58b8yN+qgJHfTaVjt5XmZuKWuC127dv44UXXiiu/dZv/RZ++Id/GPfv3x/L2+NONWi7YOp0Ouj1ekXnHAwGGAwG6Pf7RbgRPyQFZJEnKLJOAPH22PzNdzVd/ahyRNJrvh5D09N7kdfMPVIKzFzYuVXbFSVVsnzdjPIV1Y+noxR56rzu/Lmo/vlNhbfdbuPg4AB7e3sYDAZYXFxEq9Uq0lxfX68Pwq3poVC73S7WpwHHsmlmZqZQ9jV0Gji5Rs035iCl/rsxJfKs69j2NW4OthgNoDLIZYHKB/cSOj9RyKdSSimLQOA4b5vz6spMCrB5XlF9a5n4nMquVquFVqtVbGylson8bGxs1LKppodGnU4Hg8Gg+D83N4fBYIBerzfyXBWQcVZQd5GevIvIexxwdHlwHumWPafyNjLMOVE+kd/BYIDl5eUR+bS+vv5EHtJdg7YLpqeffhof+tCHCuVjenq6AGyNRqOwFLEzKxDRrfrVg0PFgu8qUOOGHh5i5N4x5sF7UYhBanc4TYOeLw2lVGVPFQtagPm8l1vDo7jhQGRZp0eL5xIBKDxtFAKuHGl5ffMBt6irokiApaGkujaH16hA+lofUrPZxI0bN/Cd3/mdRbvu7+/jU5/6FH71V3+1Ul+qqabzpGeeeQYvv/zyiNd4MBgU4wsY3XBIP2q51X6v60OBY5DDMeVrb1XmqQed3qPhcDjiOVKvkU7+9NxH6ZJ0Aw8HaFpOB4nqPYuMQi6THXj5+jYlB3YutzQCgdccAJeFhrvsdf45r1y7dg3f9m3fVtTj7u4u/tk/+2d45ZVXTqRdU00Pgp5//nl84zd+40iI79zc3Innxnl9yowsvD8JMIo8RdG9KJ8qaUZ8Vk3HqaxsbuiKgJbz4ff0urdDmRdu0vIsLy/ju77ru7C3t1foY5/85Cfx2c9+duy7jxvVoO2CaHp6uhAyV69eHQlz1GdcufdF6uygOuG6lTi1VsSt05qu7oymAzcCSu4Z8/RUQVLPXbSOgzymPHeaDp9PgbdoUb96JrU+xgnusnvjJoHIC6Btw3K2222srKwUdbS/v4/BYIBOp4O9vb16PUlND4QomwaDAa5evTqyXo3k/8s8WP7h8/pu5IHyMcI0dQxrPpqe86n8uiXXFZOUkuLjNzXuHbh6Of13SomJ+C0jl7up+ozei5RUNVI1Gg0sLy8XZdvb28Pc3Bza7XYRQllTTQ+CVHe6du1a8iiMSWlScFYGOsquj6MUyIyA22nzKKOULpSSQ+fNQ1leKWq1Wrhy5Uohn3Z3dzE7O/tE6k41aLsAajQaeP/7348XXngBi4uLWFhYADC6lbRbm/kdWVGzLCu8SrRsRxZh94wpWFFBwY/ulKjWZz1qADheF6FgTMuj4ItWWl7TRf7ksdlsFtZ0AhgOOgV9AIrrjUajONhareJ8h3VKS3Gz2RxpE1UQU6SAVtvSwaV7C9Qir89qWnyG3lF+f/CDH8QzzzyDL37xi/j0pz89sTCrqaZJqNFo4MUXX8Q73/lOLC4uYjAYnOi/LpdI0eStXnL1zvnYAI7lkXrlU/3dZYx7x5iPPs80KQP0fQdvvKbeQWD0jEpNlx81Ail4o7xRWcz3I3AWGYU0FDVaczIunMmVUjVasdyRAY88swzk4f3vfz9u3bqFV155BZ/5zGdq2VTThVOj0cD73ve+Qj6Vzdce4ndacFXlvWhsRTTOm1aVqjxbxVuVcgqclodIjjgPZV44T8ffL0tXaXp6Gu973/vwtre9DV/4whfwS7/0S0+MfKpB2zmRW3+vX7+O27dvj4AUunaBeOG8p+NASwEA09BwJPc28dmUANCwHeB4S3xdsE7BqOGdBFkK4NTjpukxXIjKmvOrYVMqUBwIKpgt8/pFv1NUJjjGvZ8Cbc5D5BUFUADjmzdvYnl5Gaurq6VewZpqOi1Fsund7373ibEOoJBR7sGO0iK5Jyvq9zpuNf2UN0v/u/fNjVsa7qxHkDipfHLwxXeYB+WWywLyrQqjyyOViymQpPVZ5gFIybcoDa0vvceQdH8+JZtopLt+/ToWFxdx//79WjbVdGEUyaf3vOc9yecn9ZhVJU23aj8/7dqw86bz8NJVLXuZfpTy4o3jp0p9u751/fp1XL169YmTTzVoOwcaDAa4ffs2ut1usRPk888/j263e0KhVwWEa5uUvNOp8uQbAlA54FbzqsDoRK2WYl2/pdZgXtNz01Rx0bjyg4MDTE9Pj3i3fM0X+SUwU0DJdMi/p8PyKf+uCFEZ8bUzLEsK0EYCp0zwurKp7aLWf20fb3MXVh7qyfVuH/zgB7G3t4fd3V3s7OzgN3/zN7G1tRXyVVNNVWgwGODd7343er1ecazIc889h06nc2JsuKdZ+3xkENH+7ePLgZUDKQVOTCvypnEsq9xSz72mpzsl6lhUkMhrDA9XuaXr0tRrp7JWPXgqF1TmkFIh4BFgIl/6LvPhO2XWav2tfDog87Z0YK15cA64efMmXn755UI2bW9v17KppnOh2dlZvPe97y02F2k0Grh161bpO2rMPW/ScVkGAKJxTt7GgcoyD9Ok756GPA//f16AuMxhcJpyRGllWYYbN27gG77hG7C9vY3V1dXieIDHdROlGrSdA/X7fXz91389lpaW0Ov1im386WFzMEGlQDcLAU56b1Qh0Ps6yHQjACo0vK4Tv+an1mZNc3d3N7S6amgj7xF0KS/uSeRW+rzuPAMo1kxoXWh4U5kFP7K86296CB10RRbvccAtBb5VWVRFMWpTJwJa4PBMt1arVShF9+7dw+uvv14rRjWdifr9Pl566SUsLS2h0+kUm4zoJhwuZ7Isw97eXhhOqBRdV6OPjlOVTUB8TAnz1vGj0QAKnpiHvsM8Vd6qIYr8qaxwL5mHS/raOlfQeD2ycvNZT0Of0W+WN1pP6HWu91KA2gEZ69/ll4M2bS+ejdXv97G7u4vNzU2srq7Wsqmmc6HBYICXX34ZS0tLAE7nuXLQ4QaP1DvAZABFjUapMX0WitKZJO1xQFPTKwOO50VReudVV0rXrl3D0tIS1tfX8ZWvfAX379/HnTt3atBW00niQn5uRRpZXpVcGYgWyKdIBxsndoIbDTVUhYLgioCNFCkL+l+t25zINZwzsnhHZeZ/BXMKVJinWvxZh74WBQB2d3eLMqmypeWMLNOuVHn51VPmlvSovbR8Lij9eaUI1Ol72n7NZhOLi4uYmprC2traYyuAaroYctlEcnCk4zsywvCdyIDklJJ5Tr7mLTJGOa/8rx4y3nOjjCpWyn80fnW869iNAExKvhEY6jskhmzy+Uks+PzvbRMBN62vlKFonHXdAbNe06MVpqensbS0hGazifv379eyqaaJaX5+Hk899RRWVlbQ6XSK66fxnvl8WgWslZEbPCKA53lGxpxJ6DQgMpXGpPdOk2/KkFQFOI5LbxLwqbKJkQHtdhuzs7MAgK2trcfuQO4atJ2Brl69io997GOYmZlBv98vlB+uDaPi4JZT3UiEwEtBkitIJFcydAdITqbcwtnDg/jOcDgcCQmiIqT88T/BlvNC4OXWcuahm4oAwHA4LITa/v5+sZ6L/HGwKa+smzzPR9bP8T0//oDP6yYvTCsCia6gsB5SxHyikE0PA40EmvaBSHHMsuOwrEbjcNOVp556CktLS/i1X/u1WjGqaSK6cuUKPvaxj6HT6aDb7Y54+h3c8DcwasDgZKjb6UfARX/ruKAMUc+6gik1vKhci0AiSUO93VNG0vFIvhzw8JrLQt2yPwqXZJ4qtz082ncF1rV2DnxThjO+r8akaJ1hStlyb6TWBXn2cHOXp2qYYx1k2eEuuE8//TQ2Njbwyiuv1LKpponpqaeewnd/93ej0+mcWFd7UTRu3Lh8KDNuO6jzMRXle96erIhcHpflOQnAioxvwKixS/M/rZetSh15HtR9W60WOp0ODg4OsLy8jF6vh1dffbUGbTUdhhz1+/0iHJK7bqlCo9v0++QLjFqIlVyJie4r+WSuoY/RGjC33PK+5+EKmFvo1RrlFmmCl8gqDaBQBrUOIoUhIlfmIstwqs7ck5BSmLRuozS1TVP5jRM++o6Ce/9kWVYIoydta9uaJieVTZ1OB+12u7jnnn0FM2WKiRosIsWmTEZFeWoe/PZwbk0rpVy4ZTuSTZGH3EkBXCSTU4aeKB39Hrfu5TQ0bj5wuRjNF0qptvffCrT5ztTUVCGbdnd3S41eNdUEHK5hm5ubw8rKCtrt9gMDbMDZxp3TRQKxs6Q56btVn6fcSIE34Gyevqq8ROmoDONxEa1WC8PhEM1ms9jz4SLWQD4MqkHbKej555/H+9//fnS7XfT7/WJCVq8VPU7NZnPE4upnjmjYjSo4XFOipB4znTxpzeZECpycjHUXR7XcqtXagaJbsmnRUL7Vq6e8ARjxSukaNwI79UbqujnlMyLy6wfZqvKmZdB6dKVM33GPIRVVVSbVuq55RZ66lKBSQOxeDwoc9b7yvKR79+7h3r17YZo11QQcy6ZOp4NerzcyhtyrxJ1tgePJmGOdY1Plg48rP5Q+MqaoTCQ5CFLZpMBLjUWREcu9XLqOjmXyce3ASuvG31NvfsR3RGqY0mfU0+515vWl/8dZrN3KrXWi/Ph7ETD1aAB6CBnB0Wq1sL29XWxCtb+/j9nZWTSbTdy7dw/3798P66Smmkjvec978JGPfATtdvvEsTznTSnDbuo5/e8GXiXfxXtc/k4pg0qUZmQkq5JXGUA9CyhMAR+V/WV6Tyr/sjoZ977OI61WC3t7e4UxaTAYYGpqChsbG9jc3BxTukeDatA2AVHQzM3NYX5+fmS3MuDkujP9pAaKKgoKqNRKzDR1ICpw8HUZDgaifEgp3nTyd0A5ziqv/EbpRnWi1vYy67gLMa9HfaaKx8vfVeL7k1hoUnlGE4cDTvVWusJHC1LkxaypJsqm2dlZzM/PnzDgAKNe6ii8N9VvIwDhwKUMSOh4jIAdf7vxh9d9vPvYHqcwqExy0rQi2aplHQfYorrQMkRGJSfPW9PQ9CMAGJUpxVNEWjb1FqpMisAoDXB6/l5NNSl1u100m00sLCxgcXHxYbMTUtm4dFIZpvLH7583VdFpqsiZST2FVXWph0WUXZEzgHqTr31+VKkGbRVpenoa733ve/HUU09heXm52DIbiLdTphWaAEUVqNSkrOsOPIzRFS737ND922g0Rg6vdks6f9OLA8RhRurJ41q4aM2Wl0HTVyCq/DPEjzvZaZ14uIQCFKbv6zVU2dCF/3zfLczuqdQP3/e1OZHFXTdhSdWB16srmso3143wNwXPzs4ONjY20Gw2cfXqVWxtbeHevXuPvPCp6XxIZdPCwsLY3Uzp9dajOTQigM+5USFlMIkAmcsqB0Y6/nydqgMjB3A6hjRKIAJUKTAYRTGoTGUdKo+UTZq/Wt0j8MSy8luNUZHnS2WOloHv65rdCFBXCTF38nnMZWYqMqLRaGA4HGJra6vYOGl7exvr6+u1bKqpoGaziQ9/+MN49tlnMT8/f+b0UmvHnKoab6Ox5r8j0vFfZb3ppEBJ09HyTmLMTvGtv6sY36J0x+mBZe9Oej/KIyWn1JlCXtrtNhqNRrED7qNMNWirQFRqlpeXcevWLbTb7RNhjk6qSOzu7iLP89Az54NEAQ47pq4l8bA6YNRdTyVMAYWDBt2p0ZUxPqffCpyi85H4TPReSslSQKsKJnkftw5F69CBl3sonSgEnTfl3d/1MkfAW8FqlKfXjd5zIKj57e/vY3d3F51OB51O58TaopqeXFLZ9NRTTxWb/JQp7Wq4IAhwwOT9MxrfZV7fCNQBo2twfWJV+cffuitjyqukPPKaA5ookiH1rsop5Y+yqYrV2WWfyiYHt+PI+YiUJwfFpKoKrraFysZI7vm8sb+/XxgIa9lUkxLDaq9evYq3v/3tZ06vbE1VGZ23p+hhRLpQfp1HOmcFVil5PO69cfdSuuU4ioxWvv4WQKg/P2pUg7YxNDMzg/e///1YWFjArVu30O/3K7ta6VXKsmzEqt1qtUY6JydCKk+RVVq9P8DxBOrrsDRvXX/GHc00T+anB2WPs6YQIHJAROBDhYsqAUr09HGdm+64RtCm62lYJs1Lt9JmmuqxU4Coz7F+eV/XvoxTkFKkyqsKDQ/NIs/ReVZ8p9lsjuxAyjR3d3cLL+WVK1ewu7uLe/fu1RsAPKHU6/VOyKaUQcEBmXqWFCipnHBZE4EbpqFrefVdUmQV5bdO/h6+rTsvMh0vF6+7t82VCs1DPenOI8cTjxjRcGUNF1R54zLGgakDuNR7Kid8HZyWQ+vfjVaRIjVOSdO5RWW88utyyoEodwZeXFzE7u4u1tbW6jDuJ5hmZmaK82tv3LhxLmmetj+dJ2CLqArgieSRv5fSP8qMcGWUkh+T8F6WdpnxKWUwr5LeOL59PlFZ5JFKKremp6cxMzOD/f19bG9vP5LgrQZtY6jdbuNd73oXbty4MXI+GJWEskWp+pwqKQQmkSWT3zoxM63I+6TALQr5YV6ufDAf9co5SHK+VKFxPsrKonXhSpZuThKF9pQJKwdKWibWTbTbYqRgeX37/6h+UxTx78pc9I56QPXD9uPukb1eD/Pz89je3sbq6moN2p5Q6nQ6eOGFF3Djxo0RQxJwclIDTsoVNVqooSUVWhmBPs0rte5Vn3VDiY43P5BbeaqyVopjS0OsfTxHwE3TVdBEwxDPueO7HKeap5dTZZPWn/5245zmz7Sj0E79H8lhlo+U8ra5YuRh5Zq/G6JcZvP5qakpdLtdDIdDbGxs1KDtCaZut4vbt28XgM3lQkRVPcNVaRxAuWgw51SlDsponPFl3LOTvK/3I4BU9f2yvMflW+UZlXn60RB3EsO8d3d3sbOzU4O2x4nm5+fx/PPPY2Fhodg+22P+dTe2VEyzKiN8hjtDeqihkls1ec3XiAAn1yLoZMy81NLgVm23nroFl3krRXn5c6rksbxReFAKLPr6NM1HFUXfcMGBUmTRYpvpoI4UHgd24wRPStlJUVTHGkLG6yqM8jzHcDhEnudYWFjA3t4e1tbWHrvzSGqKaW5uDs8++ywWFhYwPz+PVqsVhl27MScCdCkjiq41da9QZDjit47laPy5AYjXNQ1SZGBiutG41fcj2eSyWRXE1JhXcKf3HVw6H6l1aVpPKbmkeUTAT0Gj8nsaZTAl31NppWS18kLAOzc3h729PWxsbNRHlTxBNDc3V+hO/X6/uK7jMepf5xH6N45cJpQ9U5WitCJQc1aAWAVwqUyJ6jmSwykqG+OaRllaZTLOn9PvKpQCpa5z6TXyMz09jV6vh4ODA+zs7DxShu8atCVoeXkZ3/It34LBYFBsna3WabVQq1Kkk6wq2sBxSCCAAkD52jgONIIrDccBRsPrPJTIJ1Ndm0Bwk+f5yKJy3qdlgpOukltTyafyq2DFeXYFisqhpkdlkXWjCpECSSXnhQqN855ac8N6iRRAPVhY+WT5HJhp2SIlMqXougWbPGlbUolWgMutt5eXl3FwcLhRTA3angxaWlrCN3/zN2MwGKDT6YwYfxSwRQfN65jxiUyfUXkBpL3HCqBUljAsnOSA0Y0+BwcHhfwpm3TLFCAHl1He+qzm7SHSKuv1+XF8aRk9T/UAulxKpREpslE5HSSPU37GKUmerxuUUsY2GgqnpqawsLCAPM9HwrprevxpeXkZn/jEJ4qlJE7jQIx711PP+b1JwNFZAZTnmUp33P0ovSq8laXrwG3c+6cFsFXLdta6jtpV55txoNANfvzfarWKJTo1aHuEaW5urljUPzMzg06nUwAoD6Nzi28UphhZt6P1FEB6IvUBSHDii74ji4e+ywXj455NkQKxiD//Hyklrvj5ez4w1btURtG7ZeXQdxxsK5BSsBRZsFyZHadkad24Iqj9alyICJ+jJ3V6ehrtdvuRE0A1VafZ2VksLi7ixo0b6Ha7aLVahfHF+1BKXvEZpTJ5oYYNfW7cRDxJmJN7tFJjKAoH5L2Ip0gmpACcr0ctIx/vKUUrMmxFIM9lo7+reapCmwKpzivnqbJwTeXTn3G+IgOa86ugrtls1rLpCaD5+XksLy/j5s2bxc7QQGygqErnBa6qUFXAdFo6z7Qvgs9IJ5w030nmiEn5KstnHLh3I6G+yx3Wo7ORLyPVoM3oueeew8c//nEMBgMsLi6OhBOqp0ytoFRwDg4OQm8HFf5o4wzg+BR3ggTecyVDrb7AcWeN1plF72VZNrJ1f9lmHU6qqDj4IE8ROOE7+qlC+iwt8NGaPT7r62n4Sa1587bkdb6nG8KwXSMvhabtYUvuTdMy+BEQKjDdc5tSnPb29rC+vg7gcFOKbreL1dVVbGxsVKrjmh4tevvb346Pfexj6PV6mJ2dPbEtPcn7kPZ3H0c+3tUQpEBB+3LK08P7+pyOv9SErh4bjr3IgurKX2T0cFK+ImOSh2NGYZJ8R70GPtb9nZRMVdlRts5MwY23byr6wvnw9zTcPForp4ZIrY/IqEQLtV7zuma63W4XnU4Ha2trj/x22zWl6bnnnsO3fMu3oNVqod1uJ59L6QC+hjOi0wAKl03nRQ4EUsb206SbAipVyhAZVVIGba0bl6MRwInyOg2fPseUPe/8RIBN/6vRPSKPAJuZmUGe51hfX8fW1lYp35eBatB2RL1eD+12G3NzcxgMBuh2u2MtvlQwVDHRdRrjBq1bJTX9sjS8o5dZoaMBFE20Ze9p2j64yyzqkRAuy0/LFJW3SkhRGUVCyBUzX3PnYG4SGjeJ6HNVy+Jtp3XD/thsNkdAaU2PNqlsmpmZKc6cAeIYfl537xjljI6j1KQbAZwq6zpTskmv+bNR/s5bBOKivE+rKKXSi/hK3U+Ry+Ayma7PR2DPZbE/WyUvzbOqElxmPPQ0vP10rqSh8FGwaNdUjRiRxDVsZXrTOKoC3C4jnQYQTirfnCLDSxXeykBVVaN9lWdPS1XBqfIQPe/GyZRsZD0+KvKpBm04bLQXX3wR73znO4vDaYHjLZ9TXhhgFP3neV5YMxkKwg6QWlcFHB/EzUlZ83Krp06a5IPrRyIremqhPK2lykfkzeF1PXRWFbeyMD+9H5Vb61/rwhVR3ld+I0sy61lBkObl9eqW4qg8kdXG68s9qWUgzwW1rmVz4jpDL5+Wn9Z/9qF+v4+FhQWsra3hzp07J9Ks6dEiyqZ3vOMdhXdNjUPsl76uTOWF9k/KizKvm07MlGFUunyH00gmkh/mqemljEuavz7j40VJDV1aBy6HyoBkmbfLyWWDG60ieTPOQFZmpNI0VcHQ4wCqADS+7wC87KxRl8HajwCMHEeSUuJUFmdZhn6/j5mZGWxubmJ1dTWZd02PDk1NTeEDH/gAXnzxxSRg47iZBLiRXNGO5MI4OiuIOE3aZXKrSnrjgIt7wKOohlS9uf6ieozzmzImVzX2pCgFtlxOugyqQp6G8uxrcIHj+WNmZgbdbhdbW1tFBNNlpCcetE1PT6PZbGJhYQHXrl1Ds9ksOioVG6JvneRckQdQgDbgeKMQYHTNRkSRZVu9PtpxUwNCFRK+XzZ4IiWiCsjw3ykLUVVB5WAoSq+KFUqFVPSsAzEVdFFdqILm5UmBuPOgKuVU/hTsAyjWtm1vbxde4PPkr6YHR5RN8/PzuHLlysj5jq7Mq5yIgIq+o2BunJKQAgyukPs7KXk1qWeeVCYDJrXOj1O0qipO0btlpHym6sCjJlzJ0vFeBrqcr5TRsMzjyjyrkL8f1R2B3nA4PGGArOnRo2aziVarVaxjq0KTrHUtoyo6wZNMka522jQmrevTAGtSBCrHPR8ZriJ55M/rtxo5d3d3L3X/eqJBW7vdxnvf+14sLS3hqaeeKiZBrl9iY7qCDMRbVAMoFuAS6O3t7RXpcQetMotoZAHWvCOrbcpLw3RSFmq+y3IzXV1X56AxGhSu5KgFlt6h1GYBLsDdGxZZR6JBqtaiCOSqVV7TV4+beupcqdBvVWKdD+bJflOmnLE9GcqoAJLXfdc1552hclqG7e1ttFotXLt2DTs7O7hz586ldvfXdJJUNt24caPoj2xn7ePu8fC+r+snOb7Z55iee93ZB3WscWz4wc+atqahPPC6yoeoT/o4VbkRWUx93Hu+EWh0y3QZz16vBEs6dlOk77kcip5V44u2rcqEMqNdCsinyNuc6Wjbsp5Vlvn/aG5wAxnzOzg4KIykw+EQ6+vrl1Y5qilN3W4XH/7wh3Ht2jVcv3597PPjDNcpKuu/pwUjEZ2mD56FtxSISMkx53FcPZ6mbs6rPk87nr0uqvATyWqVT5EMpvxvt9uYmpoqjvPa3t7Gzs4OWq0WBoMB9vb2sLW1denk06mDh7Msu5Vl2T/OsuyzWZZ9Jsuyf/vo+mKWZf8oy7IvHn0vnB+750vT09O4efMmnn/+eczPz48s7NYQR/1EoEqVaIa00UpOEKe7vHmHjKzhrryX3fc0+J+ALLLI+qSrYECBXESpvH2AlClorKuIrwgo+sBJWXPGeZZU8fAye16REjpOUVP+XHCklOpIyACxUqXpa1/j8REHB4ebpkxNTY0cV/Gk0aMun5rNZiGb5ubmRvqKyiL/RAYdlU2NRqMwKrHP6HgtmyjH5UX+ot/kRSmSAXwnkk3Oo+dflnc0eVelCAxFaZfl6RQZfPR9Dz8t4+005DLHgRafidpY30+VL/U8dzDm5iS1bHr0ZBNwKJ+effZZ3L59G4uLi5XeOYvhMNUPz5PK0n+Qinsqr9OCqnHy6TR0VoBXxkuU9jhex+nNTll2eKxWq9VCt9vFzMxMsfRgenoanU5nJLLlMtFZPG17AP5Inuc/n2XZAMDPZVn2jwD8QQD/S57nP5Bl2R8H8McB/LGzs3p+1O/38fzzz6Pf72NxcbEIiaSVg996dphaaPlRy7ECAA/XUYCkk6Qr6aqwcJ2agigq5Q4YI/JOngJP5EOtohGo4PVo9zHlRdNRTxnzHmdt8zVerAOm4/VaNpi9TVJ1Ez2jyosDO69Lljd6V/uIhzR5H4jWtkX9RJ/hvd3d3RPnclG5HwwG2N/fx8bGxpO0OckjKZ8om7i9P2UTMDoO2e7ab3XsEJxF49mNRDqmtH9EAFBll653c2+fkr4XjeMqId0R7264cS9d9L4CqUgu+FiO0vByutzU+xFwc9kZve/3nS/1QEZzTsRnihysRfkxT94bJ095vUzZzrLDndv29/extbX1JEUDPJKyCTg8duTFF1/E3NxcAdbGhfxWfeZBUTSXntUwUmagST2bkpX63Lj//o7rR7w/DpCeBiil+E7dd+NQFZqEh8igmDJGAcf7J3C37e3tbezu7hb3p6am0Ov1sL+/j52dnUvRd4EzgLY8z18F8OrR77Usyz4H4CaA3wngm48e+2sAfgKXTPD0+328733vw9zcHJrN5om1Z8Cx8uIdnx4z9arxPr/Veg2g2M2P6ekOk76mQDsUcHJLagVZet07JIll4n0NhWQ6boX2dRV8Xge3h2/yPeVJv1XZVD6db7e+K2ibVIjoRxW0VAhWdHSCltHLr+lEgI9rgNgnGMbIZ7wtI2GWUv74TZ4dtO3t7WE4HGJ6ehqzs7OF4HlSQNujKp/6/T4+8IEPYG5ubuTQbJIaQXSNGQ80VhCmIbgkV86B0XW0Cvg1TyX3VutmOWUUGXCUj5RBx41BWnblL5JNAMKogZTSME7GeJ3qOY6ejsqLCDyPA6uUG658RKGpHi0Q1UNErtCkPJ+pKBGVy56/Kk7Kv/bffr9fyKrLohRdND2qsgk4PMf2Ix/5SOhdO03448OiCPBUNdhUSXfS9/x5T0fHVDQnRMassvaI0h8HXCNDWGS88ndSsi3FU6oOUmmoDKIsjgzdHmpOPWlnZ6f4rTqggjY98ulh07msacuy7BkAHwDwKQBXj4QSALwG4Grine8D8H3nkX9Vmpubw/Xr17G8vIzZ2Vl0u93ink802vGpGOmObeptiwZH5JnREMkovCilXPFeFDLE/3rdlQgFbpFVJgIGepSB8qkTLp9VD1I0GLmjZhWLuk/wKSGl9eS8c9CqEIkGXJmly3doq6LMsZ5VcHjavpmN3+e7FBS+hkmBpr7PcF4HqwAKoNjv99HpdLC5uRmeJ/i40qTy6WHIpvn5eVy7dg3Ly8vo9/sj5xyl+i5lCPu6e1qBkwq9fkfPaLpVDCWR4SFFKeOJjgm3yJcZLXyjHQ/XiwCT8s38PNLAn0mVxZ9JKWyefyrdMqVFx7PLYH0/BVxTeWl+HgXgfYBtzXXaBFpVjWpRXXH+7Pf7hcetlk0ALpnutLCwgJs3b2JlZQWtVutUafj4n/TdSYy2pDKwkQITEaB7ELxGVAUEVr0WpXfRlAKUqXbx/5Pyq3sDRPpySgalQr0VvNG45PsMPGg6M2jLsqwP4H8E8O/keb5qk1OeZVlY63me/yCAHzxK44H0pKeeegrf/u3fjm63i16vB+DYQ6FbYDMsUsMR+VsVHDZolmVFGFME1jTEkYg+sgbkeX7Cw8bJMAqBcktDJBSjQa/WzlQa2sl1MxW3bkfeAB0ceZ4XoZ0qDKOND/iePhcpIfpbN1Xw8qUGvSuC+h4VEN9S3d9nnmVhk67IZNmxV0Lb3nkkABsOh4UVSPsjfys/bCPWNfPK87w4UH1lZQVTU1P4yle+gnv37p0o1+NIp5FPD0M23bx5E9/xHd+BTqeDTqeDLMtGxpz3qcgAov1eZRP7nIdxuzHA+6MblrwvR4accQYWl3eqQOm7GhEQldOPulDZ6QYOzct50HHl5XFZxHuRzPMya17umfQoBa+nlKKi6Xn+mg7LEvGYSlvnFb6vdcuyUzZtbW1hc3Oz6Iuab5SnX/f5YWlpCY1GA6+99toTA9oeJd3p1q1b+K7v+i602+2ROQwYNR74fJkyXLpO489G4C4FqLSvR+GBEblhZByAGEeneb+KoWvSPMrk02kAmwPcVL3781FeKfnvz5S9Ez1Dou7Oj+uRKf2M82vUN/ne/Pw88jzHnTt3Hm3QlmVZE4dC56/nef63ji5/Lcuy63mev5pl2XUAr5+VybPS7Ows+v0+VlZW0O/30Wq1ikWHquRw0o86vYfOaUidAjoVBimhweco/FJAhff82wWNK0YRpSwJZVYlHajsvGWbY3ianoZeU6HsFo+ygQ9Uc/tr+FXZOw7MvE6r1E+KVFB4nl4+Bee60YTvKqnPR/XkoNvLkuc5ms0mOp1OIdweV3oU5NNgMEC/38fy8jI6nc7IwdkqhyKDBhAbIEgOeBTwpcYXx4nvKMuPyyfPL6VUkVKKRjROIlkVTeopmaYgyUGg56HGnrKyjZNNzncEVspkSer+eVJqruG9iOcohLbM8JS6Fj2j/ZRHlmio0uNIj4JsAo51p6WlJXQ6HTSbzeLeOK9ZFDJctW+fNhQtJUucIjDwuNFFli8FvlS2jNMRUwa7KnmnQCl1J/73qJFIj04BTII4NWpyg0E1pD5oOjVoyw5r7a8A+Fye5/+Z3Pp7AP4AgB84+v67Z+LwjJRlGV588UV88IMfxMzMDBYWFkY6CQGX7hRJT5gicQAjaNwbUxUECg16OoCTiot66DxPJ53U+F87rVsFFFDyXe3ICjxdwXCrCsElQa1uLc+8dd2F8uvCU/9TeSRfeiYe8055DFl/CmhUSLhSwnucZLjOTOtMgTufYdurFVrfGTcJuVeU6akwUQDL+uXWswyPdK+sglttNwDFzoC+cc3BwQG2trbQaDQwOzuL2dlZ3L1797E9gPtRkE9ZluH27dv4wAc+gH6/XxxOy3al/FDZoF4Q4KRM8PHPb3qUUkDIZUKjcbhel30y4t37o/Oh/EXjUAFQZGRJyUKXT5QF/pwDrYi/yKikfPO3yrSyUBrPX/97OKiuffYxzfrQdnELsRsKU7xE9VIWIaBzBfNhP9jd3S2iU1QujQOy5CkyJjEskmGSg8EA9+/ff2yjAR4F2QSM6k7dbvfEEgj2o4iqeLmqgKvUu2XXNO+y+fmijSNnyfcsvLlBpSyPyKA2Tu66XIt+a3pV+K3STqm81NBNGUWDNGWU6ook1QM9P84rXKbAOp2ZmUG73cbGxkaxgcmDprN42r4BwO8H8MtZlv3i0bU/iUOB8zezLPvDAH4DwPecicNzoF6vV8RiE4AAx6EZ3nnZiaIQPmDUmuPXInSv6QInhZYrMuNI89K0I5AUWRgixcB5U1Jg4QPIla5UOqocqqKi96OP3/fyqfJXZt0ZZ9Vx5Uifq+oJIHm4mCtzkUDldf2kLEHelg5SNd8I3HO799NMmo8QPRLyqdvtYnl5uTgaJFJq1SCkxgw3nqQ8aPpuBDqiiVv/+9gvAytMr2wcArGVPpJNyp/y68DN5ViUpo6XssnaKZobItk5jsqUE2+biKI5YpzCU0apKAB++0dlkxoEyxS3snlF71PetVqtYu33Y0yPhGwCDnUnhq6epU3cYPE401nG5HmkT9mUMnpPmtdp6UEBZpVPCtRSRqUynZy/UwYm9t+HKZ/OsnvkTwJI1fy3njbdiyCGgzWbzROLaOk50vVmehh2nufFNqCO7lVx0EmN93VtnJK/R6t21JHVo6MDUfNSZc+9WQ609D2mr2teFNio8q9K/sHBQbEInRYO3V5cD+dmvuTTQ74iBVI9n+RLiZO6CycXMGp9V/4dXLslnd5PLUPKqu3rZhxwedt7edUrwjVsw+EQw+EwdMGzzmgl8lA6AjLyox8qWsPhsLBGPa70qMinqakpNJvNIuxC21T7ENsv8gT7JOR9Q2UAxyrvp5Qo758KCFOeJublCoNPgAp03OMWASStDweO7PM6TrVuyLuv59N8WcceJk1+9Dfz8HrlO8yHbRAZzPjtmx25kqDA1dtD+fDfXld+3UG68xm1EeUFZYcDNyXvHw6wyYfyxPu+dvpxpEdFNkVUxVBZZnjQMRX1hapUZgyI1siNS6sMRJQZtU4D0MYZMqo8E9VZZKAte3YSvl3Oqb5UlcbxPMl7fl/3Adje3i7klPc3lcWU0Zx3/VnKo0j2P0w6l90jLysRQGjImCvZDK3RUMYodCcKGXHlShtdFWKfkJ1HVSZ0gT3vR1TVQuChi+7lSQEnVS5UcWLIlCsXpGjtSKQklIU/kU8+6yAzUgL5nRrgrvA5oFHemI+DdFWgvN75jNbJOIHmANsPcfe6daHsdUDlNPLCOn9erzU9WFLZpG0XGV68rVw26bO8phv/aDoKFoD4zLBo7OtYGddvfLxq2s5LFCrp/LhXK5J5Gv6pMi4CEF4/PobIo95TGqd8pIBhlBZ5iWRTKg8PBy0DaGX8R4pY1LY6B7phqkyhKsvHn4lkVE0PjyifypTqsvk2RT6PXqQyXAW8TQoktE+7MeYyUdV2iWRq2bPR7/PkZ1LyeYnGfn5HhqhojvHNqFi+1B4ODgIfJD22oG16ehrvec97cOXKFTz99NMARq2MqvhH1mZOpurN0kmLz2hanr+u/9JJmV4150dDEPi8HrIdWc49fz6rg9EBm3Zy5UEVAQ23ijx5DOfSnb4c4EZrJdyikVr3p3Xg7aJ1mgKPzF89i16GSHlwcK7tEwF1KotqAHC+PL08zwvPH3nTtWzqCXPvrYclaT0CKIwTqlipIqRlarfbWFxcxHA4xMbGRq0oPSCanp7Gu971LqysrOBtb3vbiCEJiJVclVeu2PpY9jBJn7ii9WZ6L5qMlKfIMJNS+iPDSmRk8YiAlDIPjB43ooql8s4J3PNxmajXnG8/9sTTUopAosqD1NiiscbrMZV+JLPGlUHbxWXTOMWZ/FEm8eM7tLlsSQG2VHk8nU6ng6mpKQyHw2KXypoeDE1PT+P27du4cuUKnnnmmRPtVgbCywBS2RKDSb1jF0lRGSMqAzxlhpoqz4wDy/r+aZ7x9KsAt7OA03HGK89HnysrC+dDHkGyvb1dHJJNGeW74Pr77XYb7Xa7kJO7u7vFrt2pqJJut4tms4mdnZ0Hrjs9tqBtamoKb3/72/HOd74Tg8GguK7KNhArE3xOFQAqFfz28LmUIsR0ND8CMCpaej8CBQpQlMfISu5l8XxUwWM+keIEYCRsUnknSCCIiECBKpckBSBMTy3ekdIXUQS8y57V8nmdEZwrf9qWrphqe7tnhB4MFW4O9Fx5Yl+iYsRzQHRjnBTQ9r6g3gYFxynFqtVqodlsPtRFtU8iTU1N4dlnn8Xzzz+PmZmZE7LCyfu49i33tPnY1u/I2MMQbh9LESBTmeIgKKJIxnp65FnlVMR7JA89f/Kv4dNldeF1rGmorPP3U+WNlL1GozECyjQvHcfq/UxRJB9Tioj+1v7i9yMQ63MZATA/VIjKNn9J1UlZ2TSNVquFbreLjY0NbG5ujn2/pvMj6k4vvPACWq3WqRV1pbK+Hckclz/RO+MU5QiY+L2zlu00QCcyIpFSa33L8vL6O4/2SpHnUdZOKfBVJf1JiPKJwG1nZ+fERiQpYxJBW7fbLWTP5uYmtra2RuZX9zrznampqQeuOz12oK3VauHGjRvFLlTAcaNygKTOFlPP0sHBAZrN5oiSzIlKvXApkKFAyweie0tUyVZ+9L/uBKcAMrXGIVIeWDYvu4fNKT8sowMYKjQakhRZpaN6Ub4cYPgzSg6+XJHUZ6KwrEi4eX04QI0UEG1PfcYVPi1zSoFlX9jb2yt2jNQwSVXEvQ2ULz/bSNssKr/W98zMDGZmZrC7u4vXX3/9iTkn6UGTyqbZ2VkAx54MHwNKKeNMFJ4dAS/vw+xLUV9OAcQy+aTjMlJSPE8vSyqcN/rvIMMNIXl+7GlkeVJ8eR7uvdd6dsNX9D5JDUFMp0zJZLr+3jgQdxrlTN9xg2PEl+7IpkallCEolU7Zt/Ol12dnZzE/P4/hcIhXX321lk0XSJ1OB88880xR5y4LIqqqZEcG05SsS+kxTpPyVnW8TDKuxsmVMqCl8sQNK1X5mbRMVYxPVek0AOs8ifn7fgDUoSKAGc1N29vbI8bx4XBYCk75v9E43Il7YWEBOzs7+OpXv4rhcHihZQYeQ9DW7XZx+/ZtLC0tYX5+HsBho3JBoSvZ/NbwQ2A0BEg3KfF1R0xXleRIuVGFXoGXW3gdAKiyoEo8AYeSeooUPHin1Tw8ZFLrg9ZfDflTsEaLqNYD+fCQL173PPw8qIjU4qvtFnkAIwt6Kl0HdmUCs0zh8jLxunvuND39TaXIXft83zefiHjgxiXKU+TVA47DLOlJnZ+fx1NPPYW1tTXcv3+/VowuiLrdLt773vdieXm52N7fjSLq1dd+7eNJgYl6qvSj/UUV9JTsifpLZFQpM8a4bNGQRZeDHBeUJSzT7u5uEni6jPEoBAWBrVZrRF4r+QSuY9/rXMFtGSjVdLWsGqI4DriNI1VqI0UvBcAcoHuekexjH6JBaWdnB1tbW9je3j5hSBoH2sqUoDLDwOLiIt7+9rdjdXUVd+/erWXTBdLMzAw+9KEP4cqVKyNH77jBkaRtlep34wywZTQpqFDjxziDx2lJx1AZAHIjRFWAWaXMkz6rsr7MOFaFyuaCKulFz0TlqNr2nC+oO3ETkjKZ4/WxsbExogvrMz5HOF+Li4t47rnnsLq6ijt37tSg7bREAMZJRc8a0nuuGEWTBt+JlG8/+4HXItKBG6F2VWrGve+dyd8tGxjqcVOlL0Xq1YrSdmt2ynqmPDBd/U5ZbN3qpkqbDqKojZxSCuCkgieVbnQ9MhDwngIyPydQ/7uyF/Hr9cLnvE9FCi53MOQuSjVdDLlxSMeA9mfd/bHKuHZPlVKVCd77iE/s45TyMvlRhQe/HnkQI35ZX2W8pdb3OQCOQpLK5Og4OeETvI9/z4v3qqTr/ETj3NN2HrR8nqb3S8ohXc9WBkC9HFUVtYgon8ZtilHT+ZCG2KucOg8QVJZOmXHzMlFKH1E6Le/nVWY1HOk1/x3JJ/72clWRe1VlY/TOaYgyiJ423YQkkufOoxqs3LCohjvmEfHeaDRGjut5EPRYgjaSrtc4ODgY2cpdD7fWcEhgdHLjb10noeu52KjaUXx9gluYeS2arKtM3OMsxKr0RetVlC/tsG6FdR7dgpxl2QmLHAHIOMuTKqp6n/dSoRSqrOlxDdzYQ8uiZXBwzTaNBlpkufYQMpZV2zplndH73HiFXhAqQrRib21tYWNjY8Tdr14WNzD4h8oV6wTASH/QyZh11mw2MTMzE7ZbTedP6lmjMYkGFPbrLDtem1XmHSNpf3BPm/cVJVf2o74fyY0UlfV/vsuy+ju850eGcMxr3hF40XGi/Zz/o4nXx4TKJB3z48iBJvPTaALy5kdt+BjWZ5l2WRSAel1JOhcBo+cLaV1qGiQ1JKmXbXt7G2tra4WCVAbWo3lMlSIHsW5M0vnLz1et6eJI+6COJ5/HTkvjDMRV+CvjQQ06D4IcqDwIwOZGF9etqgC2cXm6TupUNR1/9jTvpJ6ljNre3sb6+jrW19eLSCWPYAFO7ggeGQUpd3TX+TwfDaFUGcXnHuT5g48NaJuenka328VgMDhxgLYicirqusMhJzwNA0xNLKpAqdeOAi2a4MsUI31mkgnb32W6HkbloIvkiorn651bLcf6bjTZOv9lFClG0TvOW0oZnVRoRhZqr/Oy+h9XvpTF3oFrFNrm3suoP6bSVoraXpU1eto6nQ6Wl5fRarWwurr6QFz9TwJRNvX7/ROHmuvEEQGmaELhb37rRKKySQGSG2hS/SYFuMom0ShkTylS+HQMK7nSriGJPsm6wpQCk5pe2flfqXFeBpjKlCTnrwpFdVJFAT2tsqhKrta3G7s0zDQVpk0+Uveiso0rE+fYdruNhYUFNBoNrK+v12GS50jNZhO9Xg+DwSA0AAAP9zDhB02T9tNxaZ1HGpGcPI+0U/mdhqroqueZL/Ukrrf1ZSQ+Z5XJY6/jlDHJicCt3W7j2rVr6PV6uHv3Lra3tycqyyT02IC2lZUVvPzyy+j1epiZmSms1Jx4dPt99UDR6tlut4uDiQn6GC7mFk0lblaiwk5DSoBRhcwtwryvv7Ps2IOlXhlX7HyCjRaxq0WA/wGMWLNpNVUFzT+qDGq4iiqF3rmdBy+r/ndPltaVP0tLCusmClmoAuSigUqvK9sxsvCTxzKXuAsNTUeBGb1s/HCxPxfTar/hdv6qpLoy6yCA72ldutI1PT2Nfr+PpaUlvPvd78bW1hb+9t/+23jllVfCstU0GalscuDGPgycDFHRfqYfHc98VseiAjn9Zl/S8Layyc0BHtNyb2/KWw+c9NzpmFOZEpXdgSDBBXlx2aRKPvOLJt8q5PJDZVrKA6eWXZcX0fNaXs/br3sUgT/r5EawCOA62HWARllELxtllG5EEvFQFax6X4sMS81mE7Ozs1hcXMSNGzewubmJH/3RH8WXvvSl0rRrqk5Xr17Fxz72sQK4sd3cCz0JkHlQnq7LTGWGHP89Lo1x76d0HX9G54QyfseRj1ePQIrSHVdeB6JlOjIADIdDbG1tYXNzE2tra9je3i7mNt83QvGAG6RcDgHH0Um+3lrHhnrj3va2t+HjH/84hsMh/vJf/sv4lV/5lcp1OSk9NqCt3W7jypUr6Ha7I+fzkHRyjwSKK0HR4at6HzgZlkLgxDxcoY5CnHgvUp747R3GFS7/RPlHpEqUh804X6oUuUdynIB2QZOydETvRO96vWl5o7z1nZSCFL2jludx5Sojbzt+U0HSWGzdqtb7hOY5TsB6u5UprI1GowBut27dws7ODmZmZiqVrabxRNnU6XRGPPyRfFKKJleVBw6uxsmpKE0H/vpuJJd4L5JjzAvACWDB8qXCnlN5aGRDCiiwDHquWplyUoWi/LQ+9TkteyQvVEaNy+ciKZJ9DuzVqKQATteKpECjy6bzKBvDt7vdLubm5rC1tYVOp3OmNGsapU6ng2vXrqHT6RQbilWZNyK6aLD2IMbLaWVGFTqLTCpLcxI6S/4Ocqrmd5Y2S+mL1JX0mCQ3nE3Sj8v0cX+Gv/mZmZnBO9/5Tuzv7xc7Q18UPTagbWpqCr1eD91utwjrIrpmxSpwIrFhKKw4OTGWPsuyEyFNnEhUsdfJ2hUH3nNkz48eR8D0+b57c3Ty1E7m5cuy490mVbmKLCS+zqrMMqLeQyoiKa+eK4paPuU3Itaptp97uHRgkq/U2XKaD/nzQ8CVZ1V0PS//RIqq13XK07a9vV2ck7a1tVVs+09vInlJLcbXeok+Wi7to/rM9PQ0Op0OOp0Out3uxEK5pnKivOAHOJZNkReE5Mox+42OAfWga390hRzAifGtCriPBfJFi6X2sShPt16mSPt0ZExxAxG/uc6vrF/qGFOeSNFY1fzVUKfRE/qctwvLorxGRja95+kooIsAtfLD/DRdr+8ohJbpKem7+k2QxnW2GxsbWF1dxebmZjJkO6JJFbWUQsvw7W63C+BYxtd0PqSyBTg5d/ka/Yc9N6TyPy++JgFWUR9PGZpOw6OmMUm5xwGO01DKiAWkl/ww33F5V60nyqeDg4NijS13tFVPm+ab0sNTvOnzGoZNOe1zSqfTQbvdPrEnxkXRYyP9pqam0Gq10Gq1ABx7vXySpBfOvW7qnVMhxcnYJ81oQieI4zNq+dUO48o+gKQF3pVypsX8+IxaB7yzRml4GJECKJ3svYyeN3nXutYwPCfyoKAzAjt6vAHb15U5Td+VVC2nhjt6/fq7qfdTFCnJXoeaj4d1MjySYUh6cC35YV9SvrztU6AtEqwusBRUcJv0B7mw9nEnAgJVNnWHNp0kgHj8+Ph2wBOFIvO/puFjwa2K47xaZeePqaxz8olOyzoOeCjPXp7Ub68DHc9lCoLWKSMKlKdoQla54nxqm3meehSA8+ky0d/1MkRljt71dLXtFXhTNml4pB7rkqq/SYHaOOI8xfm9yiHkNU1OkbElmjvKQnz1/XHz5mWls/TfSDZUAV2nSZc0CcAsS2PcfR/jpy1XxO+kdU6D93A4LMK2/ZgkJdePIz034pP5RPySZxqUdAlKDdrG0PXr1/H000/jypUraLfbI2CEO0N6Y7mS7gqLTqi08nLioDDSXROBUeufWsN923ZfW0Z+yBPf1c6iHZ2eMVWQUqAtSjcafFRk6HFTEOcDIAqh9LxIZZM572md6nMu9DlZu4Lq7nAqulyPqIIl5dWI6kvrSgFinueF1Z98uOfP60fbmPxy3Rp3jKSVSNeLsG7Uy6YKL9sjMh7of31GgWOWZWi1Wuh0Ouj3++j3+4XF6KMf/Shu3LiBz3zmM/j1X/911DQ5Xb9+Hbdu3cLS0hKazeaI4YRCXtssAhTs024YoXxw2aQ7WekYiyZYvut9NRq3CvJ0N1IlB6E6HlITWSSXnBc3ikRhpCn+U4aayLuu70agSg13fE/la/ReBJpSwDGl9Pm7fl3vK7lnnn3Mgbm2lW6fTbDGs498LZvz4WmWlUWf0fdUxk9PTxcbJLXbbbRaLUxNTeFDH/oQbty4gc9//vP12rYz0M2bN/Hss89icXFxxMCcIva9qG392qMI2JQmBUMRwE3dL6NUeHkKWJTxU2UMlr0f5RX1gXF1dV6GHMpU6k4bGxtYX1/H1tbWiaNIKEcYJad7TDhYU73Ky8V3HDvQCNtut9Hv99Hr9dBoHG6Y9IlPfAK3bt3CL/zCL+Dzn//8uZRd6ZEHbTdv3sQ3fuM3otlsot1uA0DhpiQC1nA0VZ7ZsaPDV6enpwugwA6gxwMo4HEruis40cJ/nzCBYwWF/Ch40GcUtKkSHk2qCgJ1wmfHVkXQrbzOL/NwvkmuNLkHTwGRe/k8P97TkDDWiW7vz/pi2VWJUk+CAzElvc73+K62I3AcYubhXan6cmWT3l4qQpubm9jY2ChAm24SQuXbQyOjPLTeXRlSwKntSw9bp9PB7OxsIXympqbwTd/0TXjppZcwHA5r0HZKunHjBr7hG76hkA8U9tqHgVFAr//5OwINHgnATWpUNnl4eNT/o+3nAZzoazqxqWzis2740LEfGUo0XfeeRF5xNb658cXrT/OIDFbjFJdoUtfx63lonemCd5ajitJSxlMU0sn0AYwoFuSH9RXVvZMCNipFtGJTTiloGwfc3Eg0jlyOqlJEo5KCto985COFhb0GbaenW7du4Zu/+ZuR54dbmus4V5rEs3lWD9ukYKnsnciIU5bGaamqPDmPtMaRltn1xrPy4GNU8yt7vmrdlrW9ynhuiLSxsVGER+rukcDxcUaUGbyvfKmeyv8+R/n8yOdoVGq1Wuj3+0XodqvVwrd/+7fjYx/7GIbDYQ3aIqJwV9CkjaHKvYciuVKtwM0naCoX2rEIelyp8XAXdgpfOwbEigww6lnSsig/vpNgZPl2QMK09L/XW2Q9dWWAilBksXYFSetZ6zdlDfJwIwUbDgQ9vxSY8WeUypRmr5doYEeCMQXmorOPuCObe2Wj+nRKgdCoXKoAA4cCptvtotvtFqHFKuxarVYdinQGcrmjAErHs8okACfa33/zGc0n5WXhmNV0lTcFQ55XipQHHaPaF3mN0QbMM0UKSDX9iJey8eDPkRem6zIukgXjeI3y4LsOVD0vbSsH4KmQSPesu2xN8aIAnvfZXmrI4Zzku0Zub2+HClHVOqkKGv1dWqxpRGLYNo1XPG+1Xtt2PqRyJ4oEmpSiOeOiPW+Rwp/SLyLysVOVzgqynFLybhJK6SGTvnsWHibN09svak8a51VvojEpla7qqC6XyuopBSB5jfsA9Ho99Ho9dDqdEQeD74NxnvTIS70sy06cSK4VmzqzjUqyemo4oep5DxRkBG18no2i4X3q2aGCpoea8j4tlroBiStC2hE1H+2E0YGp7gmLAFskQPWAagWLajktE2YawpUCi9oOHu7FewqcI4DGdnEeqRxqPTr4oyfCPZIsH9Nm3qqQMv1I0VZLfgR4lW8CNFqI1tbWRlz8CtpcQdN0/Trz8vZjP1NBQuWn3+9jcXERc3NzmJmZKYRPo9EodjqsFaOzkfY9BW7qPXXDB/snx6p6YFPGDo51PRrAQ4SVPE8ff9F4TwHGaBJ0L7cas8YBI4960D4dAbEUSNJy+Nh1w0aktEWhiCng53Xja1Cj91U+8aMANzIOTaoIKLBWo1MU+UEFaHNzE9vb21hdXcX9+/exvr6O4XAY9olIUdZ8UqBSy6Xvsa0HgwGuXbuGhYWFQi4RuLGO6nW3ZyOOCzfsRXPZOHJDBIlpeKhxiibJUz3ZLheUJ6WU7Im82Q+S3KATkZf3vHiM6kJl0bh3U/NElP4kgNh1NO4Uub6+XoRGrq+vn9g1UvOkPFE93Y1Y3t9VJrphjc90Oh3Mz89jfn4ei4uL6Ha7hReQXrgatBkNBoPiMO1UJ9GJQJULn5S1QXTS9IZU5cPPuoriYb1DR4p2SqlSUkDI/6nJkpNapLgoX/yt5fYQJeUtlYZTFUtRKk3m6+FMFPh+7p0Dt6qhGV7nauVPPa/pp8qTKrda4Hk2m4YcRWFXmrYCQ+eJz0RALlKaVLFnTDY9bLrrJ/Ps9/u4evVqcRZKTeNpMBig0+lgMBgU1yJAr0oqr9FIpGCCbahj1Mege6GZVpSvk8ohD7nz9yL5Ecm6KI/U+PEyRNe9DCmgNSmVpeGySZ9XWeNy0uvC5VKZ/HTexoGe6HpVZU7lEpUilU26wL8sDeYZtQufKePJFScqPe12G+12e8RgqXkS2G1ubmJ1dbVSmWsC5ubmRnSncUD8vGiSOXrSdJk2/48zDD1MOitvk+hep6XzTEupTIal8qSM0i3++VGw5vXKOVAjmDQ/NwSO44P3s+x4LwAak7jTPHDsEez3+7h+/To2Nzdx//79ySqqhB5J0DY1NYWv+7qvwzvf+U7MzMwUyox6nvgcldEoDIgd4eDgoPBy6GYQrrjwXT2M2r0zarHxSYZE5UqBmOcRKWWklDVMtxHX8rlS4Tzx93A4RJZloRdRvT/Kj3ZUBSYEB/qM1hX/RwqBl0PBsr6jQEMV4GjQ+aBOTR5RGKrypHy45yAKFWXdEKytra1hOBxibW2tsGgTvKkgUZ7Vskw+uEtqSqlXHhSs8d3p6eni0Nr5+fliExK2IzdIeeGFFzAzM4PPf/7z+Kmf+qlK1rcnmaampnD79m284x3vKM66cwVevZ2ukOrzKpsU3KfGDe9Fa9uYt8sMkhuQyhQrHZNq/VVyy6SCHQULURm8zgCMjAFV0NxjpO96ORUUupFjnOHEy6T1FckCPu8GH69DktaPlisiH+d+hInXgfOr9xkOyYX9u7u7uH//PjY3NwuLts4hkYKvZYnkT1mkhraBGpR6vR4WFxcxGAyKSBqmRX5v376NpaUlfPazn8UnP/nJWjZVoKmpKbz00ku4fft2sW4/MuyRXDYBp/OWRDLHDTSTgjnXQaJ5258vMxhNQucNPlP141FG4yhlzCprw0hOlr2bypfPpvTecRQBJuo/1J12dnZw7969IjqJodu6dEl52NraOhG5xI96w3Qui4xPvM4IltnZWVy9ehVLS0uYnZ0t9tHI8xwbGxsYDod4z3veg9nZWXz605/GT/zET5ybfHokQVuWHR5mx12PgHJvR2rSUlDg7+ukGU22LjAcVJXx7hOVp52iiHcvuyoIKQWtLF2dnKOPP18lPfIVPeOCKFKq/H1V+jzsJ8prElKBo4M3xcu4dEg0CNCSzW89V8RJ6zGaWLXcZW2uzxI0cGc27hapIcAUlHt7e+j1elheXka/369WgTUVsinyGkX9KFLY9b+uXSX5s0q6MUWq30Z9xNMvAw4kgkQgNgRFaXseSmUyJQIdVd4poyrytuxdlTkpGZkak1XTjCjySlZVJF2uqDWaZ0S6oaCKcTH6Ts2vXmb96CYkuumU5rm/v49er4eVlZURj3ZN5ZRlGQaDAZaXl4vjZsrAdCqNqgq5hgtfJEWAzfm8CC/faYnjosx4/LBoUrB12vSr6qZRhJLqTq6fKrmjgPJFQxg5T/pzEdHgqrva0tBE3Yl8drvdQj6dRSd1eiRBG3AMTtQToVYhtehGoT46sKmw0kKtZ2ixEfL8eK2Jhh8Bo9tWky9ds+Iep7L1Hk4KbnSAq2XB10WoMFAlXCdptyIo0bLqO1gqRV5IVyTc4sK6iBa1O1hKAaVGY3QR/d7e3shavGhycMu+K8leLi1L5AXxdQDaRm5porChV+3evXvY3t7G+vr6yCYkXLcUefLIswoarldiPnqGUgQG+C7XsvV6PczOzhZhxuyH5GdjYwObm5sAUGwGcJ6C50kglT3cXt89uXxO5QnHLp/TyYV9T0OG2RfduMTxy/R3d3dH5J2HZvI9nwAjEKHKul7zMaGyz/uPe2BSHqtIVkWWXfKn84HypOTjlONceUjJZJdx7t2PjEqsC1csIhnJPNTqG9VJmULsYEnnLDXK7O7uFrtErq6uYmdnB3fv3i02IfF1tlHf0PahQqP3FRhEMkoVqX6/j5mZGczNzRW7srG/cl0dN3ECUKxzq2VTddL5hf10nIFjnCKfAhmpcGvywWc4jvye55/iMfKiqVGzShn0vSp0FhDIPM4CIlMyMjKkROMu1eaTgPKUMafq82XPUa/Z3t7G5uYm7ty5UxyovbGxgZ2dnRG9VnVH1/fYx7jbIzcSAVB48KI5iu8z7ZmZGczMzGB+fh4LCwvo9/tFv6Ux/u7du9jc3MTm5uZEGzhVpUcOtGkDkHRCigYqAYgKBf5WBUknSp24UxWvHUMFj4Mp5dstP0ynCqnCkmXHZzRFgC0614uTdZlw5HM6CCIw5AJD31Hruz/voCu6T768nVMhRpGQ8nRV2UhZ4lzZ0kEf9StXYpQX5SNSkBysufBx5UjTJACLlM6ItF/Qgt1utwtLETcboZBUb2CWZcWGPm7xrmmUdMyn+pW3bdQvgeNx4kYZvgOc3OpdSZUYNyoBOGFISik8PuZS7e/gyOWiK2VeNyprxkUtRHI3elaBrwJjl02RcWgSitpG+RwXthWlxzHtIDWlqEUUySb/6JIA7srGnSPLAFvUB3zu4XPD4fDEc1pvCtxULumhtQAKXjQ6QQ0htWwqJ5UlCtiA2Cs9qX5yFr70uyy/MnCZMojovPwgvG3nkdckHvPT9vsy+VFFtkySR5W6SM2ZKd0pkkspWUz5wrVo09PTxTb9NE6X8c90m80mut1usTkSz1+lLFWQubu7W7x7nvLpkQJtrVYLzz//PObn57G8vFxYi3QnQhVKVDodkDngIzmo00rWnSNJGg/uVm3trA7idJLit06i/AaOO6/zrUoIO7daXh20KmB0C3dk+dePWuM9LLPMte8DyetFXdcKirQ8Wm88MsF3otL6copAZKQkKymf0be2aZYdGwS0fgFgZ2cHW1tb2NzcxL1797C1tYV79+6NhEamBBWFVZ7naLfbRX56WCTzOjg4KNKLQDx5ppCZmZnB7OwsOp0OsiwrdowDDgUYARv7YqPRKM4cu3v3Lj73uc8Vlu6aDqnVauGd73wn5ufnsbKyckLBpQzS8e19KWWt9v7I5+m19rRSBgXtGx4K4nnoeWP+8TFfNhlHiqFPhDoG3BtOUmNONG5drqYUuEg2pe6nyqVAjN9l56JxXDovZUqXA0l/JpoLovrgfQf4DI2j15+WbF5T2eR5efm0XX0OU+9wxB/HBUHa7Ows5ufnC4WKso1pO2jLsgzXr1/Hxz72Mbz11lu1bEpQp9PB133d12FpaQnXr18fMURr/9FxpIbTlLJZxRs9ibKeoirGDs/HeT9PsKZGA79OXi8aHD4II8UkxjQ+Hz3jhsWUDHdjEnUnboSmwI1zn+ev8x7T5XIQzml7e3u4f/8+Dg4OijVo0fpO4NhI3mw2sbCwgOXlZczOzhb7Cqyvr+Pg4AB3797FcDgsIhRY5hs3buBbv/Vb8cYbb+CXf/mXzyyfHinQ1mw28dxzz+H69etotVqFANeNQ7STeUiSThROkYueHZVAgde0U6gV0S06wHEncuATgTj1tkQ7JbpwJUVgzPmIhAv5cq+WA0aCHipEUb6R0HdQ6FZxBZpeX1puTVefpZeKPJyGVLFJKYquQDk/qfypGFHgEMARFOmk6eVWZSdy86tg03GgHrFI6HQ6HczMzKDf7xdCJ8+PD1elhUj5y7IMKysr+OAHP4jf/M3fxCuvvFIrRkatVgvPPfccbty4MSIjDg4OMD09XdQl+6saeTgOU8o3vzlm+D8a4xr6lNoBkuMq2kApAlV8Rye11HhzRd9lROqjiv9pLdSRDImUmmhS5/vkQ2WTv6sKrdeTWl01H/e4kaKIAuXJz8VMkYPMlOKoBiGVT+vr67h//37hYfPya19lflofmicBQeqYAK0zzimUTQRtnU6nqEcaX7Vva5pXrlxBv9+vZVMJtdtt3L59G08//fQJD2oV0jFKqrKxQpVx7DpAZEiPImxS5GPuosHTOIp4GFeGMnLZpTLX9ZKq7RsZaM7yXIrfKm1HUEWvFY1KPHqEu9qy/3LOcHkLjG5cRc89cKg78rgAPXg7ZVjkDpFzc3NYXFxEv99Hs9kc0ZlokN/e3h4xily7dg1Xr17Fl770JXzhC194skCbd0YV4mxkbSRXXHxSd6XblR+mwzSbzeaIZ4tAy0nvs+HUc8SQjwhIakeMrDkOyrLsOExSFTofvFqHXkdlda3Kl4Mz4HhXxb29vRNhMZFi5MoaB5tbwNVS6+VRwRF5Cb3sqTAPBZVsy0iBUv75m0p3lB6/6VHjGgx+dNJMGRCYjwohgjT+z/O8SEvXw7kgp1LOwyC5Ta1anQjaaMFyQFnWp2o6JDc2RF5wB2+UBTSM6LhRRcknS5+kCAzLJm79VuCm6bghiXnqGPJJMgVuWF59NzVeNR8FcpMoXJFCoWn5s25MS1Hk5UvJQ31HxxDf1/Qi3pUcDJbVBeU6ECvTLK+GGGooj+5i633C+SkDwm588jnA+xXXfs/MzKDb7RYeN21/gjZP18dKLZvSpHUXAd8q7/O7ap+clMoMG0qXsZ3H1UNVT9UkFOlXTm68iZ4rA1KTvj+uXOPus28yRHtzcxMbGxvFTpEEWN5/XR74/EPjD43bDAdXfdvfVR2X8mlmZqY4y3Z///Dc3dXV1UKH8s2bos9Z6ZECbUpUYqnITk1NjRyYTXAEHDaChtZ5B6TA10nVd0TjBK+KmHvDgOPDrTXszwcrOxJ37dP8iN758c1RXJFx8OUD2RU53dRA0+W7qck/esaVSR80kcUsUv5UWGs+bEuCcQ93IB+aF7858UcWap+AVAn1rdS9j/A9D8GKlAkKHXrYuI2+bhqix1Foe2qeapjQvCjceE8VSVeEp6enMRgMioW0vV6v2PJ5Z2cH6+vrBWjztosU+ppOUgqwEeSzzdjmShoNEClIQBwmqX1Y5ZKCd53glCeVad5fOH60P7phSSMbonWqJO9LDgy973N8Vd0i2UFRZOTxZzw8NGWs8We0XTlxa9vxWQDJMrgHIFL4tM7VK+r3tbyat3pFtQ9Q9nCjEY0C2NraCuVfpBxq2ilAUKZss1xcZzI7O1tsQsIwbgCFcuVgWT9Mr5ZN5UR9SY18ZYr/OGOnPgOcTzhg1TSq5nsePJV5+zz9yPieMnScF/kcofwp6Tx+XmDbDSdVKPUc9a/9/f0R7//du3eLiAACLuc/mgN43fV0frjmjGGTKV4bjUax6Qjl1PT0dMHL5uYmDg4OChCoQNfl43nQIwHaWq0W5ufni0NrUxUcoWz1iHDwKOhQxWSctUGVKvKgaxlc2VClStNKhfTpAFDlJTX49L8qcQ6eVBnyQRbd0/JG9eA8uNLgwk3XRvmGG5oP20UBr+eXEhJldaRl8j6iz3j5FQD583qdH1/D4Ydoq+KuoI2kADYl5KN2jspE/qgU8aBaXeCv7avKWqSEkdder4cbN25gdXUVb7311olNBp40arVahUBvt9snFMdoElWDhI4XXZum7+pvBzk6ViMFzD2mJO8zqmCwzd0Q42mr3OC4jWSoy8DU2PQ8HHgxT7fIV1EWVPZr/r4xk48pTV+Bm+YZjVmto2iyrjqBp+SA10GqHhVgezi1yieCOS9DKl3n0eVQmZKq806z2Rw5qJYKlNdvBMJ9Luh0Orh+/TpmZmZw586dJ142AYdhkcvLyxgMBmi322MBtcqfSekiQhFT6bnhQ+lhAncdl2X65EWAuHHlflj14uWNZAr7pR6erd5/X/+vadMA5How7+s383d+omuUT+12u9h8RAGezq2RJ9LL2O12cevWLdy/fx9vvvnmqcMkHwnQNj8/j2/4hm/AYDAoPARKPrFTyFMRJaLmluf0PGTZcaiibmkeKQoARrxLtJjzObVksgO5JcvT5gYqannnhMX//NaQOg2RAzBiNVPli/koKNVwRA8XZbop0KZEYBVtpqJKvw4G1llKuWF6usGC1m8EoLRsOiGVARqlCHRp2nqoq/JLnmmxOTg4KGKZKWju3buH+/fvF4fU0j2vwFU30FEPaKSkaD0r+IuUJPbxdrtdbDoyPz9feNpUQdLykQg++WF45Y0bN/Bt3/ZtuHPnDn78x38cX/va15J95Emg+fl5fOM3fiP6/f4Jg1JkSGDb6do21q9vpuT/I0oBDvW+ekit9pvIQJJlWdGnnR/e14lSgZQrhd43FeDwtwI0l1XOt8qtqI75PO85iI6ARSos2pWvlAIQySR+64YuVT2HEa+RLCSPPvb1PcobKj4M4VlbW8P6+jrW1tZw7969Eet1qiz+HQG1FC9aV2zb6enp4vgRngXJLfx1buIRNBoBovIJODSeXL16FZ/4xCdw7949/ON//I/x+uuvT1TfjyMtLS3hO77jO4oDgFMbkJB0vLhhICLXlR4knacXLUovNTcC5QBIn08ZYKsCKAcfVdNIybKoPSOdpipFMjH1nMsL1ec4ljc2NrC9vY07d+4Um7dp2KHKGebJ9bDqhePcpx59lp33VJd3vRk4Dovs9Xq4cuUKZmdn0ev1ijbVdf9RXXrZr1y5gt/+23877t27hx/5kR/Bq6++WrmelR4J0MazpQaDQWhdjCbniHSyU2VFradZdnKdmoerkSd2CvKhQM69TRrGoQqIh+nw2wWq8qjARy3iTg6YdEBqWVJW6BTpwImEUqotIsUlCivy3/q+/o4mHKY5CWla4+rA60mVcCpI3JLWD6l1cO1KjoLqSOHX57z99BneIwCmp63ZbBZATevdlexUfrQ8DQaDYtOTJ50o2PXwcQf+KYoUcB2fOubHGR80L08vtVbOedHrOsmq7HDDictfH/sp7xvL6Zbpcf2vjMrqKCVjvN9XUT6i/zpmffxG7VtGk8ivyOOmv9XQRxnlx3pQYUrNIePkchl5X+F3lmWFUYnHjugmSlEZywAhgAIEcrlETaPyid7U8/aGVQVs5x1KeZ50Efyc1mP5sOhB8+sGc/X+q+6k8ik17xCYpeYbvuPvpojpMQKAG5G446YqZVlW6F/7+/tn0p0eCa2r0Wig2+2i2+2OIGN+syL1TBfgeJMMVRAU2QPHSoUKep1UFNC4Nww4Gaqha9B09z9OnOpJIV+6JTTzbrfbIx5BtRqoMkVPj1q5tQ7UKsEOrxZy5qlrq3R9lFq33eKrHVe9AtwUQdNwZcItLmoJIq+p9WrRxK5g2vPwZ5wU5LhipXWmiqwKGm4ucv/+fQyHwyL2modAcpvaaFdG1o/WfwSivEysY/Y1NwzQ+tTv97GwsIBer4e5ubnijBK1ZOsObV4vvv4qy453UppUgXscSUO8tO18gtHNf/xb+xOfB44NS+oRjSYrN+7ohKTp+vjm/WgC0rA6HVtaFg0xV28c30tNbFFe5IXkQEG9LGUGqsiL4HyqnHYjSUpueJ2TNNQ9ZYDSNFy+uKKUGlNq9Vc5ERmbNBRye3sbBweH21pz/cVwOMT9+/exsbGB9fX1Yi1GWWRIxFcZrzoONA0qQ9PT05iZmcGVK1eK0CONhCE5Xw4CfXfNKPT7SSadp9zLpt/qwY4U2sjAR4o8Ug8TlJV5yJyiZ9hnz1qGKp7KcRSNsaoGphRPp7lXRpPw4ToU9WLKpTt37hRr2e7fv4/d3V1sbm6OzClMh/JEo5RcH2ceGrnmc4XKlzzPi522B4MBbt68WRyR1O12R+YL113L6vEshi+nRwK0UThz44QsO969T63J+t+VFyWfmPmcdghXrvieo3W1ADpAUpDoQEq/NW9g9ABqt0TzvnYMtzCUDXQFDFoOpqsCy8GL8s17qTWD6s1JKVn+3zu2l8OVq5RiFKVfRemIgJ+nrfWoQoc7sem3xmOzPhW0e71WscSz3P6JQEKr1cL09PTIehEu8Nf0IkWVpODOAWxNh6SThrZFNMZSyr+PL31WN/zgdZdv0beOa82n6iYfblhRUBlNVtHENEm4jXsZy+RZ2fvu6XQlJwWgWFYvt5OOOVUQVTlIkaY3iULn9eljnqRyiUq6rlvb2dkp/vO3A6PTKoWRDNf0eI2GPR5U2+12Rzaa0vRYpsjTpoqap1/TMem8A5R7pGsqp5RMSNFpgdtZgFlVepCez5QOSGOCyyTutK3r2aoYlPy5qK/7vBgZIaanp9FqtYpdI7lpoKbr+U+ix52FHinQpq5JtehqGBhwXHm0uEXAyid4B0cETrQMkgePj+Xz/OYulWx4phFZgKMOpuVRT5cr6cDojnPczcaVMT7rk7KWV63kAEbyL7M8e3r0VrJtfJMWfTZSOLXtyJfXlz/De5FlP1KWldxS4goHhYo+qwoRgdnm5max9St3OeJCWj+o1vP3+isDm1q+CLhl2aEXrNvtYjAYYHFxETMzM1hcXBxx77vFVccW8/ONCVSxiyzyTzKx3tQT70Jbd2Pks5GCCxz3C/Vqp8Y9x5L+V3kX9W/m78qcPhOBAd5XQ02UNtP3MePj08tL0nV+3r8jg8o4A40buJzvFF9MWzcrcRCo85G/53JeJ3V9P5WvPutyMaWEU2apbKJnjd+6zb/vFhnVawq4lskANygBGPGwcXOM+fn5QiFK9T21puv9lByqZdMxsW+nvNk+RsvSGQcgximrD9P7NglFesJZadKyl9V12b2qgOE8DRuTAFk3dFM+cYfIO3fuYGtrCxsbGyNb8ivP3pd5HqRGHbks0bnOI1rcGEqdaX5+HgsLC0X4dlmZlNwxct70SIA2YNR9D5xcbD41NVV4ETRMTBUYBy4+QWkla6gkFSMNTfFG9Elb39P/PoEzb+XJN8SgIhaFVjFt7bSaZqT0K5BTRc8VSk1X61TrXsvieTvoUhBahSJwyHRUkVVA4WsVHejqYHalWSexCGhqPWoM9s7Ozsj2/tzWn9aiiFJgVuszmjwiAall5DoRhkZy4xENG4omch9fWt9a5ykg/6STK+AOnBwsRN5Klw2uYHm/5DO8lvKARsYRl03OR2rccbxF6UbjSdPh2C8Dbj6uWVdRvUWyNFUe/WY6TmWTrdaXUwpsKI+afhlo87Efgfkoff3oujVarrmgf3V1deTMIy9DRN4fondSYECJxqFer1dsisSwyNRY0HqK8ovKX9Molc0t4xRL77NOfn2S0MQygHEWkHie4PBBAbZJgE+ZvJmExhlezkJlxhQ1em9sbGA4HGJtba0weKux23U951v1ZR//qp9GkU5e35xnOp0O5ubmiiOSyo4EYHlS98fJ79PQpQZty8vLePrpp7G0tFQcbO0DwC2x2hh6JhkwGk5BpUo9UyrQaE3W3+pp445Wruy6oqYKSKoTRe/yv4aD+toMnew0P53AyqwKmq925ijsSTc/KRsoQHrrcvUGpBS3lILg/Pj/snd80LsSxTRcGdaPgkIKHAqXtbW1kW8eAMn1a9ovo0nOQ8EU7OokmFJQs+xwDWSe58Wi88FgUKxho7KkHlXtS9qPyoCZ/u90Orh9+zauXbuGL33pS3jzzTeT7fU40tLSEm7duoWFhYWR9WwOXIBRoOZr25S0rzmlxhif1XQdFERjn542BXxugHFwFIWvOfjzse7/tY58EyYfpyTNI+r/Lmc8ikKvR8BJ/0ceCW+DlFElIuU7is7w8nte2kYkLV+kkOh22bobGw1L3HykCu/ef7SfpBTNSB5nWVaEQs7OzhbH91CmUgapTPKNSbROIqDGdzudDt7znvfg2rVr+I3f+I0nTjYBwMrKCp5++unCk+k0ztABpHcaVJ1qEiOsUxmYqTK2zttz5yDwNOM9la5SGVCN8hnnPZuEr4sIHU7JAJKO24ODg+KMyO3tbdy7dw/D4RD37t0rjEwacaRyJKX3RWAu8sJ7Ojo/0MPW6XSwsLCAxcXFkXW246jKOCB/7XYb73vf+3Dr1i288sorE+9ye6lB29WrV/HRj3602PlOhbVPgKoUs1F0G39g1EWq6ahbFThW8n1zBipEujkDUTjPaGK6riTzmltENfwu6mTu1eJvT58TnabDd1Pr3ZRfBZbsgEzHQYU+H4Ve8DBsbRfNCzheEKp5RYpSpMS5klg2wCPLC6+zzZ1XfYY86layXOBPzxpDjlZXV4t1bAp+NLxHgbXWrSvUvJfyzmqZGo1G0Q95ACRd+4zNjjypbAf1wPnmOSQfM91uFx/4wAcKL+OTphhdvXoVH/nIR4q6ZQidgxuVS2x/B+rAybHOa972qijrt3ulVBZGR6S4Ah4BHb0XKRJU/L0skRFC09N+rXk6j0qR3NeyMF83+njaCoKiST/LRsM//V1XoLzsEYDVMkRl83fL2rtMNhGMUSna2dkpjht58803sb29HYKtlIxM8TeOvH+yjrigf35+HouLiyP9T/sJZVK0KQn5TRmWKJve9773YWdnB1tbW0+cbAIO5dM3fuM3FuHwqTZ1Snnro+dSwO08wNRZw/x8jJ6GLwdtwNlC3qrWkY7PSUFWWbrRnDPunTKq2kbMiwZvGrg3NjZw584d7OzsFMeORLpOJKej8qj8HMeXyx3qTnNzc1heXsby8vLIhmsuNzWvsj4Rydput4uXX365CA99rEAbSRWHKsJHhb+HKfF+CqxUaWxVkHwXyjKrgIam8X0FWurt0veiMnMARGAjAniqzPhv0sHBwQlg6WWIBon/j9YnaFqRohitCUnl7Wlp3aasg64Ae7mjkCUtH+uboY9bW1uFK58Kki+ajUC38srrKQs8eXHLurY5DRNUcnq9Hnq9XrHxCC3WqhRpvSmf2gejzS+U3HjxpFKqH6UoNeE42NC0U4Dd3+VvN7q47HRQ5XwpsOI1plOFtP8rkPK+rTxWpZThQr89j+jZsvTKKOUFjUCa5zmuvCm5FL3joE2PGmGI9ubmZmFQ8i2zPU3tf1E5vG+mZL/WuRoNGo0Ger0eBoPBiY1HUl5n1oHLfQX8Xj9MT41RNVXr51FduQyo8l5Vz1IZVX2nCjg7izcQOBtQU6pipPLxN64eVLaMA2ya/lkBW9V3CdboYRsOh1hfX8f6+jo2NzeLXW11TLtu6nWjey9ouVSP4TV9X0nBWrfbxfT0NGZnZ4uz2FRvcvmT6g9VjI+kqsaRiM4M2rIsmwLwswC+kuf578iy7FkAPwRgCcDPAfj9eZ4Py9JIUZ7nxeYWrkxHkwsrlcokFzhrg/rg5WTGjqXATb/VysdnyYdbyPmbeSkP+hwVct5zb5+mFVlIuCaB5YpAKv/rxiKahgtzB59UvNRTo+lGfPq2+64sap1pmVLCxNcDuWePZdc0HOCwbF6HJAWO2nZMj2tDVldXsbm5WXjZ1MO2tbU1AqTdg8uyaL2UAR+mQ8BIgM90siwrPD0UNMvLy5ifny/isemF03IrcGe9kE+uwWP96TEI3gfzPL/UitFFyia2re96p/UUffN5PcoDOKmw+3UdM9EYZnu6NyIVkeBjI/JSubEjMpo4+fPaXyPDiD4Xyb+UjNex73VcBp4033GTcBkPXt/0ZnobUnYCo+GMqbz42+cgllX/cx7ikSNcvE9laH19HW+88Uaxxi2lFHkdeX1F4z4i9yZTtvHQ7GvXrmFhYaEwKHEcOKnXWvuG5699Oepz5+HxuUi6SPkEjBprUmD8iI/w42m5nPfd9FKU8jCd1gOWorJ0qngD/VpVZX0SGgeeU/LODVCp6IeqQOpBjQ3qFHt7e7h37x42NjawurqKu3fvFuGRbjTXd6O+SNnB3bEpH3j8Ukpeuy7KHWyXl5eL40fm5+fR6XQK3SmaLx2LTFIX0e9J6Ty0rX8bwOfk/38C4D/P8/x5AHcB/OGzZkAFSSc9b4hxExD/c2JRK59OMFEIkw8YYBTscf0Sfyu/wMlB4nkrD5pfmQLCdPnNPBSYscxqfXTwFaUf1a3WcTQBRBO7d9JUOzlPqbJqu3s5IxpXfxHf6mnyAx91wxGuZ+P6taiu3HrEsnrbejm8nlRAqBW51WoV2/l3Oh10u110Oh202+1ip8hogxzPS39HijX5TtXteUxmF0QXKptS8ifqC1EdeR26UcTlgLdNGVBRxdVlp8tP5YffLpuifquARPMsq4eo/GX1kKpzz9O/y6iMT5ZLeXFK1XeVSXmcjCvj342IbFvKJ8omGpQYqu2Go7L5supYTrUbZZMeNcK1bHqQdmRp1n52mrwjwHlZDUpHdGHyaVxfiugscvwSzwGXhlK6z1lJ06iS3oMAbHl+vPyHepN+aARXZwnfi/QpYHS+Ud3J91cYZ0CgfKJc4oZIXIal8qlsjn1YdCZPW5ZlTwH4bgB/FsC/mx2W6lsA/L6jR/4agD8N4L86TfqM0+dvrTjdWh44eRaRgwy+H7nytZHV68D1Zn5OBDuYLphkurr5Cb0j9HRQedN1Td5Z3XKoebtHj+mRTw+DY16qNFKJ14mfHb5scXqkfKoHxgGkv+tt6OsN+Vs9ZK6IsS8wD/VWuBW7ClhzQKODXw+n3d3dLbaiffPNN7G+vl4smlUho+l4PbjXVZ/hpjbKswohtmen00Gv1ysOzm6325idnS0UpGazicXFRczOzhbx2EzLyx61lwJ79otxYTGXNTzyomUT200nEQ9BAU53Fpf/Vq+2Gy6Yn/Om95meesDZtj45RWHKnnfZBJnyoCufPhHqePYxH3mctF6ybHSTJ007AiopXjxdj1ggDyn54rLTow00T38/uu9Wc5XVVIa2trawt7eH+/fvY2dnB6+//nqxtT/Xrym/2nZKEeBx3vxZrwfOc+12G/1+H+12G3Nzc8UhtTzzqNfrjRgoWdYIgEXyk3XhpGmVte1loYuWT0DsTU4ZIcqMdT4GUzLN2yzyqimdN3iIPE0R/xE/58VL5D2cJG1/33UCPlPmVSu7d9ZyRmNL86OMoXyi7sTt/NfX14st/Xk+G6OBsiwrDE1u8G40Dnd1bDQahe5EGUddrUzWMg01Jq2srKDdbmNxcbHQrVJGpbPKkkkNKGV01vDIPwfgjwIYHP1fAnAvz3Me/vJbAG5GL2ZZ9n0Avi9k6mh9joac+KTLxiOlFBefuMsEjr9HBdvBSTSQeJ3/NUwusioyTx2kqixo56sKphQURVZHLaen4d8ppaJK50spcqoQpngq40958GvOb9kgS92jwKEQ2NvbK7bGdksR77mC4aBb+U+VjfymvBbqiW02m4WHjWeyTU1NFaCt1Wqd2N5/kjrQNqlq8SaI1I11LgH9OTwA2QSMblARKS56rQwIe5v4uNDxrXk6RRMX+5jKqCgP/a19OQr7jPJ0Ip8KFFNl1zz57WXUseTppXjwekjdS9V/akyUKUApGZriLeLRFU4FbFEEgHr/GTrvZXLZqfOeGh1SFIFj8spxQYMSD6XlN73/Kvu1Pn3eSoFwnTPLgHqWZYWsvGSyCbhA+aSG4knJ2+BhUdVQv7L32E9Om9ZZyIHMRdTpOIOqUln5z7N+VH9i2DaXkXCtLa+r8U/fV+MYiUbHLMtOLGXSsR0Z5Si3KZ94JBLX/lNeMewypa+fhVw2kajDUZ5XoVODtizLfgeA1/M8/7ksy7550vfzPP9BAD94lFZRmizL8Mwzz+CZZ57B3Nxc4U2JGlEnGQVx2ki876CLjeLWF10XpoqDdi7tNO790RBJ7qLoYZeM2dfOobtRKulaNLViKD8p4RCBN+apZeF6h+jkeQUVkeXOz5RTioSmv++KgisDrtToRO3eV9aPKnMROPQBqe1FJYjhRVyvxhhsrmljO09NTRU7DKlQUU9aJASiZ7yfqLt+amqq2HmNu7C1Wi30er2RPsZdVsvIFXIn9mPvTz4RsPwvvvgirl69il/7tV/D5z//+dK8HwRdtGx69tln0e/3R4xKWufqRdBxAhwqVR4OYryf6PskNeq4kUl/u2U5+qYsYN8kz6kjCVRuRIYllX9aXs1X3/cye73xPT3yJOqvfjSB158rBFoeveb1qm3hCgD/qxHKDWteZvKj355exCtlEy3Qup3/+vo6dnZ28MYbb4ycweYg29sqqgcHy04KqqMycBE/D84meKN1m/kw+sTBm6dXRmXeXO2b09PTxbEkr7zyyqWQTcDFyqcXXngBzz//PAaDwQmjnc7lxs/ImPf7bljW9Mq8Vykv1zhSvSH1rsqjMq9SCrhFhmTn2w0Uk9JpwJADzknePy3wmuS9qC44n9FzxuUjb731FobDId566y3s7OwUx4/oJnoaccW21PWrOk/xmu+6znlL5Rz7B2UPj0KamZnB/Pw8Wq1WsdaWckr1qNPWhVNk4CJNT0/j67/+6/Hcc8/hs5/9LD796U+XGsyK9ypxF9M3APiXsiz7LgAdALMA/jyA+SzLpo8sRk8B+MqkCS8uLuLpp58+MYkDJ8NmeE0neFXeU8ppmUWPg81DC1Xo6TlJVFY0LwUWahXXTTV87ZwKED5PJY/803Uclc2VqKi8CnZJmp7Xc0rpiUBvRK6oVVGwXHHS6xGA9s1mlC/PN6oT1i+VIoI2bplNBUkVpsga5PVKfrxc2j+j+6pAE4hNTU2h3W4XIUYaFqmTrQq3lABwS7Xz7L+jSV6F48rKCgaDAe7evZtU+h4wXbhscuVG64pGGZ30dby6hbGqYuAgKpJNrnjrM27c0efduBEZO/g7BdhUhlB+qbxOeXJcaVSK+miUhpYvCj+vOhFr/aT6fdRWqbCoyBMY8ZQaM2q51rVrPIONsonWbD+mxsuVKqs/o896+yvvrCfKpsFggNnZ2aQCpGB2HEArk2F6vwyErKysYG5uDnfu3Lkssgm4QPm0tLSE559/PvRilJGP/YjGeW/KPOmT0ri2Uj7L8qzKUwpgTdpnUvml5MaD9gCW0SRA0Z9VJwbX1vLAbBq+6WGjXPZNvIBy3ZWU8sTxff6nDkU9qd/vo9/vF2cXulEp0o2dTgvgU2ldv34d169fn+hYklODtjzP/wSAP3GU+TcD+D/nef69WZb99wB+Nw53QfoDAP7uadKvYm3TAaWuUgIhByLC+4lJyZUUVTC8Q7DDpdagubICjG7RT+8hlXF60zw/54/gh52d1gbNz5WnVJ2q1V4Hjyo6ulbLFT/f0VGf8XdSE0I0+Pw5BWqqNCmf2paR8PX2VuCnVuyNjY1i57XV1dWR80N0HZu6sRWwq9fRARqVKTcqaN9hvfZ6vZG+zUX8CwsLxe5r9LD5LoRuDPBya90yf7dupRQ2TkgusBlycF4T9lnpomUTyfs7f3uIjo7JMkNSKn39H4Em/3Zl1vNPPUd+VdakwJvzWAZgSew/Dij5TGoDKC03n01N2s6D9snI8h/JL5d1EemzWoeRMuPeLJdR0UYhlA+UTbr50draWnE24t7eHtbW1rC7u3siUkLbrgoA0np2oMZ2oWWcu9ZyB7fFxUUsLi4W0QE6h2pbahun6lPlmcr5VDt4/1UZTG/4ZZFNwMXLJ58Xq4COlNGkjE7jDapCDnzYplEbKr+pZSRl/HndRJ65SRX1cbIpopQn8Kx0Gm9fFVId8eDgoJBP6+vruHPnTuFpY3ikHodEvrjcAzi5P4TKMMp9rmFjaGU0HzJdhmT3+310Oh0MBgMMBoMibFtlmsomlz+kaC4mub7rlALsen8Sw8BFnNP2xwD8UJZlfwbALwD4K+eRqAugSCHQHR0p7Ms8LUou/InSFSSQ2KlcMXawpkBO01UvnXpSFDymFDatD6aRsqC6N5Jl8vAD3mdZtP7GUTTZRuBNP0xblbAoNEM9kK7oucKneVUJy1BPl26ZzTNEKHDW1taKRbW6SyjzUuDpIFeBITcbcU+Ytx3Xp7HcWZZhbm4OnU4H8/PzxeJ+PuPKbFTXXp9KyqPXlyqiOoHpWk+GOwEYWed1SelCZRNJJxQFKioT9BlPKwWSXDY4UNPfPg5TRh43fmm/cZkUjVHl0z1p3re0frS8rCMtt06mLoPVWBbxU0aREuNy3+vUx5LLvOiel1PTZ3uk6oRGnjw/3i6b1uuNjQ3cvXu32BSJ8iiSJZqPj2vtI16PLjd4T4/R4dlGMzMzIwYlPud17qDN+7Dm4+TeuTIlSeV/nh9vVvUIyCbgguRTGaVkTUQOnHzcR+lWoUhBdqOK63GRPhSRj3fvO5rPOGAfjaXTgKJU/02ldVbgNe79caAilRZ12/39fWxsbGBjYwP379/H66+/juFwWBi86cggqSzg5lOuV+k4p6za3t4GcKxnqf6tBmXKpVarVUQB9Xq9Yv2/L19wI6HLUtdrvd+NA21lNAlYI52LJMvz/CcA/MTR718H8KGzpKcVqdcm4GdEkY3SLVOadBJLTQzASSWFSqwDE7d8sYPpboWuILmi4kqNXkspRt7pI5ATeXvUA0dyq2mZYukAO1ImPF334PGaKxWqcKhS4qDOJ2kHVwRrtBINh0Osra1hbW2t8LjRpa/rFJV3bWOtZ6+L6BrbmzwRiHW7XQwGg2LdR6PRKHaM5EJ+FTJaJ9qnxwkYbw8Hm/yt1ijvk1TQfBHwZaKLkE2RfIqeAeKQIm13T1OvRb998vB2i+75WPFJ0Yl9ScGUAynnrwzIOf+RAsG8NEogepZ9TteykSLPYNSvy5SYssnZn4vKG/1X4J6aU/gcjY9UYri2lnJpbW2t2CHSozqq8Jni1cusz+gGSPPz88V22dwtksePROkBo6AtBfyV31R/T/EflVfB27h3Hiadt3yaxMtWBro8veg5TdsNL5NQ2Ts+Tif1mFb1ep0WFJ3mvUhupWiS8qbkWlSHkXF2ElKwRoBG/Ym6kx6D5Tof9XPdT8GfUzkR9Wfeo3xqNpuYmZlBs9nEwsICWq0WBoMBut1uERGg+lE0n0X62rg6etCy5VKan7RSqcQrCnfyimaH1EmNwp/paZiGomt2Js07NWm4xZTva7iZenTU46aeQZ/MonAAPXNLn1NFWsvtO2uyfhhGMz09Hdapd2avv5RiyXw8PwdTkbKnz7DulcgPd/fRtkopLLp7ItNlO1CYbG5uFltmb29v4+7du7h//z62trYKDxvXr0XlioCwKoYpIqhU0MeY68FggGvXrhW7gPHZRqNRKEi6kF/rlv3Iw11J0WYJkfLpClcEjLWMVayUjwtRhrhSWPa81qe2gdezr+F1Q01k7KgywXi/VfmkMkv/q/LLb+api8e13+kYj2QAECs5vM/Q9hRw0nJrhIP3Rx8XXn8OBr2s/tsBrI59Pqvr6JimGqRUnns6yhOVHS7YZyjkvXv3cP/+/cLTpnJZy+FtpyA4qk9XYrQeSQRl/X4f169fR7vdLsKz9ZkUMGN6nMOizb60HaJyRfO+z0V8R41XT5JsIjlwI0V1WEUpTaWf8uIqad2fR5ie5q39ogycnjdF5XZjAWlcmVPPTtJnI33UdcJIp6rSHj72KHcop+7cuYONjQ28+eabuHfvXhEiST1L+6LLIQ15HA6HI7qwlitVXv5utVqFTLpy5Urh+aehifqT1wFltm6UlJKX48ZJ1evn0V8vJWgDjhVBB0VAWkCXWfA0DT4TdagIEKQUo2jCUYUOGF3L5hN0pFxxYw2+59Zx51fJFTtPW98t4yECZl5OplFFIVBrpwIpV6hcMSJFIWYRf6mBpQoSdzhirDXDInW7bAJbtfykwCH5U55VWXEh5IoEv3nQI7efVWBWBo60jlNK6aSkYytqD1fOnzRyZT21liLyiFaZjF15jd6JjAfKW4ofH7+++2JKtug9lbne/hHYm4QimeQUAbGydyJeUtbm1IStbRnJ0khORBQBEwXSlD2UQ1wrwm9GB0R5OthJ1YP+97KxT6vsolI0MzODTqdTyCYNW/d50QFb2Xw1To7ou+PmHM3zSadJx96k5Iblcc9eBD2s+afMg5cCSpOkVwa2PL+Ih3H1UtYeKQBDOcX1/9xdm1v5cyMkjWqK9ERPryr5XEpAxnVqXOvPY48Yyh15gN2wFPF42jmsjCJDSqp+UnQpQZta5JrN5kjjeiPzHj0Q7rGKQB+AAhDRPUuwBKTBT6Q8RxYNVWo5EdPywLwcgHjoHtNmY3o4UOQJ1EnbLfEcSKpk6ASt7/quX5qGlq1MIY2sqIxh1kGtVlhvH30uyls7uyqkUXvneV6sDbl37x52dnaKQ2npadvc3CyAHA/O9vZxRS/P85FNRrIsG/HykTfWDwUJ3fg8J4Rn6/R6PczNzY0IG3qMma6G0jIMVNdJHhwcjFjBU6Tlc3CufdMVU617vndRk/JlJT2rTY8W4TfBFtvdw1pJruSqLInWe0bAQUnHYdRuSgQKGg3gir/+57pM92REk2/KC6L8pTwCXm4vXzTJRYYcf8/rRGW3j1ltk6je+JxvT+3ljchBPueInZ0drK2tFeGQ29vbeOONN0Z2h9R20rKPU9K8/+h11jP7KNerUQHSM43m5uZG6knlss+9Oi58bKT4jQCayyY1HvjYSwHTJ42qKPBVAE8EPFIe5NSYPO+5oYonq6onqWo+p+ElJRPHAabovtdx1L4+TqrwGFHUjtRzKIe++tWvjsgnBWyqRwInN1pSXnRpRaTXMX+VK71eD9PT08URI71eD/1+v9CfVAdL9d9IFkZ1VlV2lAHTSD/XtCeVT5cGtGVZNnJAcBRmkbLCuoKQagyfsHUCjBZBlqWRsjI5iKHyBhyf0QSctNIS4JG8k/sEpV4QzZf1EVmCFMh5/pHlN9WZInDkk2dEEa+pPNg+Zfl6unzGFUtg9Cy2nZ2dkbPYGIPNdSLR2XPjJjgHkKq0NBqNwjpN6xD7Oq3XNFK0Wq2i/yvvavl2pavMUsN2H1eeSLCkQHA0YTQah+Gbs7OzxbbkVZSCR4V4mLkfsQCklXSVA95m48iBkKbF+/qt6ZbJrhR//O/GIQdWDgIjr1uZ3IzklNdfmVLuaaXqruxeFRkVlSOSyVG++pw+k1KYCJ51W38eOcIIAHrglI/UOFXeXeZ6X1SDAsPP2dcVtOm6EObpQDXKY1xbnZZcGRpH7XYbg8GgUDwfJ1Ld6bSHagPn66F8mLJfjesXYUy8SKBYJZ0HbYSgfkzdicZtfqg3+YZ7PvarGJb0XW1HGpV0Z8iZmRnMzMwUXjZ13GhfTtVnxNe4ui0rQzRH8XpZull2eGTK3NxcIfvL8rk0oK3ZbOKll17CzZs3ix3yXKGYmpoa2W5dG0MbTMmVgZQ1REGbWsiVtENEISX6vvLYarVG8tY8Oflx4h4Oh0U63okjC4pPll52B5iqtBCwlnVo5yWqSypXel5ayrLidcx0dcvXMiXY68MVJKbjwGJ7extbW1tYX18vdl97/fXXi0MfNSQyqkOmqx4TNxYQmDG8ke/To8aFsbRi60J+4Liv9Pt9ZFlWrKdj/+GkrEqv1gevs555lIQLJ20j7zuqpOuH/TPqAyz7Cy+8gJWVFXz5y1/GP/2n/7Toy486tVotvPTSS7hx4wYGg8GJHVgVXAOj4FZlhXvoU+3m/TryPJXt0OdWQuWVRGOSG250Ax9vewdsmmYZiFQe1Yil6as80X7lfS4VOeE8qNEnmjA1P/UWav1pBEIZYHM5kOLNw635ITDb3NzE/fv3sbm5id/6rd8qrvvabH1f8/I+5fOTAjSSevsXFxcLa7UrQJRtBAXeVh7O7UqX1oH2Y+0DXm8ux6N5QftPJMeY//PPP4+FhQV8+ctfxs/8zM88NrIJOGzDr//6r8fNmzcxGAwAVFMuIw++G2wiL43rGdFYuCjvmkbfTPLeJDy5/KhikB6XvsraiLfof5S+RkZFNE53Up05BWZ8DFI2ra+v44033hjRnTY3N0d2sHXdzMen55GSV2rkJkgjLqBXjceL6I6QkSzWsup87O2s+CEywLENPH3/9jqM+PFr73rXu3D16lV86Utfwk/+5E9iZ2fnxLOkSwPaGo0GlpeXcfPmzdDLxgrUymcjcYL3xogoZaXUSdsbTBtAgUlkXUwNxAg4kXdNL1ofEwEmn8z4rXWm6fJ3tGmGpx95EaMOqROt8q1Kpr7POo52yqxK0XtaH9GZRwAKKxG9QFtbW0VctitGbMcIuLjSTaJCREGjFk8ukm02m8Wh2FSMKHRYnxREwPFGOhFA8Hr1Nop4ZH1Eiqi3QzQ+ypTiRqOB+fl5DAYDbG9vn6vV9mETZdNTTz1VXIvGvIINfU6f5bUUqQKr11RmpOSET8I6TlyO+v+onYFRQwvDI8uAWYpS49blr5Y5lYff8zKorNG6URqnwJW1VZnipfn7Oyrr9Tc9bHowLUOOTuP1j+Ylylx600iUTZ1OB7Ozs4UFmxuLaDndgq2y0vPx+qsi48sUUb+fAnupduW234+bbAIOdZLl5WXcunUr3OW4ijIZzS2noYvwbE3aXpP0Oc9jHP9nLZ/qrJNQFDk1KXBTiuo0Ne/okSNra2sjutNwOBwx6EUGGdVDNW3y6nMp5Qg3QOJ6/9nZWbTb7QK06eZ8mq7KH3egRMaJFF7Q6z5nRbqWly26l6K5uTnMzc1hc3NzbH+/NKCN6Lrdbp+47s+4kprnh14IImW1kOgzkadALQSR4NKJgROrTlLMR3ecdJ6945B8gxJgMkuSgyOfVLVMzIfelygfrVe1xqig8fdUWUptyOBKhL6ng8uVIVr9U2AksjiRT27kQg/a+vo6VldXsbGxUexyxLAjCp4ykKPKSaPRCMN4uU5tdna2CHlUwcOtstnP1QBAgOYHrSvRkxi1c6Qo0Tvoayh9UlcvWrTDZOSxiBRnbcvzUAAuG/lEEAF37ZPaZ6psKqPGp8iokppYfCxpWK7nmZpsIg+WToAR0HKPnpdF83A56O+rIUDXF0fppgxKbmjQMqS8BGUTufNfVu7URB0paFSsGVbEM47W1tbw2muvjShDPlY9D293Kjwa+cE1tNyyX2WTh2rzugLhCACk+qjWqddfZNgsMwoB6SUR0dhzohKZmn8fF4r6fUpxT8nlaO4ro3E6ynl63CYNR0yNlzKg4gZZT09lSJTeOC+b8hU9O87r5nplis8Uj553JEc9LZ4Ree/ePbz55pvFzrU8Csk3a2Mfol5D/cONjso/I41o1KYORUMSNxlhRAB1L9ejU7qn8sXfkfzxskdyTXUnl3FuCE2lfR50aUAbcLy4P+rc6mFLvUsPhU5iOrlkWTYSd+uWupTQcuuoWhTVW+Y8agch4ORvCgEdVLoBS2rCVJ49HMspUkgILv08OU8nmnQjweV1FAl/fT+lYKmXVP9ruV04+D3NV89iGw6HBWijFVvXsClg8sGoSpMq4QReVMinp6eL0MfFxcViDQjXgXCLbAI9Ch6CykajgeFwODIRRaBN+Sxrc+Xd+28E1iMg7koU+6XzR3729vZKeXuUSZXVVPlcaDvQ1zHgk3Bq7KUmDx1HPinyvn77eywL006NJ1eqU+PQy6BAX/nSMjoAUIr6qaadAs6Rty4FLPxaVI6IXK5HSnNZ2iqbuMaKZxzpgbQu/1O8aJlUHpEI2trtNpaWltDv9wuPvh4homANGN0MKvIgR+XXPhaBt2j8RH3L+3gZoChTnn3cTgJMHjUqA/gRKZCuQlWB2HnI/0naPHW9DGSdhp/TpBMZ5vS3y5HIuBTpTj6ufPyMA2XOixLToUF7fX0d9+7dK5aXMDLAo8TIi4PpSLYDx/o+15tyq36eVUuPWrfbDfVKyietl6hMXn+RPulld3mncqlK3Y6jKO+qdKlAGzsJcBI0RGeKRZ1DJ9QItPE5/y6beFWpcKClirDnzf/8TeVcrcjakdw6xnSZNuvBO6YrSH4vAmCaN8uvgDayJLilxPNPWcAdtDkQUj4jRcVBgteR58l0eBYb14rQw0ZlSUG41wsBig8qWoZmZmYKkMZwIg2BpPWaSlG73R7pD3quEfuD1j/5iOpb+5Re8/pUpcuBp+eRUr75jAozPhO9M6ni8KhQdEgoKeo/+g2MGif0k+rTOh6Uogk7khvAyfW6Chz9f8obp2PB0/cyqlfWx7FPqNEk7PlpvpFccPlF/pVSAC817vVeStngsxHY8Oei/kILNcO07969i7feeqsI0y4DbFHfYhlo8ONuaupFY+jj3NzciDGJBijg+Kw1lSH07kdrwJwXyqVUiKTXd0SpOSNFVQAbUG4EeByorK+UveMKqL/jhvMHReN4r2LQiQz90bgel+Zpyedk6k8pfWlcGi7vVPb7PHAaUKt64N7eXnFQNr9VPkV6hfLgxhsAI559bh4yPz+PZrOJ+fn5YvOjdrtd7AFAZ0zUH3T/AtXlSC471Bil9eb1Ec0nDkojY0fK0FB1bFbVmy4NaGNn2dnZGVEkImUaOBm2xzT0PVoQHVjxWQ4it1B4Z3alhe/rt1odgNGNUdzSTg8Nr/lho0ocIFoH0YAB4vBEPxbAvYCuqGjd+ASeGhTR5gWaZgQMIsHlikpUVs/bSYHh/v5+EQ5579493L17d+Tg2lRorPYzVyK63W6xS+LCwsLIAv5ut1soTYy5dsVIrUxZlo2EQPmuZm6U0HbzseFeQoJWfnvbR0JI67lM6VYjgfKoVvnHDbgx1Fb7Ool16UeOKGk/o3KrskeBQkouaV6et+flaWh7qLdD5ajKIp2EmY57xFIgyvsRr0WyIzXJqgLCvpcCMik+WJ5o4k6BApddWp/OpxsxxhGfZ19iWORbb72FV199dUQmeT0rn9p2wGhYZKPRwOzsLK5evRrKJgIzbWffRIvXyStDNaM69msK2ryevS4i0jJGSq8/50q4z4l+/XGTS6RonPt9Utm8WUYXBWpOk3aqncso6jPjvIc6p57GwxbxlzJup3h2wObv+RiI0o7uu+7MuZtGbepNq6urxVEklAW+8YjKEZ2rtGxc6z8/P4/l5WUMBgNcv3698LRxo7WyOVTLRN2Yv1UeM42Ufu71x2e0H7gci8gBapV+WSabqsinSwPaABQo3hUGV/ZT1xWYeSXqIPWKjSZqpch6oWmUTRQ6GLRMbm1PreFwMMFnXYFSnrQ+fK1WSpnU9FMTbVTWSOmJQFv0rNdjGQ8+AFN5q2WY2/rrwY8ehx3Vida9L+Dv9/uFhYjrQ7i5CD9+sKMqIA54WFb3vmn9RUop0/Td3Lw8XB9EpdvbUBU4fTfqXyrky8DC40jat4DY06HrDbX/0to7bmLV/y5fNDQ18iapLHPeon7Ea5Hn1I0t+o7yG01U3n9T5eL91IQXgaQUaRmVLzdSRPI9VZaI/yjfFGjwMCgCIAI23QxJNxyJxpD2JZ37+LvVaiHLsiIEcnFxEXNzc8X5arRW03ikfdTBkc+tWXZoWOKyhWiu0/6ioE13xdV6UhDuZU4B5Kju/bcbnqq24+NEZQr8gyLKqKpA7LzBoHvbSGX1UuYBi8Y0nxtX3ymdsowiLw5wMhLA76XGStX+wPGouhO39+dSktQcoPnoeMyyrPCYzc7OotvtYn5+HouLi8WW/dwfwA2GqfLz29fw+nE1/q7Og5RPquPxXXdQlNXrOD6j+Vjr6jR0aUBbnh/vUqONnrJYqFWbgIeNxgEYuTtdEfEGiuKMNXY2ZW3W91WJ8m39G41GsZkJ+eb6Ah14fnAv84qAiqbvipCfneEKpQOjssHPNvFy+4Ts7ar5e9oaBuaDXTu4ftzKw3cYcrS3t4f79+9ja2ur8LAxTJLKk/MUtefU1FRx/gfDjVZWVtDv9wvBo1v0813fHZP8ad9S5eng4KBYcOuAN5owdPttbkHvEwqVQz1GQscJxwoFnh56zjom39o22h8jL+njCNwom4bDYVFP3rbASS+BbrNOSoUBR2MuFb7C53Wsc/xXmew0LabH/sB29wkxJSs0PZUFnn4E0CLvjfOa+tZ8eV37Y0qWlfVNl2VRHaZ+RwBEr3Mc7u7uFjtDvvXWW7hz5w62trZOnMHm+SjIUmPQ1NRUYUi6du0a5ufn0e/3MTc3VxiQXDYBo6GQrqSqMurzC/nUbdBdrtFgRe+e9wsNsdrd3R3pFz7XluUVtZuPgagMjzv5HF0VOPgY1bQmrbeLrudx5YkAmHtRnLSfRWlFefgGU6n8o77n8orXNL1I/03JeMprlUGRkTWSbzo2GQ755ptv4s033yw2bYvy03fdIE09hQakGzduYGlpCYPBAAsLCyeWjWhaEblM97rlHD0OTOV5XkREaTQU0+VO4w7cxlGZ3ux1zW9v1yrvXxrQFlFZA+qgUGUzy44PfI1CVxwg8Bq/U4pD5GXQdFMKQyQAdAJrNBoj3sXI0lDVne5lixSISNGK6iilvJQNqJQFyAHeOOVsXMeN8tLQPIJ/HqJNZSm1VsTzJCDS89W4+xqtQ9zZSA801T44rhyugEeCS/lU5Yc7UpIfDQEm6dpQnm2YUjb1O2p3V8g9jSeBoomZFIWwqgKZAjBRP4zSie5HdZ+ybvt7ZQYWBXEui1SJpuyKyheNz0lkSRlF8iqiSMZHdak863fVvKrwocCN4I2ySeWSl9OVBipl9Jpxfe3s7GwhC7hWhBseuXLqXjovZySb1Rod1aHKJvLHnXI9yoAKEzC6TlTHi8tOzbdqiJrnWVM5pRTdCCTXdEwX2beqAgZ9znU6f7cMsHE87uzshGdEpnhxIEWwRoP3YDAotuzv9/tFRICHUpfxVwbC1IDlPEZ1yDDN2dnZgl8tw/b29kh0RIoi3XYcnUd/uTSgTZVRVwCAOCadAoVChVY6giDuZuedSis46oz6LDtMZClhRwdOWqQ0XQ0FIZ+aBi34mjcnZrXkpJQIB4/Ks25c4mVwr1tkfXKLjZOH2mjbuVLg7aAUxSI7AIomYpaRVhYumL1z5w7W19dx586dIh6b6yXViqV1zXx6vV5hHVpaWkKr1SoW8HOXIx5Iq9trR3XnoJn/2UdpNecCXRUWDOXUBbl8bnZ2Fr1eD9euXUOr1SpAGt/nTnQMC02FTzKvaMdSvqNKOoATfZX9yr1yjxOphyNVPjUauXKrRyqkjBiRchRNaD4WeI8KcQp063+2mbd1JL+0zCqTPKwkmpB80uS3A1qPcPA6rqI4RjJKx7XLlCjdaD5IeTxd1nmEB3/rGWz0sK2vr+P+/ftYX19Pjk2fq7IsK9bTdrtdXLlyBe12uzh0lltj6/E3qUX8UR1rPUXATsc4+7GGj/PAW65PWVxcHDnvjXMRd6GjVVxlfxR+7HO+t68+H8nicXPc40aTKobjnk+FDZ7Vm5Yar1XTHTfXuCFd06ZRivf4XdbXmKeSRndpWpqX60PReI90Jh+jVQxMXoYU3x6+TbC2tbWFN998E2tra0VEQBTB4XMYPVYEZ/T8dzqdQnean58vvFvR3OG6kufH9qYMosylx049+FovOod1u13Mzc2h1+vh6aefRqvVOqEj3717F6+99hp2dnZw//79kSVGkcwcV9cRqazV8lV599KANmB04puEHNBp47rFuKzzpZQpHVBuySD5oFFBp+/7YIkayRUNVe61fFE5vCx6359xoOTA0DuUp6eKUFT/WpdeRz5go+dTHdjBIeuSgJ3ubfWyle38RyHC/sfdjXq9XuFVozWbW/nrmrWUwFRBM25QKviNFFYKRSpGvV4PvV6v2BWOwEw3H9nc3Cz6fypfVZq9Db2evIyPIziLyAV/GbEufedDfkcghRNQFcDrY6esbfWdiCiPXKbpx5X4SEZGeaSAQkQOGFXZch7GyT59x8sTPV9FKaoiTzU9V9jUCMMogDK5pPm60ZEGI479TqdTgCRauKO1tC5TyxQ//c/yqBU7y7IRY6UqbQRvPBCXUQjA6BECDD/SjcU0kiXqKzp3RoaIqA6Vao/Rg6PThFVO2j7RPBnlWSZ3TtsnIr3xvPLw/j8uj1T5In3ESY12qjupsTcl5zhvZVlWjH3uADkzM1Os+Sdoo4etKkVjWuclXqN88jkVGJVPjE7o9/vo9/tYWFgoDN4qr4fDYWFAd34UoLPezpMeSdDGNSNuEfXKURADHK8RisiBEjuZkuanEwnzckWGaXnIJCemyBLuE6dv38/0CKiyLMPOzk5RPl9PlFKYtEwpCzrfo4IPHHt/1NtVVpecaCMFrgy0eZ37PfLNbxccDm5oXdnZ2SnWiPBMNoIWKjXKK/vMYDAYCS+iwGm328WWtKoYaT+jYpQSiK7kOlBmffsOnFTw9vb2iu256d2bnZ3FysoKZmZminV1GsaQ5zlarRYAYH19HVtbW8VxGq74eB1ruJIreCmPABVSKqfnLcguA0XALTIuaP9S71wKlOukSXJFW6/7WNM0IoOBkrefGz38XU/PZZPLCy+/l2GcAhHxQnLLeJlsijz+2laRUhSVu6xe+UmFz+h9KkLr6+vY3NzE6uoqNjY2Tmzw4X0nyw69/lw3y9Dsubm5wsNGK7Oun4zAlpbdAU+qn7mMYtoqmym7Wq1WYUxilAL507nw4OCgMHhFGxxwQwGvSyfvV6n+pGGpjFx4nCma38dRSn84C51mDogAThVDlufpHrZxlDJURhQBIY4J1QNcr6sC3FKy0/v3OKNVVC7VBd0odnBwuPnI/fv3sbGxMbJbpG/uwfIyOokbiRAIDQYDLC0tFREBBHEEdakIEY+eSpVDeVHASPlH/cP3PeBh3fPz87h+/Tr6/T5WVlbQbDaxsbGB3d3dkQ3k9vb2inqIQtireGGjtkq1k+pO4/rhpQJtCprcuhtNLLpw1CdmJwVKPiHpfbVOpkJnnF8lBTHRtZT1IAWulG/dXTBy76esqmVCyfN2JUzT0zQUgHjeOulHSpLnn+LZhY0rYV7He3t7IzuyqWtf25X5EYRxQM/NzaHf76PX6xXnhtCTxbPYmK9u5uF15OWL7nkf1Nhu8sxxoFbsVquFTqdT8MkNUhxssS4ODg6KkGOubVOKwtQcIKtHhry7AFOB8zgqRqq0AidDyXhN7znISskLpq9tkVKuXTZFxiD+jpSLaOKj/HSeUml6eSOZWRW8pSh6pmx3MCVXoKJx6iE/keJfpjyk+I3aQsOPKJd4vIcbfFR20uvfarWwsLBQhBdRGdLwbDUQKC+RglcG2KK+qv85vhXIeSQAjUtc06JgjzKCShA9cez/7D8qQ05rBFKZFhn/HicqA65VKCWfUpRqk9NESqXSTSnrVfOK+raDhuj9i/DITgLc9Dt1v+z9yDjmIJL3XF/gTttcz6Y6l6ZLucM1tAsLCxgMBoVBmaGSU1NTI0YlT8eNYE6RDPY5SGUTdSGV7zTaM3pqdna2MIBNT08Xxkce57S9vY3BYFAc8UNZFM2p49qiKk1i8L5UoI1E4apKTwRAtDIjgMBB6hO0p8P3XQikKjASBgogPX89v0LzVWWYH/fyReFL7GQOslQwaH1EQk87oAuTMuFdBhDdq8hvV+SiAZpSEpgXQVn0vHqlNCySQoducSo5tKYQtA0Gg5F1YjMzM8U2/hQ8bp3Scml9ugIc1ZsqZW7NZlqaLsOoKChp+dHdkkiq7M3MzCDP88JLqGcuqTKjglT7TdQ3gGOvB8efKkWPq2LkoJVUBtYdhEXkY4PvOvm4iYCxT9ieB8vhvGu6Ona93Kn1QG48YZ7jxoKW2+X7aRS/lIcyNdmqvPH5QJ9L8a7P6VosBShq+dWQIzWMEfCoTKKiwzW0s7OzI+tpebyIrg9xw5TyWwYqlW+dT9w4pn2B45+yRNeTsO9TTjAd8kqPHAD0+33s7OwU9edGDG3XVDtoebzflEVsPO6U6seTKJPA6GZv4+gyRFmkgE/Vtq9ahpQBDjgpc90QnqJUm40DsPoc+7v+TvFPL9v29jbu37+Pzc1N7OzsjIw96rDcXESN2bOzs8V4ps7Bc2p5HrFHJ7msHSdzlV/91uuMVKI3jzoT64Eystvtjhz9RNKIgZmZGSwsLODg4KDYnVtlm+KOKvxF5AYl8lPF4H2pQJs3YhnyViAWdUy3JnNiVmAT5VNmES6zQuruWtGW8lHZGIcbTSg+UfpkqJMqBzLTU49QBMzIo9YJr6cAW+TdUj61zJq2vqv17uX1rXNdiXBvjpaHCgNDABXUUODQO9Vut4sdFwniuDMkvVf0umVZVpyBFAkVKqapvpqqR35HwI15aD8fDoeFYKJlSDdfYf25cB0MBgAOFaNGo1GEi3obRJNNqr0jC+WTANqA4y2eUxQpxOoRL3vHKTVJV1HEXI6oAcgtnd7nInmYUvijsR8pzxHIjUCqvusW8VT9aPlSkQbOowKCqH758XVbKVDMZ9k/ItCmRhblO8sO16m12+1CYZienh4JO2KIUbfbHQkzomxKHckQyaWon0TGssigFLWpltN3g+Q8oAd6U6Z2Oh3keV4YxRgVUBbCmGpfNzS4Uujy6XGnVD8lebvzms9tD4uqgMzIiOrPj5Otmtak/cLziOqU7aD9lv9T+mqk3zrP4+qnCmDTZxkBsLa2Vhw/orKPegfDC3UTpH6/P7Kettvtot/vY2pqqpBPLitUT0jpTk4pvZQ8cl6m557yRw3ejUaj8CBSVmk/Is8zMzPFMzMzMwCAjY2N0t3HU21RVu/kkR/fMC5Flwq0RROP0rjGTd13l3vKDVmmnDhf2tj633eHi8rh91T5J7mnTb0jvijc+YuUMvfi+CTnirvzniqDfsZ1uJRw9Wf8P9P1jT9UOeDg5HOdTmcEFM3MzBRr1xhjTUsQlSE/3NqtYy5kVDFSQeQTXplhICq3KheaB4Ea18fs7++P7BhHjyLDIXksQLfbBXB4HiBBIL21zKOsz0fgXsvhAPBxBW2kcYI5khNqEImu83eKVDEtMxCkjCrRuz4Rpp5JKSSklPGibKLVcjuPWjcuG3VcAMfGnoj0epUdXrX8kRzy/+55So0Hym4qQC6buGlHZFBiVIC2A5WUlMGnilzVa9E70dyrMsDlgioeBGA8EoX1T+UOQOH573Q6AFDILCpLaun3fqd5a7+IZI+25yRK4qNMZeWbRKk8DZg5D6rKY/R81F/KlOwycDpJ+SPgFOkBvKfXUjI2MkKUjW3Xi6LnfK6hsVsBCeWUrlvjJiJcNsJlGRr+nPqU8US+o/JXJc6natTX9DRSa3t7G/fu3cP+/n7hLdzZ2SmAHeuE+uFgMECj0cC9e/dGZFOEU8raxttO5eakxqRLBdpIqQaPJnqlVMXod6pz6ETAd0mRIPCO6gMy6sg+aWgomg8mvu+hbGxoL7fmzec17+icnbIJTssdKe4kKg86YfJZ5d3bzi3+zhOf18mYCoB29DzPC0VhZ2enEDj9fr9IY2rq8IBHLuCfmZkZcdtzS33fhlb7iVvOo9BI7WNaX/zt/cGBtNa/th8VouFwWChsd+7cQbvdLupFw6kIQnlYN7cEX19fR5ZlRTgS2yjiRdtJedB7XjdPihXb+0jZhJPqT/ztyjCQDgeLJv0oHE7HWfTeuD4Y8ZoqD9NV2RNN0D42XBZEypWPC+DYY+ZliGRTpNx7eqk+657kiDQdnfBV7qlBibJmdna2iAIAUMgmGlgom6L5I8uykVBKbQu2Q0pZLCuD9gWX+2XEctKLSIs9j1fhmmGudaOhrNPpIMuywlK/tbWFRqNRhG/rRgLuYfP+EilrJA1PfZwNSj7W/V6V94Hx4XcPmiYBTpG+4sTrVdP15zRUdFw9qeEBODkOo8gH5ZHvqKyK5gbVOflOFQ/bwcFBcRQJgcvBwUEB1hiZtLy8jJWVlSJ6h8Yi5U/HqBqVVIelvqHlZBqpuSaajyLd3aPpSMrnzs4O1tbW8Nprr2F9fb0watPDNRwOsbW1VeiIMzMzuHr1KtbW1vDWW2+NRHRp+crAdKTPAcdnVPLjBvEyurSgzb8V4Og9R9TuAeNuVFFD6/tK466pIuATqitwkXKn6bjiQVILsk5eOtBd0Up1oEiRSilnqXqJ8vO0vQ68vqLfqTyUj+h5FZ4qHPVQWdZVo9Eowh45UNXSPc5S5ELUic/owPSzzcoUd/dUqNIS1Q83NcjzHBsbG8WW/2r1ooWenllaxfiJLPT+7W0etSHvufXwcSRvy2iMu/zR8c177h1SJSJl+U2BDLeIp7y8KVDknivnXf9H1/2+TlLjZIw+r2WMyq3vqtytAipS6Y9TbsaBHX5HINQNayqbgNHNqSibOE7dg0Z5wmsqu3yOGNc2ZXIouqZzHesrNdYpmxgCur29XZSHIJVATseCyyddi5wqUySXUs88CVRWD0opMMN7SpfZCFcmK4F025+1T0R9v0wGjfPkRaTjNCX3x71XlXTeYKgyveG9Xq8AMNSdeI/6jUcbRFFayp9+k8p4Tt1z+Z+K9KHsJHFt8dTUFFZXV9FsNgt5o/oTIwBoHOt0OiNr4U5j2Ejp5pMANuCSgTYX0KropCYj9cK02+2R5zjReciFkw8SfU7TS8Xh6n92WgoVV3bUKuCTsD7LjuY74ejE6dZFjUXWSZbpRPUYTYp+zSdtV4QciKWUAfdYavoEKe5+5vM6gTebTeR5fiL2mgc4AjgRT00rL+OW+Y6mrSCOwovpcCEqFWTdPdJ3QNPDunXdovcDAIWiwgN4CcjUMkze2Ae3t7cLd/7GxsaIt3B5ebnYBZPt3mw2cXBwgF6vhyzLsLm5id3d3RP9Q9vWFUOva7YbeaoygT3K5GNWr6UAhCrc7CP0jijQTwEnoNqk7R525dnbRsuh40zlrINMfTciP66C40NlhFpbeY2/yxZfu5LpMjSiKop8aqJ0ua7kdelgDTgG5G5Mmp6extzcXPGMKhJ6HAnTYl3rejCGLOlvBVX05qnc0E2wlE/ywfbis14mGj0Zmk2rtO4spzwMh0NsbGwUkQ9c5zI9PV1s9NTtdot3KF97vV7haVPAFoHuyLDk7VnWjo8rjVPaI/nk18cBkIsAcmVzxzi5F8mklJFK73u6Or9W5Vd5UJmqc7brUZoXcDx2Ul435c/HcCSfykBipNNR3+l2u7h27RqAY5lDnYJrbhXQMT2Xce6B0rw8IsPL57xFhiidm3RJCyMafAM6l9e7u7vF2j169yn/rl+/jqWlJczNzRWbjxCwXblypVirt7q6WsjCKuNN2zfVL7XM4+TVpQNtQLyjmiuKet0Hjg8aveaKZ5mbO6VERaAtAnreQHqUAd/zgZQCp/x4R1ZetKxaV85rKs+U8I46lCo/KWFzmslSB2uK34hHKic8vJFhOMCxQCGYSoHpVN1Hz5UB04i/KsJUQXGZp4JKE/suLftTU1PY3t4urGJMg4KZViV6G6lcK+9VrUiPKzgrozKAw//+vH5HIC/V71whPg35BMlJlnKI91I8KC9lsiEqq8sLVTpcqRpXvtQ4qPJ8RK6YpfiI/ivv4+YN7R9Udtzjxvsa2sTndA7TNWx6L+Iz6jOpvql8llEEkFLP0Ks2HA5HDKeUS5FBikCWcqpMFqbK4PPGkwLWqtI4UFeFLgq4nYZ0DI0buxdJ51GvD5Jc9jcajcKoCKCQT/SIqwcqSgco149S+aeoTFZF+VFGRCHQEc80QCuIyrKs2HWcBm2VxdSXCGCBagC/im49KV0q0AaMuli18bVytbMp0vfJjO9rh4smR+3E49YE6KQQ3VcQqOdiZVlWTGYOHJ13ncQ1Xlk3INEJmx3V162pUq686sQbWTRS6/W8nsrqR3+XKaX+LoWH5s2PnzNGCxEtQFxoCmDE60qhxLRVGYiEkoI6tqdbjXTNhQN2WpT0Ge13/K/rFrnBiHpQ+Vv7hSvDtPawDHp208zMTJEX19KwvmZnZ7G2tobV1dWRstFKpe3PvD0um+9o3ywzgjzqFNULUD7JjAsXiZRvBzXAqFeE6QLpXRrL+Hf5ozKVaTh4p0xKTcopQJrqDxxDfo3fKsOU1JPlc4PWQwRKXWY7EGFeKnO1XqP21vry9uJ98kv5pevVmC6BioNgBTQO2lLKYlSPKTCtssnBJuuCVmVVijzSQ6MP2DZcg8uDa9VKryHq3C2T13Z2dgpLuIZbqkKmde0H32p76LEDVbbTfhzJwWx0vewaSWXPeQA375tK4/KIPLGp9PW/6n2npZRhwD1hKc+Xy/CIn5T80zSj+ikzqCjPatDlTq5cZ+rySWWnHrsEYGQu4Rj33csjUO26RBQJ4HWi+inl4vT0NLa3t7G5uTkSCRABI5V9WXYYcaRyluvcuGGb6nC9Xq8Abv1+H+vr61hbWxu766Pr88oHy+S61bh5/NKANkfyUQGiyVmf9Wv6XDQoosEeCfeo02k6Th4Kx+eoMPmgVcDGcDoXnhxoqUZ1ZUnfV/4jAOIdJgKkqfKrEEnVUzQxRJMHhYjXmyoHXi4OXA0NAjCyboKCaHp6eiQtbSuSK2ZReSIhkLpPz8a4vu0hZZo+B77zo0o822E4HI4ce6CAiiEOu7u7hfWba+NcIVJhxnpWpZF5al92QfS4kAIvIG6/s1BZOi4HvF7PokC5HPKxpfy5ku/PphQUfzd1L8Vf6t1InqV+l5GDNpUx0XENqX7tEzFlDoBCPrnCyOc4tiJZovIwMgCkZE9UT9F9vaf/XTF1Geyyj89of6TsY39hCLiHWmdZVoR6cmdNgkWtFyqMURm1XVxR1DrjHHuZPEZnpWgDLaB6hM1pyOvvPOtT9aLTpFkGUielSD9IGaxT74+bC6vKqhRPk5DrPwooVB65nqjf0W+XUePmNH3P5V7Z+67nMh3KFdWdI9AYyS7yPRwOi03adD4AUISl93q9ImSc8iySe6xbtr0aXVMhospLGV0K0DYzM4MPfOADJ3bVUu8Cib85IUaTriucERjRa/qOW3A9j3HCTr0rfDclTOmGddCpA4fkHsgU6FS+9bcq2ppG5EmKQuQczGgbebm8LLyuiotbViKwxm+37rDetH9wy2iNx6YyyUHl9UcLLvli+KTvfKTP+KBjfUWkoM09UWopVCt1JCA9PSXlL8syrK+vF0BWz3iiNZt1NBwOCyDLMuzv7xfbdfvY4foUFXjD4fBEXQDA4uIiPvShD+Fnf/Znw3p5lIiyaW5ubkSJd7mk5MCW7RyBAB8jZZOX33MQkOozkfLjMk/7I6+5QUZ3GnUZqZN2JJvKwESktChvSlqHPoGnwIcDOS2L5qNepUbjOCQmspTy2+WZy3/geM2abn/vbeIRIJERJTKaME/nyw2HLG+qnkkuI7VuvC0iWe18U05QthDM6sYGlNf6m3XOXSnLLNpsLwfe3l7AoWx6+eWXsbe3h09+8pMn0nrUaDAY4Lf9tt+GpaUlAOmoF6dIyR6nbJMcrOnvSQBFKq8qabiiXGaU1zpJGWknyZe8e7pV6i+Sw1F9TlKPrndF930nbz4fbdnvskj1X1+brO+5Luh6s5Yx1U81jUiea56UhZTbKcOz9wOdj4Hjul5bWyv0QD27N8sybG9vI88Po4qGw2GhV+kRJ/T4p9qOUQOMCPPt/vM8x9LSEj760Y/iU5/6VJgGcElAW6fTwTve8Q50Op0RYKQV4JONu8f5rLsagRi5O7CJBJc3eoTiHXxEjeaTOO9HsbUkt3akrGlaFxFI9bJwwEQKjIIPH1TkOeU1UvDreWq9RB06UhScDy2LbgpCBYgTvp5X1mg0CguM1j29mUyXgEV3bosUI+1n7AtRebQvuGLt9aYKkVqfU8p7BLqVD4YWdbtdbG1tAUBxxIGCUg01Zf4MteQ5JZqv1gfrXw0sysNgMMALL7yAX/mVXzlRN48aUTbpOhtVEJVSHmcdG2VKc3TPQYe/Fykm0e+I5yhdV9QjnspA2zg5G5Hn732O/ES/VU56/j5OXFapgY7p0vvMMlImRHLJxz9lCWWMWlmVJ3qVUvIwBZzV8ASMgjVXsLwPROCVVOYh9f4VpaG/3RiQZdnIltrT09PY2dkpgBbrR723GkbJaAHOUdpm3n89PNPrM8uyQjblef5YgLZut4vbt2+faPMUlY3PSelBRFNQbkWyymVCapxGz/t7Z/FeOYjR62X1m+LHSefeCNSVAXUHTmpU8p1qKaf4341Cuvka01UDt8tflUWRPpOqt6jOdE5Q/Yz5qP4U1Yvrp14nALC5uYk8z9HtdrG6uorBYIClpaVCPrHs7Xa7OMdtOByi0+kUgEzTc/npeqgD2jzPMTs7i9u3b+PTn/70iTogXQrQtr29jS984Qt45plnMDs7G3YCncj431G57xDpAAZIh7+5ohDlzd8pgMH3dJJ2cqXEO6tPvqrUR/xQiWJ6KdAR8ez56XX9Vl5TPGi5osGiCo4PYlVevH1oYdV7GtPM374rn+6s5nzqIKcgJPDjb7U2sa+pl4wDMKoTVWz5OxJOSnxOQZGmX9bflLTP0GugHl0Hkqw/CnMNK9X0o/GoSpIKzPv37+Of//N/XoDGR5m2t7fxxS9+Ebdu3cLs7OxIf3alJTJ6OFjSPqTP8Vl/Fzg5vpQigKhtFCnoKkt8vEWy0vksU3C8Tjx9/e0Gr0koUhhddroc1vsui3RDHh0DLoe9HlxRUNnkspjjJ9phMuJT33N5ohR5wCIZ7mM5uu+KF0llREqWOXCO8lbZq9EF3ie03GxHb0/2VdaxtqPmpd+rq6v40pe+dCJ641Glzc1N/PIv/3Ihn4Dy8eRtVwXopUhBBP9fFE0iIyJZWcZb6t648qT0Ib0/SXpV+BvnEFBevP9re6mHTTdJ0m8aUvjtYM7LmpIdyleqv5XpRUosTwqM+ntl82bEG8HX5uZmsV5Ow9s5N6gTg+9RRlIn0rW2Og+ovCIv/H3//n18+ctfxubmZrIeLwVo29jYwC/8wi9gMBiMHIrs5J3QQQ83n+CHO+qpkjKuc+nE40oUO6x2XleEGW7m3jMibVXANdxM8+FvvsMOoNfJDzDqaSP4IB+R8s93UuTpen1pO7gHUPlTRdXruMzN7m3oC/iZp25/7YfRqkfQgY8CDi0DB6Rubctn3LuQZVlhLWZdso3U+qQD1MvmbU5h4BvYkCe3IpcJNPUYaBijChz2FS2f7+6mvDmQ5QYqaoEDgLfeegs/+7M/Wyp4HhXa2NjAz//8z6Pf72N2dnbEgKKKv3+7l0WVUx1f3v+j3y4PI9nF9orGocsL33hCiWlERp/I2OKTsPKgYEPJ0448d8p3RGXPl7VLBNbcMKY7qelcQ68PSfu9TsgqS/jb2z2qT61Tv+/yRMvg9eDyOtWvFCi5Uc7rVOWxkrZlGWjzMuq6Wm1/7VNq+ed/nVO17lXGat14m9+5cwc/+7M/W2xY9ajT+vo6fuqnfgq9Xg+zs7Oleg2pTIlN6V4pqgpEUkD/okjzO+sGNJF3i/Mo+x37bSTvTgPWojxJLjMiGUieuARE5Yju0qpLNzy9aCxR5rmBOSXrne9xoI3PlOnokXzXT1QGzyt6VzeEW19fR5YdblaiDgHWG+uR0UnEGhrGrWCO9cN9FVJ18NZbb+GnfuqnLj9oA05aoCMqm1T0Nxs9AlWpdKKOH1k0dRIv41N/a3puXU6BIb4XeQa9LK4weL14PiyL8pPiPVVXbrH391ODM2W9TwkeJ1WI9KBoTzdqbxWwCoRSYErbQ8mBaUr5LfuvfUgBJevIwx8ioK6TBq83m81iS3+68Zk2FVSeA7e1tVXEalOR4j1X1qpYHfX7cdqpTcdsNDGVgZ/oOr8jY5KmN27C8XRTE1aZkhbxpvcjmaXPOD9l4EEp1Z/KgFqKUu9EE3OUN9tV15ppW6t8jeSq1hWBhXvb9NkUqKK8j+q7TDFzfvQZts84ZVllSdSe4/qDgid9NstOGtf4UaMl02Q4OzcFoBKk4UdKPo5cbntdqxx8XKhKWXycRn3iQQGqSSnSU6rSpPIk8hyW5R3VK68/CPK+HQEYPqcyyXfMLusL+ls9dWWGQiUd39H8VVVGlVEKF1SZ5whaW60WOp0Oer0eBoNBcXYkMLpcgGCYYd66yy3lS57nI2vcorkj4ovvl9GlAW0ACsHujEcASa2Vbin1Ccs/qYkz1Wl8Yaavo+A9/Z8CO5yo+F+/NdxG01dLaGow6j0HAJqHkoei+OBUhUWf02+10DpfzgOf1fULyl+e58W295qWuu8bjUYBRqgMqFDwb82HXldOAuqJ1boEjg+b1i3wve50TZeTC/JI0Tk4ON5Zskyx1vHgLnb1VjQaDQwGA8zOzmJubg5zc3MjQod1u7a2hp2dHWxsbGBjY2NkDG1vb4/0N19vorzyHfJ6WSf98yAF/vyv9/wayWWPA7UysFUFIPqk7d7xlExKKRteXjUcuXypokyp7PSxmZJNVRQtl3NOXrcODrzONTohkk3AsWdNyb1AVIb4Kesn3i7aP3QCV35UFkSKiZfTx2yq3jjP6LfKTd+cKtW31CPPazykt9frFR8ePQIcy1Iu0KdC5Iv1qRRpmaL61TaP6vlxJO0f4xRgrx9P5zwpAtlV8ygzjOt9j7pKGWeq5lMmV0iuM6hCrzrZpMS0xgFFJfLq6+6ZHudxjkUFbZqm15/nqTJRQYiGBkYyV9OIxmZZf4zKHenzPPIpSic15ykAbTQamJ2dxczMDK5cuYJbt25hamqq2OBua2sLe3t7WF1dxfb2Nra2trC5uYnd3d1CZ2Kd+94IUdSKUgrspuhSgTbguGJTA9atlrwWCW9SGXDTd1IKUTRRpzwh0USaUup84kkpfR664gPBO3OUXpm7PaIIAEeUGqAqOLXN1DMUTbxaLi+jWrHLwGiUjgodVUo8Dbd2REKHQjE12FQxSk0o+u11QT6dB1UQKXAJaFUot1qtkXORKEzptqfQ4YfkilFkHUqV+3FVhpS8z6XKXGXsRxTVteYbPRsp0t6/U+R90hX7aLLza2Xrd/kcgcA4A1Bq4hons6K+mJJF+l/LpCAkMlCUkRq4VD5FbZ+aZ1xORXU+ycQeKcdePn/GjYOpfqyyye+rt5HPRp42X9fHHSK3t7cLj79armlkS8lLli9SAJ8E2VSFfFyU6UzA+W7jX5bPaWgcoHsY5ADkNGU9i0dRP+SH3y6fUvpkGbk+Sd3UZW1KB03x7TIplbem6+Wk3HHgltLp+Q5w7CziwdntdhutVgvA8WaBW1tbGA6H2NjYGNGdGBXgsscjLTgvR4B8ErkOXDLQpsq4CueU5VAbhBODdiLtpKk4WFJKgY+AFa2CzjuAJNrWe96hlO+oQctAjpYn1SG0g6qb1/NjunqNVhQf6A5g1EvovNGjpBM6SS1ULvB0UHHybzQaheXWy6PtwN+R5YvX+a2KJ8MEeZ3hhXrfrWpO2s6ueJPPKCxTN0BQPrRMBGP0NvIwbZZxdna2cO23Wi3s7Ozg7t27GA6HWF9fx+7uLtbX17G1tVXsNMn08jwfWTxLEKjrczRc6SxK5aNG7sEC0qCHpEJbJ5ZIiU8pnMDpLcYOMqMJ1fulWwOV3wgIKZWBHF8oHvEZWYpTE1xUJ1FZIgODXisz/ujc43OKljfLTlqyvS60rlN15PLAy6PGJMoLLYOWN6U0RfOe8hXNB8yDxiKNaiEpIONZa27V7/V66HQ6aLfbaDab2Nvbw/r6Ovb29rCxsYHd3V1sbm6OnDVJ/qK5UccWvYFR6GNqzn+cqGzs+XNV3lOPCuk0gCIyAIzTh6JnnKLr3rYpYKfv+jNV7zmpl1M/5wFSy8CzGjWYp885Kk908zZSCtikZDyNdQcHByP6EXVA6ozuyVNvfaQ7OBBLyU+v1+npaXS73cJD7/WjafDDbf11/4H5+fkiNLLZbGJ7ext37tzB9vY2XnvtNWxtbWF9fb04y803o+McwHWEbAeNVuJ7qn8qr1Xk06UCbSSfFKNr3qgpYBGlmVI+IqQf3Y86glP03jjUH4FI78RRfhywei8FgDio+Y4KRy2/Ch2doCOFUgVHxJ97RyMeVehEQl4tF6roehik5+kUKcz8rUCM1x20ad1EFFmDIoXc33dlzd/Tepieni68aYy7Zr34+Uf0rHFHJFqLtre3sbOzg52dnWKhLYARpUfTVSGjSuyTQinAlqJUny9T2MfJntQ93veJ3fP0idLHqo+hMvAQlUOfdT6jMeD8qVyK6sPTLGsDNayMe6eKwls2Xn3SLkurSvun+osC2pTXMrrmaeh3JNeZvs8pqflHjZMats5jV9TY5jtzcndbrg+hrOJ1Vf5S4DsCrePq5kmlsnGl47DqO6QygBLpPVF6bmyYZI7RMVEWocDrVQBoSudJpRHphxGlwNAk5HI1JZ8UfPP/acaDzwsqG7Tc1AUjuTGuLKn/497JsqzY4VHnwZT+z3X/MzMzRUg8dadut1tsRJXnOba3t7G5uYnV1dUiJJLLTBScql7q+pPORVGI/aR9/UygLcuyeQD/HwAvAsgB/CEAvwrgbwB4BsCXAHxPnud3K6Y3MlBckVXyHdAc2bMS1NvC//qegpdJOrNPevq+KgqqOJSFLSm/qWdSlh/tkF4Hmq6XWzuTKuTaifg/WhypYIs779BrA6AAA26t963iNfSFHw4cBw7Kl9ZLZBlM1TGf0zUsVCB8u32mHSk1VEZo8ablxcvi9cn8tW9TySk7a6TZbKLT6WBmZgaLi4tot9tYWFgYWZdHD1ye54Vl6O7du9jZ2cHq6uqINXt3dxfD4RDtdvvEzpAshwon9hF6ABk6EPXDy6Aonbd8knTD/y5DUh42f87HaJkXiX0ppZi45S4F3FLGhKjtIuW9rB6UT+W/iuFCw+Z07LgHSA0sJPVC8T+f45jVHWijMrAOXQnR/D38T+s2igiJ5hZXcr18vuuoyshxFHmFdS6KIgS0vShP1IPPNSPaPlwTTEDWbrfR7XYxOztbGJRUodHNRwjQ1tfXMRwOsba2huFwWIRHcj6Joh10vOhH28rlkm9b/rDpomTTOKqqHKp8OY2BrsxIEo1np7LNGKI5Pooyijyz/rsMvFUtdzTOVLZWASw6Jl0GRzy6fHU542m4TFCwpWloGcr41XSB4w2EyMfBwUGhH7m8iQx5XrYoL9dnFRxSd1KvvBqfKIf6/T6Wl5fR7/fx9NNPo9lsFt5+DYvc2NjA6upq4WHjPgA8HFv7mxuVfD6grgSMRpxQbqkHsopsOqun7c8D+J/zPP/dWZa1APQA/EkA/0ue5z+QZdkfB/DHAfyxKolpgzvI0mci5UEXfmvnUYHt6ShFYClSLiIUr3wqwIysIK4AuXKfAqn+juapm1Rox4kEhw9a91Rp/fv7nBSVtFOy3jlIONk66NJtURmOpxt+MA0XNCrgOCB5XQ9k9TqKvHHsF66g6bb9UVt5m6dAnSvPKdJ+rltcR0oVlaNOp4PBYIBut4uFhYVCoWK9T01NjXjSNjc3CyuRKkYEXXoshhoYmK9avNlmkdXoMihDRucmn1wJVnKvmk+EkQJfNml6f3MwFMnAsonW33fA4JOh8xWlo7ykSHmr0jdSCgf5crnkRhGXVSpv9vf3R2SEjrssOzZKOVjTb+cr6hPOkxqUSC6PorbTOcS9hlXq3XlzOef8lqVFfjysKvKwtdvtIjS73++HR6/QWMSd1wjg+K3H3ESRDso75wHdkGrccTKXhM5Vd7ooKjMgVfFWVU2zKpUZZYFyWTPOA3eW511mVgFtDl6c93F91cdupDfqvaj/R/PBJKR6JMeeHm0V8Vz2P9K/U/MIZbMeYaDzaiTbWq0W5ubmMD8/j6eeegqtVqsIgaR8o3dta2ur2HhEdSY/fsuNEORZ89fnIrk0SRucGrRlWTYH4JsA/MEjpoYAhlmW/U4A33z02F8D8BM4hVKUCv9IgQ/3XDANn+xJDtL8+6hMJ76jhfepdFx5SHVY98BpGRzQ6XuaTjRJlSlervh4Odwj5Pl5iJxv56z589yxqOMS8Pz/2/vXGMuyM0sMWyeeNx6ZGZlVlZnFLr6KxUexWSSbTbJJitPTrZYx0wNB80cYaGzY7UEb/UeWxoIBewb+MTbgHxIgWB4DwsANS2pZEGYkjQeewdhtdTebj2EPySbrXVlv1isrX5EZmfG8z4h7/CNynVh33W+fcyIiozIi83zAxb33PPb+9j57f3ut79t7H42sZdn4VCM3iP7cmU7qpak+5UeFoI5eFGBvPZLvEOlkzEPfWjYncvrt9e6LVgGMrAmZmJjA/Pw8FhYWsLS0hMceewytVgtLS0uYnJwsFvKzDknOuG6NIEmjEay3VKSSdZW6RgfvVNu8X3Kv7dPdNJOGNbIBTua0DiMCEP2OSF2Zfh5RL9O5zCb5d5RGZDNTEk2pTbWVlL1Unct0ZxtXkqObX+gg6Zv9pEi026QyEJS6JoqCpupXbaU6SFQ/fV+S3uP6RPY6EtUpVQ5fd0i7NTs7W8wCOH36dDH9yMcx6s0F/ErgBoNBklhq2/YoTVnb1LyrCOpHJUdhm+5l+apIVSry81FKGS6oEmKBuhKVN1UH2qf1O4W7FDvoBmN1gLyPM+5w0/M+PkUYsWysieyK2pbhcFi8D5afXq83FjBJ4dIoH7eR+q2OcTqMtre3CxzpjvOZmRnMz8/j3Llz+NjHPoaFhYWRadwcI7iWbXV1FWtra8XafxI25QD87dMjtZ6jZ6HPPTXWl8lhIm2fBnATwH+VZdlXADwL4O8CuJDn+bW711wHcGE/iWr0KAIglIiw+fUESVk2+s42DsC8xjuHV7Sz5UgnfyiaVhnI0AFSz1M/eh11s5KoA2l6ZVHDyLCkgIP+V3BAvZgXo2rRVtcamUnprs/DN5OhjvoM/cN73Ivh5XZjzfLoS6L1Rd5K2sragoKqyJi7sWGe1IsRAAWRWTa+Pe/8/HzhJXrssccwOztbvFCVi2NZB9x0hNE2nldip33AIw7arlOkTe+PIhX3We6pfVL7UnUdv7VtRtNTeF0VMYvqsmrwi/KJxIGFPrv9PMNU+moHUnY26rORDuyPqUGP13tkjG1d6yMCT14O/vZXjkRldjKu45LrF5U7AqGsN9oWnZ6oBCoaP6I6Ttn5Mon6v9pyJW10KpG0cb2tRjyHw2GxlT9fZMuNR5SYHqQNRrpr2R9U20RJ9ac6El3rY/5+5aiInNu0gzzPw5QrpVOE+6L1mDyn7d2jemqPvR71uUQ2Pqp3tUd1xoVUuVy8LMPh3vIJvtbDo+VerlRf13Yc2QStA5K2mZkZZFk25ryfnZ3FqVOnCtKmUyG5PIRLS27evInV1VVsbGwUDm8SUiVowPhuuT6uR5hacX/qdQllchjSNgXgawD+gzzPf5Zl2T/Ebji/kDzP8yzLQi2yLPsDAH/gxx0MK6nSAikAd88b79HIhTYQJzRlACpqUKlOkSjn2MOLjE2qQfoUnzpSZpCiSKHXj3pLPApI/XQBp5ZNvcFKUKIGDIwDn4icOrjxaTn6nFKdhOlrmaljZCwY4idp83UsajBcPwdRDuQ1H50GpFFGLqylIZqamsLp06exuLiIubm5sciBTlOl14uASL1EzNfbsxIxHUSqRI3XvR4IDykHtk9ltikaQKNrUsbXjTuPHUQioFDWx7wPp2wgEPcLzadMJ9eF7dPtTBUYUNFokkafgPH1fl6/mp6mU1UWLQ/zUYdSZGucsEXXMN+y585yRraJ5SZI8qnhXuaysSsCcFEbVseojsu013NzcyObIKmjQsvDcUynGpUBlqgOy8oZEeFjKEeCne61DT7OhA2Ioz/3WyLHQISv2I8d50R2wY9FEfs6fSTSqcr+VY0BUbrUUWctHeTZRPc4P1DbNTMzg6WlJQwGg2I3WdqnRx55BOfOncPp06eT+iiGUkeS56P1XTdiGxFUX1pS12YdhrR9CODDPM9/dvf/P8Wu4bmRZdnjeZ5fy7LscQDL0c15nv8hgD+8q3CuAJaFAsbnFet/EjMNKTsAjSo1amgakePCQOZRZrxShEzL4IOid8CIfCrhcaDhabg+Xk5vZBFo1P/0lPji0omJiWLeML81Dxojf28FG6fuHMZ8PcLGa9y4aaPmNdz+XgGc7vzDD+vYDae+sZ5lYN70rLB90RvjnUvbh0dUmD+P+/NVcqjRytnZWQyHQ7RarcJjNT09jdOnTxcvgGRoX0G2Tjlqt9vY3Nwsdor0eeYsr0ZIVS9tS95ftL6i+qgaCD4iObB9ctt099hYX4+cAJZOCCSjelNxe+Pticeia6P7ouP+OxpUUs/SbYzqEK0fjsoVpV1nwNKBlXZB7TV1iHRTO+HlYB/U+lWbwf8pp4baSI2uaj4pAuf6KKBjeXU81Kk/ulmIR/ZczxSJTLVB3k/bpGMtx2naj4WFBczNzWF+fn7k9Tt8PiwTp0Py5dmcFqnRO7enTsq1bG53yiIQx0juKXYCRh0Kqf7nfZzHqurnXpPBVH/wa1K21tM5KmdhRKDKhO1T23LUfonpfBx1vEIdfKxV/ZiuikfE/dvvLyu/lk2Pl30AFFhkOBwWWDHCuVH9RWXifcSZvIa2nxvgnT17Fjs7O1hZWcFgMECr1cL09DTOnz+Pxx57rIj+aTqqM2cCEDfRNnF8cMJXhcMVd2v961IarZs6/fHApC3P8+tZll3OsuzzeZ6/AeB3ALx69/N7AP7ju9///ABpl3oX+D/FclNg09OvuqfK+Pl9EbCqQ7QiPaL0/Xg0KHmenrcaiCg9dm5fP+Gdkg3Zj/vgqXk7kNHpdhHg8HSjBl0GLlPljACCntP7CU4UJDkY8/pzIBGBPL1P85uY2N1sRDs3SZsSRxor6kfwQw8R1+fpdEc1DNp3omlcKV3L2tZxkqOyT2UDedQGomuANIDy/l5Vtz7QRfepXnXSdF33c85nA9T1RNbJw/tuSg9f66Ukx+9hXfgOtw6S6tZZyj7VTSMCQJHeWiYnKlXjn6cV6exjCm2G775J0uYvzKZt4tQfzhrQDZBcv1Rdp+o0Gof9Pp9pcxzkKLFTHdC3X7kfMyjK2oC28WM2u6OQsjHf8YfaSEaHIvuWwpV1xIkg09mvuG3J89H3xPEcHWu0B5GTq6w8VXhOMaXakZmZGQyHQ5w+fRo7OzvFOyE5OwnYW9qj9orraUnauP5f7Yf2rWg6fFmb9fJHMwD9npQcdvfI/wDAf5vt7n70DoC/A2ACwH+fZdnvA3gfwN+qm1jUIKLpR8Aec9WGSCCrgLdsEFTRAc8rOBp4o8FRQUUZENY0qiKBrrcOWDqdLhK9N6pHr59oXZIO2ABG5gp7uTUyxXsYEeNx9VRTd230agQ0GqVeDtafghYHiwQXfq3qqpE2/fiz1Cigrp9zr7e3C4IV9VBr3TnJB1BE1LSsGlXjPZ1OBxMTE4Wx4ZbZ7XYb3W632PVIp17qR589y0Wdo34S9SG2P4Izfa7HRO6ZfdIB1ssXGWTe49doe6wz+LphTw1mPF/myFKb6oNFivhFtqdq5oHqpL+1D6i9iUC59lfti9GsA/4nSAAwRgp84OXHd7iN7CslmnmRIgRuF8tIoIMdtUORbdK2o9E9tQ/+rFKELgIf3s6UsHEbfyVv6nTL8xy9Xq+wMcDezA2+42hzc7NYK6Jpq+eZok4yBYfebiOdvVypKav3Se6ZbYraltdFFf6pI/uJuFVdW/cZpJ5Z1A9TaVdFeFK67reduL2PyEqUD8eVKCoegfqUc8PT02t0B9399AHFKaoH25M6YRSD7ezsoNPpFMs7iKN0p+uyPCPMXXb9zs5OsY52enoaFy9eLHaU5FRJbjbHd9MuLS0hy7LCFq2trWFrawvLy8sFcWM9kvApnnZsXEdXnifmIn4D6jsgDkXa8jx/AcDXg1O/c4g0i+8UgNCBVf87YPQBX9NXie6JGmodPQ8rVcCMeekglJoW453TPTpl4sbBjYd7sdWI+rQi/6QAlJbfO25EGpinE40qo5ZKJwI7dAREYMGBuNZPKi+vR7+fQEiJL0mX17WSL90ymy+oVdIIjE6l8j6TasNeT5E4YTsuwOgo7NNhxAfTOkAqAisHqdu6oC31vPcD+iLCFvWROoOx/k45R1I6+j3A3uBbB/y41BlUffyIxokykhfVecomqg3WPu2fsvKVgV0/Rtvh00DVptFrrSBU19ly+rZP1YrGCD2XetbD4TDptFT99/usj1qOwjb5s7pXmETlXhC3/RK2KjmKct4L2a9zK+rjvMbLWFUvUeCBOCbCi6n0ymwV8Ui0ARuvIQZxR77jLK+T/Y41ei9nK2n0318zxamTExMTxUZt+lokJ2derro4x3mK601CGeH4lBw20nYkEg04EWnIsmxkxzwlMRQH2ymvuA4WVQOrH9N0fNcaH9D0uL7IWRs5gTu/gdH1YE7avG4iQqHlVz2iOdc62Dq583cX6eCrXgRG2JimvntHr3Vvha/lUNHIm3pytXz6HJ2se8dW0sfpO1H7oLHTjs/0WE7PQ3WJ1lbyOvdUMzzvc6C9rbux4+6QnBZJ4kZQo9E+fZ+etxdNUwGRGlk3XNEmKg+aRANqyvERtVu2OUaNgXrEzYGstruUflVl0HT1nOuspCASnd4cDZ767flEA160MJv38HdkF3hc23E0hmg/o32lLdN8eW0KWLlo3/Dd4Fx/rTfXM0XMaJ80eqj1oztq+njmY0T0nHwGA0V3A/ZoF8cpL38kfGacws1Xkeh66bK61rEsIgIpoMu6Vvt8mOm6x1lo3zk+qqidB2KnSh2pS9buhbjjlxK1tQgUq1TpvZ9ylREc2hJ1XqfSLiNJ2hd9TwOOt/qt4nn6f9oQ36Y+ZbcjvJvneYGD1AkT1cdwOCz6Oqcusk86+dM+rDYhVXdaT7Qvm5ubmJycLDAU02y329ja2iqu4zrcLMuK3Wy5vT8jcXwFgOLd1A7hWjcprKf6a537LKgqOZboSguZIkkUj/joA9X5wdrwo/uVEKnnkmnxnEYu9P4UOGFHU3BQ5hXV6XTaKAmGddBONY4o4uGeTeqsRJd66TRJlWj6pE5p0XScJPh1Plg7gUgZAa1zPRYZG5KgKkDrZKTsmgioK+HS+5Uwkcg4EHYPCwddTn1UvUiiHRyqEeVcbF03wnrWeq8aqPR5aBtOtSEAxdSHBxUYUcqIkV/nIEP7vl6zn/T4LJx4p3R0wpc65/e7zXSyoMA4RdpS5eB9/p+2S8GRl9Ovo2jfKqtXbbMpJ5be7+RE04nKpuOQ6h+NCXqfPx+1hVomHZ903ItedZACvk5kU/UUjSOqO/VyexR9aJOi9bYpYlnWN7QcKf3ZVpSwP4gSke6y+vH28VFK1fiTmm7mtvSgeauUERy/p07kTPUsS7OOEFMortD2XFfUAew4TPOi7pHt0jIqFvL1bJH4GjK+yohp0Znpti/6dn1VV5LIycnJsaDO1tYW2u12EWWbmJhAu90ursnzvLBLimFoZ/05VmFFt++pevbnWDZrgHKsSFsEKqOC+4DO7wg8lA3cKuwIOvDzGl/HFZEGj/o4GND7+K2DrE9h4/sm1DOsBFQbRkQWlLhpA9P1CPrhoKq6+jzl4XB8d0+SESUnvg2/Ag8Ky8n0WM4IFKnxYt76/DxSRQATeXD02fR6PQyHQ3Q6nYL0OOHVzs/64HPRec6R3uzw3NmIdezAm9eyTnq9HnZ2drCxsTFC1PghKVNxD5C2C92hk3Wj13ld6jn9rSA2qn/fgv1Bkqi/6Dkgnv7gzgxg1La4RITK9aCkBsuUDdT+6HnQ/pWVRae4AKPz+iPyp4C9DhBXwuQ7QKpNiuxJ5JzxZ+azFbQuPB+Wl3p5XTiw8fHK89ZrXJyQ0U6ol1qftQI4YA8UqW3S6JjbmrridZnnebEGg/bSn0dkc7Wc/Pi6FrYlXfPidtLJnaardpTHqDdB3INolyhqY+o87zKQnZI65EWlrL1XScqGld273/btadXRt8xuR+3ex+TU/cPhcGx37ZQtJYlw54zbGG/vOvbTXujO0am8tU+rXdIZAFF51Gaz7HoP+zuwZ2uj+nHsRuF71fgBUGA6/aajSKdHMm8flxxjcszTgAkwirciwlu3f7Gv6phaJceOtEVRLJ4DykmYAve6ooNSdJ8DAc1PH3LkwfGB3K9lg3YSxQWU/K3RMAcq/E51cL9Wd/vyutZB2DsX6yciKLp7mBoB7QjeeaP61EHHSbjW42AwGDkeTRPQuo8MEKc6DgaDYiGq5w1gJDyuRo/PR4kdy8FvTcunA2i7Y5ug4aGBWV1dHfFK834lbQpCCXYdTPt8co36lemtdeeEW5+HP6MH1aPtdVVGvvS6yMsf2TGt62h6iN+v9iciExFo9nNqV3XKm4s6FdQeRTop4E7ZJpcIlPsgqbYkIm2elzq8qqafqMfYiZ2SVk03smW+uYrOONA6UdFnqbvBDofDYm2q66Nl9XKrM0ltQQQatbw+XqnwPtqiTqdT2FCfMu+bwJQBMa0nJeu6qYzrEKWpRJZlisjcg0rcnMxGY+x+7i+TOtGj/WAwT9vFwXqVlLU7Sl0yVTe/6JO6tk5eTlajfNT+qoNG/7sohvMZOKnxzDETSZDaq6iMbrv5m7ZWca8HKTw9rVP+JlmbmZkpAhrES3fu3CmmYvf7/ZGyK6aNxjO19+6odBuXskP6LKpEn1mdfnisSJuKel2BUVCiDVYHY/c06SCtU17KBpEI2FDKKtSv1YbrD0XXUwCjjYP5+GBLw6WejahTeBnUk0GPgQ7Smi69E+yYPj9b13yliBXv13pQT3Gq/rU+6ngL9VwEFvU6NUbUJ8/zopyapwNH1kOv1xsZPGZnZ9FqtUYWkvpzVkND0ubr5tgeeE51JDnztWw0mnyuWlZt9/ps1DA7KWeUTHWO2hPr1kGtts8IPD8oogCXzw1Ie6D1GThojGxJ2YCb6gfabyLgRr2ZrpM8vzZa3+R9IiJq+luPORFgO/EByska79W26k6llA1I2WkdsCke5dL61PSdpEV2Jno2XkeRRP3HI1HR/T4OsK75rscs29vZ1afdaGQr0lvLqU4i6qn2yaNttP9ef1EemhfLoLYuVXatF9o1jzj4jJ39gv+TJN5HU9dExyKc5eI2qQ5xO6wcdAwpI6z3Wueyse8weTFNtWuKxWgD1S55+y8bY6gf+7c7zFXU/hKLuNPM64MEStMj9pyamiqifMxb31fLMqZsho9RJJP8He1wrmOGRgZ1VoJjdWA8QEBSGAUF6pK0MqmTxrEkbdEL7PifFRZtK6/bN+d5PpaOih9nI8yy0eljfo9PcaoavPUcGyK3wFcSR+DuAEwHTvV2MD1gfHtrrUfmoxubKHjnHF8SE/WmsFOrIWDdRLuwsSG7t1l343Fg5nXlgzg9KlpOFSeg0VRWNWAKOtRLrGBaDQanA21tbY0AlPn5eSwsLGBqagrdbnfkPq1r9fxqGZRY8dkr2OE716inGnB6kAi6tL7UANN75UBW35dEo1S2XlGPexvStqlG/UET7V9OhtXgu+Hn83WnjErqeJR3NEA4ANb7XFJgy+2pOry8z7qt0bbiaadsqert+Xh7ok0iIdD8VLco6uj14bbJ9Y701XTcYcFn744Yfju4iYiYE1oFGP7stbysJ3q9ec/MzExB1nRrfi0H2ySdQvoceI/WDZ1ErDO1H/68+Iz8OWidedRWn707DJWMOjn3OlWHmdbzg0zYgFEbQDB8L0TJ2r0ApZ62PhPNy4mPk8aqZxnZwdSxg5bLx0qdDeDX1U2Pom3f7W3kRHX7T+zBTXgoiuXcke4OxYiQehlTjhFiMdVddeLMLK5v86CCB1wUTzGyxrpQB5eXK7JLPgboxi6KbbIsG3FWsUzcTMydHd6O3AZWSd12eGxI23A4xM2bNzE9PY2zZ8/izJkzIxXhhlgbadRo9boy8TS9g3mnibzpmk/qIamO2jBdfwfPDoz5zYal13p9KVBUUM98+CHQVqLm9ePAUPPy+tHolRq2KNqgEv33KQBu5CPw5eDSDZ57cL3eVA920l6vN0Zm6TwgOdLnyymuU1NT4bs42AYiQ691GLVHlRTw4zPWOtSBwIGhRiC8ziLRumU6q6urWF5exo0bNx4ogDQcDrGysoKZmRmcO3cOS0tLANLtxgmVSmSP1LinJAKi+h3lUYccat/StuJgOgLBqYHSdXRxL6r3DdoldwhEkRe1eynyGrXFiOxRN79GhX3e0yp7zmVkV387uVAw5W1EAYmuL9P60gibT8Hn1KJoy2mWke94dNvg+ag90bagdRONraqXOt+0LenYVka8vG40vzzPsba2huXlZdy8efOBsk3Abp3duHEDMzMzWFhYwMLCQq37UpipSuqSkCqpeg4+JkYzEOpIWfnq2N4q0TGwzB7XkWh8rzMW62/iCk0vNXsj6meetpYt5ZxTXZUokei4jaVtmp2dLZxLapP0nbhO2ng9f6s+aodYRiWBESaM8CLrRp10vM7HiNRYHI0BkRA73blzBzdu3Kh0uBwb0tbv9/Hss8/ipZdewre+9S382q/9WvFgdRBQMOG/1cvGCk+RPop6bFODvYJTBxxRWFkbGP8rifIpU8zDiRMHZAXwCugdhPkWzaqTvkjaB159j47q4x1ZvR8+LS/ajt4BHzubpqudIvVMfedFf45KQLUMzNN1cRDoz5D1s729jXa7jcFggLW1tZHdhbSedQ1JlmVotVrFi2j52+dsz87OFkZrdnZ2pM1pRE/bT0QyHeixjbJ8Wo/8z/clsYxZlhURNwdHZelo3tvb23jjjTfwr//1vy7Sf1Ck3+/jhRdewKVLl/DNb34TX/3qV8P+myIPEZmoA3z0Gr/PiQ6AMbuSAmVuq7T9a16uh9oOtSV+PtK3yu5pugr+o2Nqm1Rvjf67uBMkqhO1aV5vbO+pfuigiMdTJMTv937sY15UX7RHvr5Mn7su8NcxqNVqFV5urs8lgaJtUnDlQMx3q9XnpLaL+nu9+TiqnnN91jx2EHCktuytt97Cj3/842IGw4Mk/X4fP/3pT/Hcc8/hN37jN/DVr34VQOzYSRGIsrZM8XpXop26NsrPna++RjqVZhlxq1PG6B5vl3VF+7I7Lyj7iQ6SaKnDW+9R7OXpu03x/uJYkNdFYz3Tc72dSHidqQ0nfuEmSltbWyN7B7Cc3KBtamoKCwsLmJycxPz8fHGc71qjnaL94pb8rVaruJ/1x/Spj882oJ2MCGj0/KN6c6yodaDPJUovNT6++eab+PGPf1wLOx0b0gageH+LromqIymQ4ccidu2krQxMOVnTYw56HAgpYIk8zUrIHMhoZ48GfSc5dYFRagqOl9kNegQ+neBq3bh+1CcClJEOKd3K7vEyqJ4KiPJ8bxpt1Aai64E9ojgxMVGE0PV7amqqeJ5TU1PFRicaVp+amkKv1xuZ++3Ax9stJWUY/LnzOxrwUnXmoD56Tt6X8nz3XXEbGxu1CMlJE7VNbLuUwxKwqnuUIO9H/NlF39o3Uzr4Rwe7yDPsgxwQ7zTJ6xXwRP91YPXyRd9RGbQsEWFzm5xKz9NKld2vczvr90VjE5AGftE9UT6+2686XriuRKdSMj/aLNoxpuFrCtU2przwZbbHgXM0FqnuQDnxSNV7v9/H5ubmA2mb8jxHp9MpNl2oSz6q+k2VlJGQg6ZZlW5ZpPWjerZRXzuIfVaJ+oxLVbuvcrpF96SOHWSs8bwjPWg7OL1abYOudaNTSTcaUUcScRVtlo8ZKd1o6xV/1sGVUbnqcoU60uv1sL6+XqvejxVpU3GAEK1nqrpHBxP3FPjgp5uD0FvpGw3o4O4gxNfPqWckIjp5vhedUq+yR7sUJCp44/Q7HWy1DNpBhsO9LVC9nlzcQwPsvSYgVd8+AEfhbA2BR2BMv9UTR+8uddPvlB7UmdfS+xQRVi97FEKfmJgovM/T09OFh5mebtbt5uYmhsPhyPTI2dnZ4jvL9qbGLiwsYGZmBr1eD1tbW5iZmRmZZkkSFJFbbZvaRt1wR0A8qislk3oPDag+S6ahaT1MEoFmJwORIyc1GGofSHmufR2q2xbmqYNSRMj2Q0zce8x+A+xFraIBkmm6Dm6/aP+A0ZdDq63Xj9oETcsdY9GzUlDjz8jX8nk98FvLqW1An1Xk4EiBOr9W7XXUr/RadxpoGQiI6HGmjeKLZXkfvdT0WE9MTBQe7bm5ucKjTTvVarVGyqPORP0fjSkph4A70zR91dXbdSQerfFnVEYEHiTRMSwCpGqngDgKc9R1dRBSdq/E+2AEyv3aFPnQyHO0tORelcVnAlXZ8Mj2Rtdqv4rssh7zcUwjgqxH9lnaas4k4ms8Wq1WEXHjHgHtdhsAsL6+PkLgfN0bo3FcPtVqtfDYY4/h9OnTmJmZwezsbBjtZHnUVuseElomJ3FafnfsMx+tX3cqRW0q9ez2Q/KOJWmLgEA0kLkBcoPNSlWA7oOoPjA2Nk/XQZgO8PrfjaHe43pygPapQNRVO4I2NuapQFrXBbBBOXHT0Huqrn3aQgQ+FXilGpoPsiQFDvydsFH43CKg4/p4GVyHqFPUuV7rhJ1W68iByvb2dgGQ2MFnZmbQ7/cxPT2Nbrc78qqFPN/dMIDTAVqtVmG0NEpH4sR7XOdoioSW1wfulCFRcq3HHICn6u9hIm9su755kDsvVDzaoACc1yvQ1Gu8bjUtB7Zlnwg8e593u6HRE59imGpzqk9kO/Repq2/ozJruj7IerkisOrnWfbIPldJRLSVRPq1Kmw3ZWmn+nFkn51scryjPpzO3e12R+4luZuZmSlszGAwKNo0Pdy8NmrPqqeOVT6mRpKq78jG8Vuft5bFn0FKx4dJ9tOeKV6v90JSjqhI9pt3GQY5TDplbSbCjxFRYFusq1/K5kc2Va+JMGcKy7hEESdiHXdIqQ56jeepejMN3TiEUxR7vV6Rpm8KRxup69ump6exvb1dTJscDnffr8v333pdRmOy12lZXZeNP2X1ehAStl85lqSN4oN6NGBpp3ESoMTJQZN3MgXGCpRVIo+HDiQK6D0fZfxsnNxVUcsXvfcCwNjumCRtBHscrJkno3j6HYEKXq/1F4EebeCqsxNi1csNDDuqEx7WrRNPF6blO2Gy7j0iGAE81ZfH/KW7GmHksbm5uZFyDwaDYrrc1tZWMf1R359G0tXr9UbKnmUZNjY2ikjbnTt3irVt09PTWFhYGHme09PTI3WqpFnrnM/SDZY7EEigtbweafMos6bH/DXy8jACJLZRdYao11KjxgqItE71vA/Q0W913KikbFI0gOtzSkW5uC5By+ntKiKE2o95rd6ntkbzcqENcJsetbEoAuxlZT9Rwqb2IUVc9VoHJn4fr3UiqL+jGQu8Bih/ySzPq1OLoEifXavVKiJtnU6nmK6tHmfWf6fTwebm5sjzo3d8Y2MDi4uLmJ2dxdzcXBGNiwi5l4N2Zjjcex+TtwWt08h+sZw+q0AlGrO0LtTZ8DAInX6c8hqNB0AMLo8iylUnzYOOG6m2t588IvvoYF7bI9uW7wcQ5aG2hverPin9I0ePHk9dF9mclN3RSJO3Bcd6UV2kiI7adTqf+T07O4vt7W3Mzc3h1KlTxS7Yw+GwiLxtbm6i2+2O2CndCG5ychJbW1uYmprC8vIyFhYWMDc3V8wI4I7etBU6jmnZ9bm4AzQqd8QFIkKt/1XuJTY6tqQt6jD6DYyyeQWReo8CVd4DjG4fDIw+hAiwOgjyB60EystB3UjSnFBpp/RNRjxaxW8HEE78tMFrR4oAXAS4UwZQAZ5+vJ74m+koWNOXRbPsSpx8gHe91OCVDehaPifsGlnSedHMk4bGgRufD8P9vV4PWZYVL8QmeQN210Hp+4wUoA4GgyKPTqdThPhnZ2cxGAxGnjvnb/sUXC2zl8/rz9uugj//8PqUodHn7t71h0miMntbiwY5ehK9j5cBiJREg3TKRrnuEVnTNUuRsyzKV4lKagDU9qJ5eN1EUkbG/D63h35tdA+viSKJKr75Ukpon6LIdVm5lNiXTUfnddzUSUHhcDjE9PR0se0/I2i+AJ+2iQvfeW+WZQVpy/Ndx2Kr1SpmCvDdlP4qAbcvtB96rGyc8fYU1b2OeU6etY7U/pW1gQdRHLjz+6jKfy+ic2X3HyT9Knuish+iF5E2b9N+j/aFaFZDRJRSeWuaVXXGNNkvU8GAaMyJNoYpK6OKEiT2P2JtYtGZmRnMzc2NTN+emZkZWedGp5PmxzK0221MTk5iY2MD09PTWFxcxOnTpzE/P49HHnmksH8ca7U9KFFzx1GqfvRb9UmR3aOWY0nadJMHrXgFF/Qm6TtlytKjOLumka96ODoIaKfhNb7OIwK2XJ8W7bRIYcPydWoebfHyKTGLjIlu/aydWjtG5DXWOonKpQOjXud1poBQyRDvc6Cq+kR6+LNzcu/PmkBZybkSel7jZVJwoqCNIX2+B4WeTV2TsrW1hU6nU8zjVvJGzxEJH6cAzMzMoN1uFzso6Y5KXPdG0TLxGSv4VPE2o+DKp66WSUTWWK7UwPAgCcvrxEz7GsEyJfJq6r1O9CIbFN0b6ZbSSUXbuNoh76PadxUARAA9ZT89/cg2eX/0utJoCtON7LiWKaoTSjTjIipvpFsVANZzbr+8HFG5vVyaVgQ+AIxFsrw/cu2zgk06irrdbrEWl+upOT6tr6+j3W5jZmammOlBm3T69GlMT08X45JO/VayqpFn7zveXt0Bwd/urIpsfVl7flDfHVkm7vSLpA7IjMYErcujrteDpB+Va7/EVe0ndUhtDhbZLKbh2JI4Q/trHd1VosCAXhfVWVR2dV5HDrfIeaj9VHGY2nZ3BjNddYSzLjk9m3g+yzJ0u91iYx06loibgb3XMPG+wWBQ2KnNzU1MT0/jzJkzhc3SgAex9H7KXvV86tR1lUNyP3IsSRuw9xJiBfD6sFkJukmFeynU+CvJ0gfj5IvHo2PMVzud3q8fnXakpI0DSWRIdR4vvZ2+mYfmpcZEBydvCAqq2IgVMDAt1m2Z59/zVtAZAdI8z0fIqh73qKGm4eDJ09VnqiSa9cpIkhIz9dLymihfrUNew8X51JWGo9/vF/O06T1i252dnS2IGz3d1IFtgSF/jfrNz89jenoap06dGpnLHRFdPk+SOT5Hfb5+D387aUsNJKwX7UvaDtSL/6AL+5muTfSPitZpmcFX4lbW7qPBM0XyIhLDvNxpxP/+olKKDnr+nsnIPihI1++ojqKZDV4vai+9HafS1Xp3AMHzkaOG55R4RLYt9Yw0T9XRSZqXRXWIgJr3fz4TEifeqy8kp23k9G7a4larhbm5OWxsbIx4uLU/d7vdIi/aCc4IoE2am5sryBzLyGv5bL098ZlGz8vtUzQ2uNB5xd9qw2mnHxbS5uN2igRUgc+oL6pj4TjVZx3iw+OpMSoiYWrD3KlDcRIWYUe3B5HT/zAkgeJOIWAPD0Ub8dGGqG33clBf9le3w9qndfq1Bh48+EIbQ71oj3Z2dorNStbX17GxsVFM31YnDG0Yd0rd2NgAsOucun37NmZmZnDx4kW0Wi0sLi4WznANWNBGuZ3X+os4AX+nMFLZfZHs15kAHFPSduvWLfzyl7/E6dOncfHixbHzPginPAJueHwgBcZDyXrO06Ro5/XOrBE3b6Ta8Ji3gmcFRPSOuidb8/SpTGXl1DKmQF5Uv7yGhCsCD6qjr5fS9NhJNH2f8hmVwcVBsC68d920nikO3NSAEPAwTfWCK9jQvJzw+FQzACM7BPnQ5wAAjIBJREFUutHgqPNB2wu3bs7zvJimRGNGTzUJvk7XdOId9Q2WSY12CnRrXUYeW15z48YNrKysYGVl5YEnbnfu3MG7776LM2fO4MKFC7WN7mEG5RTwovgg68DCAYL24RTh9LahQNwjbp5vGZF1u6JliY470PF+rOk7kHQ7po4vFU/Hx5Y6IFfrwP9HMz1SRCQia/xW269pRfnyvM8iYFoKlhYXFwvn0c7ODrrd7ojzSW0BnTNra2vFmlzu7DY/P1+ANXVC+Fo617usbzih9TbF+3XGCM/t7Ozgxo0buHPnDm7duvXA2yYAWF5exmuvvYZTp07h3LlzITY6qKT62UmWFPjWvuZkyNuktr/95FPW9/2cR+sj2c/z1T6i6absnttxHmOfjmaP6VIft8M6brJstEnENVmWjew+2W63sbOzg62trRHbpDoSV62urhbOpVarVTipnLhR9zLH4b2Q1Bh97do1rK6uYnl5uXZax4605XmOt99+G++++y6+8IUv4JFHHhnx1lHcm5QCqDynlRZ5iD2SVdYBtHG6p9anKPJ6jTRRNEriU0tI2hzIaAchsNfNNViW1FRKTqVxohfVLYVkxq9hXgBGojXsABotddCn5FQJDwf4iFSrPqonvanaiZk+14a411afkRIpenFIjrjIPyJkrBPmwZdk81pOeWy1Wpienka/3y/WrG1ubo6tPeR6OK6TW1tbQ5ZlOH36NFqtFs6cOVNE37hpCfXj1AJtByki7H1G272vNfQBzNvG9vY2Ll26hFdeeeWBX/BP2/Tee+/h85//PM6dO1dMj6XUAaD6X51LbtTdTpWBTgWx/tsdLR5Z8ucNYMQWqXPF202WjU5fZ1o+XVzLUQUulJjoPRHJcdvn9wCj66F0Z7TItmrU2/NyR0ZU/+rIoX6uG8/R9vG45qfAJ8/zwmGj9RmNDypqvyj6biTaJ9okvgR3dXW12DhJ7Z3OFtjc3ESWZcU23OfOncPS0lKx7k3XCVOXqA84+dLn7lO2PcKfcgzo9Q+LbQJ26/DSpUt444038Ku/+qv47d/+7VqOARcHrvoMU+2/TvTNr6lDRMqudbtSl5RH/YzHtR/TQeEYhvaB43bk0IzyKIteUiKHt3+7HSorv6fDY3q/lkGxkzp8XHfFazrTS8us45uOKxF5YX/WzUr6/T56vR46nU7xDlhG17gWl7pTz06nAwDY2trCxMQElpaWMDc3h7Nnz2JpaanAaIoLo/qMbH/VMZbXn6k/C8pgMMBzzz2Hl156aWSGS5UcO9IG7M1ZTU25ioyODmZ+bcTyowGkLH3VQweJyGPtIIlpsqEwb31poO7KxQHLH76nr3o4GFcypfqr3v7x+vEOVVafXq+en15fBYyUUGp0K7o2KheBZPSfOmi5lLhpWaO8/LkzPf2mcL42sLfOiYMBARCNnho5rXcAxTQlknsaVxLWFPDjMQc/ZQZcj1UZEerJnTQfBokGqMNImQ0qA7lVQCVqRymQq8Sdon1UpxED5RGeqE96+4z6caRfWTpuF6N03SZFdl2PuV1yoJjSK5KqwVvBV2q8cftbB9xGBFbLTnvqBIhRtqmpqZHNlXx6oeqVZVnR77vdLtrtduFsBEanqgP792JHde3t2a/zex8m2wSMYqdUm1epsvHu7LlfEuVdVTaVyF5EbSZKvwo71gXbSn6UwJZhz9QzjEhyyq5Guvo52iFiJbVLUV4RFo3KC4w671PjGjGZ4lXFkpOTkwWGmp+fT248x3uJqbgTpWIn3YSN+aujPqrLOpJqP2XX9vv9At/VlWNJ2lKSGtwIYrXhOQFy0OoPp6wTKlAvAxUAwkiRRs9I1jTapBEh7UwcdJRU6PohXqugiiTQd8vk/Zqee0/dKGkkKM/zETLIsqRAmOpM4cu1WS9KpnSDDl37liJsLJPWl+enESStC4+0RRvEpPLiOQJ3erOVaOv39PQ0BoMBFhYWsLOztwX3+vo6+v1+scUtQZO2NX1Wm5ub6HQ6WF9fx/z8PM6cOYO5ubki4qYbpmgds215m9f2RSPGfBUU6fP1PuKkoJFYdBD09QOpARlIk3CK2yC3S+r9LXO+aNvwNbQpkOLPXyPGvEb1VbASefL9oxEe3qdAS9upl6EOWfM69Ug8j6st0LXIKZukZYp+a56uq+bJj7+yxfOO+p+3N3++AIqNjTh9aDgc4tSpU9jZ2cGpU6fQ7/exurparMnd2toKCVSv1ys84mtra1hYWMC5c+eK2QWMRPvambI2ru2K45ACR7fREXlTJ9zDKOps0bHF220URTlInZVF4Hg+aqf3UlL9MUXqU0Lc4VFqHweVHET5RyCe9Z1le058Pe95pAiXYiPNJ4rA1RWdHUE8RT0VQ2i5iR+9vLxfHdJu63R2ltpukizaPa53m5+fx/b2Nubn59HtdnHnzh1sbm4W9of3q71cXV1FlmUFbjp16hTOnz+PVquFs2fPFjZK9dIplFFdRmTYRdOr4+Tbj5wY0sbBjA8lVWHe8KOOVncwV3Gg4iDIAZQ2UhpQnQ6pXmz+dtDFtBTIRIuqnZxqJ2AaUXo++EVeBgd5Duj0vqjOVCIyGdWxGkGtD+YfASInaB5pi8ql4NAjlym9HDR6W/N6UqOkBJVeIxoXfbGtf3QaJp8zN0Dhjm+sg5QHrsyDFDkgonqIjNC9MkQPkkTtjf+rCFvZ/XqsCoREoDZKX9sqB+iUnt4f1ZZEBNLL4IN2pFvqWN36isBB6h4FsE74PO1UH6lL3PR6r79o6lG0RkvzLpMInCtQ4jiq3mrqwTFmcnIS3W63mA1Ax46uH9Yy0pE4NTVVTPOmM1BtvpPSqjJ4PlGdRPfWrasHWRwMR2uSHxap6qsqbu/2e7+nEx3Xj2MsvVdJb1X+io/ritsk5qXn3KYqdvKot6cLjEbcNR2dMeRlV+ce7SGxUKvVwsTEBDqdTrFEiDhI81XMpvXJKZQkm7SFtIGp8TJVf9E1+20r+5FjTdr8IQIoQpi6s2KWZcXaIZ/ekiIUTNujZ3ouNbg4kVJhfgzHMtqipIrAiKIeCZ+2ou/68jUNTDciUu6x1nf08H56enRthd5LA6Aeu1arNVaPOhCrt51eVl1fxo01VBdGlVwvN2DU09ddUWd/rm5QvCNp/ryO7cs9++zgfk+W7XmC2Rb43FmH3A10ONx9hxKnIfH9JJ1OB9PT0yN1oVvdsrzcIIDtge9MmpmZKXac5PbcWu8pkqBtxNcgURc12mzffAZR+38YxR0GGlXQ6c8e9UwRMJfI/qTskgN+PafAPdoAyPXSvqTp6ACqg7eSBW9zaoe1v3l7I/Dg9e6NVgCg6dMpVjXAEij4pipeD6qPbkqkZdD/DhQ836gMvE/7mabvjiIHjjzuBM9JoRNU5quReH2etGVZlhU7TE5OThZba6u91ny2t7eLiFyr1UKW7W4kwBff0qutMwocZOmHurtjLqoLloll5dTOh4mYRBIRgUi8PpUs6H+VOuQguqaKWES2Yj+iY5RKqs3od0qivkdsp4QqAvzuME3Vs9texR/q1HcC5/3GSRjT1+tVv2gcAeIN3hSH61hQRXR4rc+ccNvqO3rrMiF9WTex05kzZ7C+vo47d+6g3+8Xm5QwDdpPHasGg0Hx7snZ2Vk88sgjmJubG4msKofw+ookqtOUffLr9yvHmrTpoKVzXXVg54PVSFYUbaK4QdgvcHKg4YSA+VIfTkNR8KtlUaKmAF0BPNdAqRFiY1LCpnowDX2ps5YxAvNaJie+Srq0M6QIrqavgFXf1UEy6c8gem4apVMDUuXpUXKVAmX+bN3brmXT+dl6jobCnwH1VLJKQqcEly+x9WeseukzJJhtt9sjnnCW0wl+ZEQjgOTnfYDRduzetodJNFrt8+udtGgfirZXjmxP6rie389v1U11cVIURX20f2i/YXt0j6uSIqYZtT93gKiO0eDoeui1Str0Or/X7Z5vUqK6sY3z20liVG9l0Qy3C5pmmS32GRGpMUsdVdTJ6yAi0goy9NnOzc0hy3adUt1uF1m2t87NwZ7qSGLX6XQKR5XqDey9s8nbuT9jrkFRHfWaCAjzPjq3HnbROnPiXiU6xkYAP7qujlRd73k5iSwTbd9Veeg37/F60bFd71XcpbNkVDS9KO2oL0bfUV1Q1LkRkYXIHuq51PX87faQdaLny9KN8med0kmuTjOdDcD/LDfTJR7mOjVGz9rt9tj4wbakU817vV6xo+Ti4mLhaCeOSrXzqFwp8fOqk2L9/cqxJm03btzAT37yEzzyyCN45plnikhanudjkTZ/8Ao6tWGxsfG4T4/Te/0eBWpsvARtPg9WXzrqD0sBjuat84P1vHsdaCxIhjQC5WmzrO7JoG56nW6uoHWnYFPBSmTEqQ9/Z9noe52Ytm7oQKPDe7VjRFFTjRBFpM07rYOjiLDwPrYrX2MYGSmPsOg10TbXWi6CFkbLqNv29nYR9u/1epiYmCiAEstCEDUcDrG2tobp6Wn0ej1MT09jcXERCwsLyPO88AKyLUZeMtYjo4VsE9Hgru270+nghRdewM2bN3Hjxg08bLK8vIyf/vSnOHfuHL74xS8WkQVgfF2YO1Yo3v+jAVSv429gfHMMj5TynJIRHfw8kkyJ7EfUXxxEKMhQW6WOlmjwdiLkTgHPX8vFbyWher0DeeqqOmu/8LFCQZBekwK+0b2RveA9LJ8vvvd09B7vi27DUiDMnVeqk9Y5bWCWZcV4y3qiY4nrSTg1yfPZ2dl9bcDt27cxNTVVzCTgOlwdx7lxiQNPrfsoCuGETcvc6/Xw0ksv4ebNm7h58yYeRrl69Sr+/M//HGfPnsUXvvAFzM7O1nIoAOmoWnRcpQ5x0zRS19fJK5WvthPFPyknS1kUV/GPC/MgXokiTu6I8X7v7VavqXLMpGyQ3xc5uA8iakPqiPdRTcevU4w0MTFREDnHfawv4knuXEvc2G63i+nZdGYrdlJ7MhgMcOfOHWxtbSHLMszPz+Ps2bM4deoU8jwv3SyvqtwpYf7tdhsvvPACbt++jatXr9ZOm3KsSRvf/fTxj38cX/ziF0emvxBc+4PkQwFGG64PoBSf2uMDoJMqjRJ5x/aXYetAqPp4uurd1Hm2FE2H4ESnXLmHOAJHTI+N3KNeUZkV5JGIef3pMTVSDsbUaGpd6ho9BSL6nDUaoASI//mt+bK+dKAiIdFnr6L1y8iYT+WJxEkv24OSSveAs+1ywT71HgwGmJqaKkL3qoNH54bDIba2tjA5OYlerzcW3ZibmwOAYv0b61H10t2UWN8pEM56z/PdDQhee+01fPDBB2GdPOhy+/Zt3L59G0888QQ+97nPjQwuStKiPqH9Re1J5FwAxqP8eswdSmrjvC/4lMJIIlsZ2SvVIep3tNXqjCjzYLLe1H563aTsmtY7y+CENOWEiKaquy30OlMQoXmmSJvqE9U9+6DmGYnaUwdREWDUutJpSS5afwQsAEZ2N6ZjaHJyEp1Op3gpdwTKGOFaXV3FxMQEut3u2JR3/qeziOeiMukxtVVR3dA2vf7667h8+XJYjw+DLC8vY3l5GR//+Mfxmc98BnNzc/smVS5KpjwdBd16/rBET++PrvO+T/H+miJH0f+U3fBjOntGx0a9JmVreU+VPY709LR9rEjZG3WOpHQqO15lT6tImqcfOXx8HIkCBooHuQxpdna2mBpJhzY3coucf3yBN9Pmzrezs7MF3vVZKCnxMcLbgMpwuDsD4ZVXXjmwfTrWpI2ijJuNUaNswHjHjBqED2xOxKJrOQipKOjmb91chDpHD83JoX50J0ePaDE/naKoA31UZq0XghMH5REgcrLp0cIyo+adztNySZ33e72+9LlFoDGSqqkyvI8dnr/1W4Ecj6cAUgSk9X1ywOgaSO4wOT09jW63i42NjcJw0GPka+6YF7eNnZ2dHQFZAIoBW8tI8fcD6nUahdA6qgLfD5s4KXMvofc3H2SdIPm3EwH+9vPuLOGzU1tVJhFRc1vlz13bk84scM91mUSbn3jamp8DEY+URbqp+D3qBOJ/tSt+zgFLRGq17rx9RLKfaXzRtJqojgmkFew68PXnpHaJ44vOnMjz3VkufF9ku91OvpqHdUHbxYgbgGKGgdpKddoBo2NA9Mx4rT+nRkZF6+8w0RagfJfIumlHbTB1r5K/6LooKlfVDtzGlNm01DXR9VUEjPqzH7ne/j/lnIjGcsdvQDyts47U6Us6nkWOrcNI5BjUaJw/P0Y78zzH0tISer0ehsMher3eCE5U7KS686Xda2trxXRL2indN0LLrfV00PZyUDkRpA0YHUT0fwTWHXw4eHZC5mDIr+cgSRDLRdW6oL/OIngf3DlFUKNOfHmgEjP+JxjnCwKVUDj403qizgqo2IhThFaJYtQh1QCpDqqzfzvhYT56jR5TI63Pkbsv8kPPSDTA0yvNenZA6HmRlJC01elgPjWNRtmjmNRdjRzra2pqCnNzc8V93W4X3W63CN9zyiTbB9u7vpdnOByOeLQZqVtcXAwHNs2bbVm97AoOFRhF7exhFn0e6kzyRdXeB9wWUfyYO5X8Gj5L5uWvePCpQRFJ9PNRlIvOK+2zTJ9tySPyTjB0QKbOPjBG9oj5+m/t6ylxR5oTa00vIq4+S8DrUY+5I64OYXPiHZU5agtV5QaqyWBE6KirbiDF6XWtVqvY5r/dbuPmzZtjU8PYtpke18BxA4E8z7GwsICJiYmRCGCWjc6M0Gcc9St3IkTHHnbxMVFn19Rx5JRJnXudVNUlffshl94f1Ma685vfjgNSji+VqJ/y25dTaH+Nyum2JwL67pSvEh9TiA/c5kZ1m7K1h+lL0b0pQpPCFmrvHE/yPm5wxKjbYDDAxMRE8Xol4jmSNm44wrrZ3NwsZixxqQhfg6LBGG8XOo5H5Ynq4l4Q2xND2nwQpGgD5cPVzSI4EDix0WvdWPjgpR2TBIHTDN2bHhGTiKyx0ThxUiDPb/2oAWQHTBEvF60n/1AvphuVn8f4rUTZjZHe5wAzGmy1TO5R9emBDop8QNd09XlqHRDoAqORRL1Wy1/HqLvodert8TrW/9RxOBwWG5O0Wq0x4+v1S+PEqUgzMzPF+99IQHUdY1RGpkV9PT93NjTgaFf4bKP1ntFgpO0pFcFy0ubHmI6TF3VupaKrUV6aPp+7Ami1aR5JdFvgZaxL9FOEyPskxfPkeXcoRTZL+7UPvCnbFP2PnpFLlb2oIqj8n9IrZZ/r9s+o7Kl2Rq82Qc3s7Gyx2230wnlNj2txO50OOp0O8jzH/Pw8ABQebi9z9IxTY507GxrZkzrOg/2KkyUnBIchhPsVd9rvR6L7UmnUrTvHRa5rlFYV0K8qV9X9fPb7jbg6lr0XEmHkVPo8pmvdorbMGW8Aik2U5ubmCrvE+6P08zwvHFFzc3OFfZqbmyumwVLqtoFUezpsHZ4I0jYcDosoAyNcwKiR1iiKA0oFmRr1iK5luiRnZOb8H0Wf1Gvi0RzqRravAJvsn6J5zs3NFZ5rlteJheapu2U58eE9zFv/6+YnSnSj6ADT43nteA4etX6cNGu5tS61jqkP9WM9spwsByNFjD46UfTfUTlZ58xHy08PGvVnVEpBpZbF82DUI3IckGQqUeex6elpLC0tFR7uqakpbG5ujkVJmW6v1yval+4o2ev1MDs7W8zVJjhiG3fSq95xBT/Ud2dnB71er5g3/rALo6f07nk7U9Lr4u1C74u+9T6duqbPUPOqGsSpv7Zhd+SoeHvxV0pEeah9TrWXFGl0h4vq4Hk6mYvqQu2068d01Fnh9efrOj3CpGXlMXfqeT5OaPntXmWPcmpZeF8ESLz9qV5qn/058B5dY8gyT09P4+zZs8XLbqenp7G1tVVs969jrJZta2trxG6cOnUKrVZrZG22O+x8GYQTM28zvV6vmB7VyK5olE2fdTReVUXGNBquwrQipyDTd0JX5Vioo4fmU0aCdMytC8C9jtTJw/OeTpR+HV0jqXLcUNRhzmdIPdWBFeHcuqJ5p3Svep6p8Sj6HWFPOvAV/2rbnpiYwPz8fLFEhLh2YWEBKysrY85P1Xc4HGJjY6OIzgGxfSoj0FH9HoXz6ESQtp2dHWxsbGBiYgKnT58ea5xKwACMefyUtOlD0m/tSOqxJinQ/7xexaM5+lsBiE6H1OscEGl0LdXYPQLlDVrLFQFBb1TuwYgMkRuu6NvBRCov/faoZaoDRHWmHy9fnQiklsuvdY99BFBdxwg0p+ohMvD8TE9PF+8jGQwGmJ2dLQgrjbTvasmpSNx9cmZmBtvb28W0GC2rl6mOQRoMBlhdXcXa2lroWX/YRG2TEnDvbxHI0b6r11Ki56CA3b/reLa97UXAV8+7XeS3fqL0o3TLBv0yuxSVP0WCq+5JXeP5RVGDOn3fddFnRCkjFA4UU+VJHXO9y+rRyVBZe3NQzp1pZ2dnC1vDTUJSaXG8ogO23++PrDlh2lVOh0iY7vr6OjY2Nva1RvBBlu3tbayvrwPYW0cYOSTqiPb1smhNFXivc20dW5a6NyJaLnVsEX97evvVp0y/eyX6PFxfkp2jkCqStl/SknpWju2I/5kPcRrbja6d5XRHYiB3UlF4vN/vo9vtYnp6Gv1+f8RRV2Wfy85vb2+j3W4fGjudCNK2srKC733vezh9+jS+853v4Pz580XEg9ERbbReIVXAnYOQv1ctWpPiQNyBsO82SE+8R9qAvbn6uuskCaJutwyMbtPO9NRLrsCIukTRMgdHWTb+Mmv1bkaeG96vdavgkQODvtCb6WdZVnQo1kGWZWN1rmV077/Wk0bnlIjrzkHqhVI9mLeuKfQpYbxX64TPUN+bxmNsS6wnknxdv+jPxoku/xMYnTlzpvD4TE1NodfrodPphB79PN+NZHY6nWKw5qsDNJ8UcWMds7xe/zdu3MCPfvSj4oWWD7vcuXMHP/zhD3Hq1KnCNrH+2B4VjHqdR9EkJwbqyPHIjbdl7+P8dpuktgkYt5FKBN0O6s6Qmr72UY3sa7pK/KKNlNxOe79IOWlSJMT7mkaMooFYr9E1e5qnzqaIxhWdJqvRo4jERqAwqtuoftRBx+s9clp2LcvpDsyo7jXCMjU1VUR4l5aWCtvEKdkbGxsj6flYwdcBDIdDnD9/HlmWFet53Rnhz02fEctI+33jxg38xV/8RWObRFZWVvDHf/zHWFpawm/+5m/iwoUL4U6i7lRIkaYyIF4F0BWj1Y2EuhPada0iBn5O83Us59em+qI7FRyke7qp61xSDiG/JkU4WUc+2ytyJkXnVOcqnZzYRuccL/u5OuJ16aI2RkkbsdLZs2dH9gpot9vY2NgYm02i+J1rdXu9Hk6dOoX5+fmRdy37PSl9/fpbt27hhz/8IdbX17GyslKr/JGcCNLW7/dx7do1bG5uFlO/tDFxKpgace0sPth5Y1JwwgWNDgJSEgEkbQwK1n2KkAMjj+p5h2HaSjK0bFGjjvRP1YUO5hE48v8pIOoEIDqvEctoaoymq8BCz2s98b+u/VIyq88yKluqDllGj3h6p3cgprpGoJnHU5scaPnYHukBIvCJysS8dnZ20O/3R9abRAbTj0VAUvXudDq4du1aAcwedun3+7hx4wba7Ta63e7IvHu1AX5MAXPZoMprfcMjBxTR83LAHoF/JxEUj+BpH3BypGkqWWPeZXbJ+3nUd8rKGfVprQO9LgJpmndU99E4UDYmEJg6+Yjqym2j66lEKWWbIn38WrWfKb0iEM3ol5cvz/NinQenpXNzEgLGsnGH04npJCtzqlJX1UnPqR3udruNbTLp9Xq4evUqtra20Ov1xggwsL/2nLq+jMjVBeh15DBpeTtXvKFSRlqr9IlIktuwMqAfpVEnX8+r6lol0Pt5Roetf0+nqpx10ooijBy3uMat1WoVUTdNI8I/XHs7MzODfr8/sqTkIMK02RfpTD+onAjSRsnzvJiKQaHRTw2qbmhotAiEdYcs33VN8+W3k0H3HDkxU8DM/NiB9UXOjD7xXLTGhMSPLzX1CJZGd8q84dFgT32AvYFdowAetdPInxMjj/y5KGjwb96rZEPXc6TW7jA/j8ppnlpPCkZVfI2hAlYFUd4uNJrn60C0LrSdqOFUzzGP666S3PEoyzJsbW2NvDhS65vlGQwGxaYkq6urGAwGWFpaGnmW1M291lqXSgK5FvGgxutBFrZZXx8KjK/z4HkgJh0e4YrIkotHiPW3g2J9ppETCRh9FUS0jtfbND++YY6XzW2g66mASfWJQKPWodqmFJHUa7wPR2DLn43a+lRk0svkejlZU9FyKFli/9Ry6T28JiJeTsTVG631o9fy2+2Xpskxk+tH1HZxfa2+g9NtJYHR6uoq+v1+sdMtMBqp1Hrn/WqjfJZEY5vKRdtW5OiIyEoKD6XanIu3QaA80qb9yJ0GqbRTAFzF81RbE13L9u+2wPP3Pk9Jka/IiROlXSaab1TeiLipPikMGOnq40mKFO6n70XXHqTvUh/FPjpucD3a6dOnMRwOiymP/X4fm5ubYeR1OBwWDnLapzNnzoRO8iqpqt+DyIkibQAK8EjCo4OnN6ioozGixS3wuUFD2TQWHosGfz8X7Uap3kcFLZzWpy+Q9g7CgU8HJ42wKajTAV8NswOZyJPkBEqvjRqbk0mPGDkISxkRj+qxDvXDNCNDHhlNr38vo4JgraOojKmpolqnPhjwGadAkabvRtTbGXXl+jbWd7vdHnk2rhPrbjAYYHNzEwAKEqebqbCMSib57fXoG+c0MiqsbyX70UBJSRE2Tj3THWq9jUdtMBpQvf05kfGBXh0/StpUX8+TbSXa8Mn7d+R08X7k9ilVB2WDoNdPRKBSEj0XTzdySEXXujgBifIuAwSs7zICH6Wr5DeK/pXpq89CATuAkWUKfP7RplD+TXvCzUv6/f7IGm7aWo0KaTtRh6K2vUbKxcddHqsr3kaqIlJqB+qI2otUvk44fPwtI4Ypcub6uu50VEQSYRCfWaFyEJJTRsxSeaheJNh1nrnf61JFGMsklW5EIlPjpdt0fusMOx9v5ufnCzvRarUAjDsd1O7QqbS1tQUAxSaIHJPrlOFekTSXE0Xa+v0+3n77bdy6dQuf+cxncPHixREjpAPTcDgce+G1AhHfsl8HYgfZDtR98FHPq3r7lGQoANfplx710LRJ2nx6ZUQStJGWgQzVTcGT3pMioKxbBy3RAKDERevS8+O3biKj4E/vicQHIL8vmgLhA4NHMsvqRutV06NBjAYdNw6RgeLxCEwzzZmZmQLscEtbrm3ziKUaH3qN2u02ABRztL1+onbN/8vLy/jlL3+J27dvo9/vh8/iYRa1TZ/+9Kdx/vz5sb6obV7PaTRXv1MDf2Sjon7mfT8CMWozgfEXXQN7L5B3cqXRdidrXjZP0/VznZzspUhrJNE5H/CrQIvmGTlU9iMpoqiAg/XjUSa1+Q6AU7Yp1ebKwERUp0py9bnqNYyyTU9PF68oWVhYQJZl2NjYGLFFnhdfuA3sTh2iY4r56C69ep9HOm/evIl33nmnsU0l0uv18PLLL+PatWuFfdI+qt+UyOGaIiJVUhWRq0vqqEN0b8pB7OJt3HUrO699qIxopOrI7/Pr3VaUlSVl611X/tbIeZlUlaHsvjLSRT0iXFe33E7YXNgGfMYGAzWcJgmgwKe0JbS/amuJmdrt9kiwJ+IDKbl27Rree++9Yp3cYeXEkbbXXnsNU1NTOH36dEHa6KFz7+zs7OxIZMGn+gCjAAQYHfC9I6QIm5K1aKMJjaxNTOy9QkDTc2LItPv9/kiEjXlH4M7Xwzlg07RZJ8C40dE6cZDi9aYER6/ROlYPiHtCKLxmv9NclKz4M3QDmSJVBJ36ygQH1grgHLwq+dfnEJFr103rT4+nSBsHkW63iyzLsLm5ORLJVccE2w0ND73aLJduQOPlc8J+9epV/MVf/MXI2rhG9kRt0+LiIs6fP1+cc8DMutdnpe0tIgveJtwW6Td/u23ymQLa9vTVAZ6/R9uj6Wk6ndvJVp2yRRHxKsKmn9QgnyI2PqvCr3eQ4za0rmjeqeimltdBp9rvVPRS702B41T6Kh6tVXvkbYBlYHqMruV5jsXFRWRZhtu3byd3SaNt2traKsY5zqChnqkx0sfKa9eu4Sc/+Uljm0qk2+3i2WefxfT0NH73d393xOEN1CNNajv4v0yqiBpF8y7rx66LHifm8nQjZ4HerzimykHBNKN+EOntdjuqY9Uxqk/HL3rMr3cb6uer6tavdztVp2+5/UjlHdVbitD5PVV6OnEj9h4Oh5ibm8Pi4iImJiYK0sYN87inBffMyPO8sE98+TY3XfJxAUi34ytXruDP/uzP7pl9OlGkDRj3HutApGQFwBhh0zQoDvQd+ER56ycieyo6sGrUj/e4UXEvtg/WGtHxTTi0s7B+2FB86oiDHS+Xl9+BkXrnvONFRi1Kg9dHda8g10P7qkMEMKPIghJ7B2weKXBQFM2rL3vWfl0Erv1aN8oe+eM1XP84OztbkG99X5aWgb8Zbev1epiamirIKdPVNVcRSfVociOxuBHX9h4BbI8oRelputE5pq3Ppuy+SJxQRfdqmkoGtZzarsumOXlfrRLXowqMVP3fr+yXqJXlG9k6XhvZJicp3p7qlC0i0W6X/H8q3QisMA/dfXkwGGB6enpkzbnnp85I2ifdCdjvi9pSY5vqixMSdw5EpCdKo25/KnMilOlYN33vD2UkRu/R7+h8amxnmmUkM0U8UqSn7rGyPCip6X5l5aqTbnR+P88pdX10f5kOOsZUjYf+nInjOMuOu8VrIIT2iNiL+nF/AF2iovlUjUcpm39QORRpy7LsPwLwvwKQA3gZwN8B8DiAfwLgEQDPAvif53l+z+csEDSQlHHXRwULXCSt4uTFd2B0IO15uufTo0L6cKhHtCNkBMrVY63fOmVPQZ8SETUObFQcDLVs9GRSV9W7ridA0/HpnV5XLJfXpxoUJRvsXJoWj/uz47U6cOtzca8/own0sPAlrLoeQ9PV3Tw1z8hwpcgz2wd/R5FLbSdKIqkXyRm9Q8PhEKdPn8bk5CTW1tZGzvN+loFTkIbD3ZdH6jtLtM61faje3FzjJK4XuR/2SZ/1XR1G+j6fU2puvJMaN/gOYiOilQL8eo+2uYhkRSBY09QPRaejuFOHH7Wfbjt9OqmWNwXKfSCPyEyKfHoaKfE6jcQBE8vt0xvVxlN8Eyy1AZwBoDbcHYBaVt6vZVPb5PY6FcnTcmsealvVkUbbNDs7i1OnTiHLdrfxB0bXx2r97+zsFDsachtujucRodByMH8FUSdJ7id2SkVb3cmpEvWhSKr6kjsXq6SKsPtsmKh/qz31PKv6vebN9q7ELSK2KXKSAvfqSKkrKfumU0W1r5TZ0DLdy6SMuB2mLGU6+Pjn+fE8baw6tDmFe35+HnmeF5sfMdLGzZMcQwEo3q12+vRpzM3Njc1m0/FH9bhXRE2l/kRikyzLfgXAfwjg63mefwnAJIB/D8B/AuA/y/P8KQB3APz+vVBUJc9zbGxsYGVlpZj65YOZDmgpkhJ1cM/HgUr0u2qQjKb6eP4RMIiAlqaV2tVNCUIE/PQ6Jzll5Sn7RHWmhrkuGSy7NpqGSdFyahm83lIRSQVEqev9njJdo0Gm7HwKvGs+SgCUUHr01j8EfjRKSlJTnjnW6dbWFlZWVrC5uXkkBuio5H7ap83NTaysrBTrdaK+y+MqKSMf2QS3Q97nHBRFfbauXdJ8gfHdU6OyRKLgqYoIeVmi6133lF1yu5JKr6448Ktb9igfJyN6vX5rHkqUnLgdJOJUZsMi257Sj3ZJ7VNExP1+2iTuhqvgOpVfnu9OXbp161Zjm/YheZ5jfX0dN2/eLK23g/aJyE5Eom04lX8dHRzT1DlWlobmXXZPCtd4n+Gx/ch+r4/EHc1VeORe61TW5+seP4g+qbHE8bjaKR/79NnSFnHHyf04iTY3N7G8vIyNjY17ap8OOz1yCsBclmUDAPMArgH4NwH8T++e/68B/B8B/KND5jMiOzs7eOWVV/D222/jq1/9Kr797W+PvPCTD4miXt1U1IffEeHQ6UAOIjQKlmV7nmsdsFIDa0SkHGilyEMKCFInvlxaX+RNUW+uen5ZbyxDtL6F6XjZtI754fbnvM+vV0+G7maodaDPMkWi9Fl4NEt3C6VnRa/XaBx18/VGmpd7ziPgGxmU6Jy2GSDebt9JJV8NQT34LhHWqUcy9Htraws7OzuYn59HlmWYn58v2oK2Ta3DV199FS+//DK63e5J9Gh/5PZpZ2cHly5dwi9/+Us888wz+Na3vjXmvKFEfd/7skpkm9ymRA4FB/narh00ObGJHCM8XzWQR9OXyzYtcT3UNnnkjmWIiKPXc2S3I+KX6rfeN7x++O272vpaQrfv+u49rrmI6precoINlo/58TqP5qUiKlq/ZWBC7W2kvwp1y/O8mL49Ozs7sj4k0oHj59raGnq9HhYXF9FqtUaesdcJnVCvvvoqLl261NimfcjOzg5+/vOf49KlS/jKV75S2Cfg4OBecZKO7yrRdOloV1ptZ1EkWfWpapvuZChzTqTKqn08KnfkSNb03H5U5bcfslP2rNh/1M5NTEyEm8tVSeT8iuxu9NvHC7Vpbof9/tQYUzbueN3rM+AMl1arheFwd32bRsm0bGpTt7e3sbm5WewPwNkBjpN9zHnhhRfw4osvFpvF3Ss5MGnL8/xKlmX/KYAPAHQA/Al2Q/qreZ5z9fGHAH4luj/Lsj8A8AcHzX9zc7N42XZEXkTPkCSVPXgf3El8lJRo2g7clc1HeTmoKhNtzCkPTuQpiKYCUKhzRJIcxHjHTxETN7gRuOP9Zeml6iYirE6+9DlTPNLJ8ns0gsBIr1OgqFO5UnmVSeo6H3iiOvRrFbzp6x1Sg44CHX58h85Uv9nY2MCtW7dqlfE4yWHs0720TTV1TbYlJ3Z+rZIhvcbFbWQZUfF860hq4PY0U8Qpylt10H6q9+jAzP9ltskBnk8Di+qlCkiVnS/rzzpW8Lc7rMokArNVNikFhPYjUdm1LLocQKfjRzrrGKvvgSwjibRnm5ubD51tAg5vn9bX17G+vo5PfepTxZgnaaueB0q/ihQ4BtivuE1M6bwfnLXf/BVLROTyKOQg5SgjnAfNS/FKlZ2M8nfbXaVH3XqtIrH8rmOffOwZDAbFTrkebUuNN+vr67hx40Yt3fcjByZtWZadBfA3AXwawCqA/wHAX697f57nfwjgD++mdeBe5VP7smxvTVcE0r2R+KDq2+pzQEkNulybwve9OXHzPPx+Ntwy/fitjSPyojog1zpxAqa7eilJoTdCvQcRSFTvGoCRPHU9j3skIuDoz8BBTmpamZa10+kUAz+w91JFLozXSB7riWvaoum0PvWQdcl760xDchLta3icbEdkE9iL/PGT53nhnWcEkYtrmQ7Ps/3m+e67kCYmJkbWqWkd8zmybrlz6UmUw9ine2WbaOABFBFStUl38yq+vW149MwdDSlQS9GITETapLxjv9VWpIhiJKm01ZEU2TodwKO1q9TJyxLVoRMf/aQid+6oSt3PsvC3b0vv+uisB+at6xt1zazWjwMDneHgswB0SqF60qNIgNtWrS+3gRHB8meidca2xjXm9GTreltvO9S52+0iz/ORqdsK7HWc0HHuJMpxwU530xqZcRLtwr1f8eio50csEwFkHku9Z9afufadMvu0X8KTcsRERGU4HI5F2VP5ltlelsPzV8dUqhx6vorkRBizynm3X6IVlUG/65DCqnLUSYt2REkat/6fmZnB9vZ2scEI277aYdpuzmZqt9vodDoFtgJiR+JRymGmR/5bAN7N8/wmAGRZ9s8A/BsAlrIsm8p3PUZPALhyeDXTQqPju1TpYOSRtogZR4Mlr9dpfnq/RjtI3ihKktyYRA04GtBUUoRNjzuB9Ty1w7nxVKLp0ak6pFIBpRLFiKj5tBfVR38zHSdtPijodv0+/cjJl+rIe5Xoa135wOJTI7X8KUkNJKmpSz6AOSjyYw7i1JBo9BDASD151Nh1iTxKJ0yOhX3a3t4eiaC4IycibWrDtO8pkPVzDgbcXkSOjzJwwfvcORG1hzqDlZM16h71A16n59whVkU8tU+n+qj3p6jPR2OFnnNC4dfqc3MHmq+p4D0chyhu78tsR1l/JbiMrkuBpDrAKSJ7tL102EVATJ+T23CfAaKim7OcUDkWtoltk7/5LLWdKvGPnADuWKgDpDU/l9Qxt5VlfT+V372UiGiW5VdV3jr6HaQMKbxWJ70yu5k6VhfDpo5XkcfU9WX5egBAneDRrCXdHJBp60wldXiXkfujksOQtg8AfCvLsnnshvh/B8AvAHwfwL+L3V2Qfg/APz+skmVy+fJl/OAHP8DFixfxla98pXgBMYARL6Z3fN2dUQcI3UUwqvgsG/WQaqhVQbNer7shOuhS0pnne1MxfWol89VjTIcDGCMowPiaMScuPKbEyufoeuQrpb8SIU1XXyKu3wo23aOhUSwneCwLB3e+24ffWi7d1pX3ubffnykHKkavlHhrGvod1Zs+My0vr9fnoUZHdUoBFgex6kGiwfGosbatLMuKDUn6/f4YgaPX+5VXXsHy8jKuXbsW6nEC5L7bpw8//BD/6l/9K1y4cAFf+tKXMDMzUwwI2t5ceMwjbKl+SCHR0XWi+t8BV9WA4300ui/lTKFoGr6WzaNmzDvlnHBC5Y4kH8DdRikRjGwS8/byR2vTUs+Mtpg2KnrvpDvGgNHprQTHJFlqB3XsUTDN+tRyq01yp0/Ultxuebtw0q3norak4yLT9Xakz4o2vdvtjnm8eW+v18Nrr72GmzdvNrbpkHL58mV8//vfx6OPPorPfvazxWwAACM7cdcZl1z4bD0KUXVP3bQjfbzf7ocQqc68x/FSlH9khyNS4WmX5V12rKo8kf1SJ1DKsVNWX142txdeTgChbWNaVYS3qlyptOqk65iJGJG7ZuuW/1onPNbpdLC1tTWyHk7zV/v0wQcf1CrbfuUwa9p+lmXZPwXwHIBtAM9jN2T//wHwT7Is+z/fPfZf3AtFU3L16lVcvXoVTz31FJ566qkRgKHbavsA54MCRUlbSnTKnW48AowDBicqeo1HxjTy497k6GXY2iF1Go7mHW3NzzQ4qOs25FpXCvy13lJARsurm3lEIEAjm6nO4oCQedPboYSNRikiMjqFKYq6Knnls52ZmSl0JWnL87yoTwVXBEb+3rxIvDzRAODRjTJRAMjXHzANbSPAbtvmawCUJGtEjaTtrbfewttvv11Lh+Mox8E+Xb9+HdevX8dnPvMZPPnkkwDGI6CpqAkQ77KYAhDqsNDIq7ZFBezRwKtpO1HUexyIRTsE6r3s1+7VdzsXkTYlnmoPXD+38aqv9lXt626XnLi5k0ftYIpsa1k1qq31ryRMo7BRdInXqi2jM4w6u2138JKKtOq1bmt9HDhIxN3tfxkYVOcd39embYf11O/38dZbb+Gdd97Ztz7HRY6DbQL2sNOTTz6Jj3/848X4mmV7r9cps0+RKNBNkY57JVF7V3uVandV5Uk5Ify8t1+PiNctQ8qWRNek6jPSR21Yavwo06HsmoikRRF3not00WuqxrUyvfZTFh9TNOiikX4nbepU6nQ6I0tHdPv/wWBQbJJ4VHKo3SPzPP8HAP6BHX4HwDcPk+4BdcFgMCgYMyUCx8D4jpBRI9GoiAIMRnFSaVPc66EdyY9po3a9I2ChhEcjJiyLAyIfsJXcuOeXeXgUJgX4NG0nsqnBWvPQsjuoATDy7jAluko+tDwa+mZ+EZiiMeF9fK70vmh5SQrLnlH0rCIg5m1EPz4AlYH11CDhhkuvY731er3C8PjgdxCAdhzluNgnOlQ4b94dR9529HlUkTVvf9GutXq9p+V5+AAfebLLBkZPR997o7qUEQmNrKttch0icqbf7E+aXxTdi8rgRC0iN0423fnGj5NQtxMAxvJScKF2jbZJdeW7G318idqHtwV/bn6dksqonqokFa3wNsT8Sdq4w5uPlY1tOlqhPeK4TGel25PUvUr8qqSMxFOcKGh7TOErxydl+VaRM/32a7Vf7Zfcuh6ebt1r/ZzbRbcr96r/uI3QWW0eXFCHcOTA02tT5YquqWovZddGTk3F1LxeiejExESBnYg7tU+kSPG9lsNu+X9shBEC7cg6jUQrVx+Se2UisMuNOTiI8r+nBcRrRdzroYQxGuyzbG9KghNDJVOdTgd5vhuS1cbva7kiD4mSTp3eB2Bk4Tyn1Gl5tJzeQfmC1Sg9rxNdN8W6UI+ygpPhcHdqDAEwB/d+v1+A1YmJiZEIqEcMeW+v1yt05r1TU1NotVqYnZ0t/mve6u1VgxiBT+bL/FQiQjU1NTUS7ZqYmBhpG2psnYxr3TN9B/reBnq9HiYmJjA/Pz+2IYlG6Bq5N8I+StDN/h1F093wE0BRtL+x7fJedcJEfTbSS5971N70Or02Il5Kztieve/7Gky3TUpsfGCNbKiWLwIkCiLV1mkfjcgLdddrFKCpZFlWlFd3aOX9vI/PXp9RRPKoN78ZXaNtU88udVeHnUcEyxxKqbYRkeWI0Fc5LSOg68+Nz45j+MTE7sZei4uLIzqqw66RoxGtW3UCRQ7kMjno+OG2L+WAUX354WYRPhOgzBYyzahNVpVBMY7nmbq+Tpr6HekTjffA+OwaJSHebyKCEZGkKmcLcSSdSWq3KE7aoo3QXOq2nzoEPapL3qOzRHTjMJZB2/3ExAT6/T7a7XbxzjZNu8qm3it5YEhbr9fD9evXMT8/jzNnzhSDs4MjB0GsbH14vF6nvaUAkQ8g2hkcQOtx7WAKShSkRAOidkj+B0bBvC+s1DQU9Hke6tXUaZF1BubI4+QgKypD5MlOlVeBjYJLBXla5qoOpc9XiWKK6GqdKYjTnaPKPNOalnr9tazeNuqKPwcF0mrUlSxrFJWD3vXr17G2toZut1s770bKpdfrYXl5GQsLC3jkkUeKtSPaTgn8geqByEG4k6CyAUx/1wUqDiSivq73ur1zh0YU/eE5L1+qD0ego0xvB3tOPlL1EJFoFXVAOcGIHDTeN72P+rW+c6w7ILV8aof8nAOX/RAfJ/EpKStrFWBlHfT7/WI3N7X9g8EAKysr2NjYKJxujdwb6Xa7uH79OhYXF3HmzJmRnfH0uatTEYjtk1+zX6lju/y6lC3xayIAHzkVqnRLOUL2I24bqghUpF+qL0e28qDOWO+3EUZ2B4/bIV2ewv90MLlTu0qXg5QhlVZkR8skz/NiLwDdeyHPd2cI3Lp1CxsbG0eOnR4Y0nbz5k38+Z//Oc6cOYNvf/vbOHv2bLGGJ2p07DQRIdO1Awqufc0SPRmRRIQtBTS8A+hg7QRRt2Jno1EQGO2ME+WlHY1loVec306MtP48Eqhr7ij9fj/p5VEC5vWi0UuuWyOp4Ldu+cy643o0fWZOVFRveofm5uaKCCHXi7ixYtnoDFDv++zsLIDR9/hp2XwwUXLJ+qCOUfthGSPw5fOzNU8aRxpGerc6nU4RuWREoNfr4datW/iTP/kT3L59u/Y7xhqpllu3buGHP/whlpaW8J3vfAfnzp0rnhVFBxE+P1+Pqv3V7VZE2FIDdUTYeIztnjaB6Wo7Vm+qgwiPEFMnLUvKO50ibRwstV9R3Enkuqpd1bx8loPXhdumPN9bz0rxdWvUM5rB4RuIUE+1TdoW6MGmPeNrPbSe1NbwmWka2qbc263ldsemArAoohlJ5GzUdHTMdFFQ2W63sb29jcXFxZGI5e3bt/GDH/wAd+7cQafTSerRyP5leXkZf/Znf4azZ8/it37rt3Du3LmR9sLnyH5X9lJhCtvUfiRKJ+VEcocVx3pNJyJZqp+nF5E6vcb7iNvsKjko2SgjsloOt2m0K3WcXI5TPH/HQhph07qI2oPad9opriFT+1WlQ6o+6hDtaEyK2ofbUJJL/u92u9je3kan0ylest1qtXDnzh386Z/+6UeCnR4Y0ra9vY2NjQ1MTk4W4FQNTapB+HSjaPCKPMNVg1nKkxt5LXVAoyF0gOD3R9Nf3CvrwEfzcgKg5EpBhzZy1xmI10ywfpT0aR15dM3T1Ovck+1RO7/fP/4stB4iL7Ybh5TxBnaNJNNwz5be5yBSdVVx758bljKJDFBqoFKwqRHMfr+PjY0NrK+vl+bVyP5ke3sbm5ubmJqaKmxTnYHHbZb+rhtV028HJCny5npFZC3SWds/RQma9i/97WXU/65rGfAo62OeZmSbon7rabtOqQ2ZIt2isqXq2wl6dH8qDyXcCkKUpEVljMpaV1IgCMAYEErly3qMtv6nbdrY2Ni3bo2UC7HT9PR0iJecwHFtbgRyVZS4lQFylWjMLbtWf6ciJymbEqUR/dY0ysgJ006N66n/0X1VdeC4kt+KEf33YcTLHm12FeFNvV+xpEfnUsGPOnpFUpcARmWM0uK3EmLFojs7Ox8ZdnpgSBslz/MiOkNgHhEWfqvHgDsG6qJvNQZ8aD7w6H8HLv6QU94cH5zpVdW1EgTbnEvLRq/RJQdHERGgqK5cT+AGTfPRNFLTX1hWPgc1HLzHo1A0AvytgEoji5EXmx5s1oGL1j+9PK1WC5OTk5idncXk5CRardbYdFrWnRMb1g/z5LPK83xkSo9e68bYQY1vWuADotaNG2iPpnoElfmzLDs7O8VLxbvdLrrdLqanp9HtdovIaCNHI2wjg8FgrK36MwRG+6xO240cSWWeSgXrEUmLHEnUI+rrWh7tI2r3WJ5oloLqlUpXy6TR4sieOXDUSJbmpfY5tY4zcvCo7VMioXbdyRvLrnZZRcum9oyzFjTS5vfTY+0ONopuBsVrvf6cMPJZKDF3EKj1HhHKSCLwq9/6DDg2ALuzAjjNqNVqnfT3sp1I8fahs1S0T6vD0wlNyq5QqpwYLlE7Ux04fqccu16uCBfpNe58cOeEXx/1c88r5SCLiFuVkwMY3VSPdkjtkoqm57pFeEX/60ZIio1TzyTlANNZS+748vpRfVM2xsvleUZl9rQ8WMNZSq4bZ6FxP4VoSvpRywNJ2giMdMqeghonbzqwOhHRTqiDWORN8Gv4XzsSEHuAI0MIYMQr7wO0kjSdTulATvOJDIcDkIhIuc6Rt8mBiHtPaFAdJHo9a1mj6B/zclIZkbbIOHmEjR99dg6MIiCn00QiL7ZKnaki3p5S7bBsQPL7+F/rXD2mOj2yIW1HK26bogE+GjAju5RKX+/zc96GeVz7VZS/2gO9RgFBNHtA7/P+qWWNyuPkIurHqbJqHaXK6mAm6uNqY9SeRoRJ03Y9U8/N8/O68vUikb118fGtDOiw3K5TdI0/rxRpjvTR31rWCLxyjFDQ6e/hbORoRIG/g3F/RhTFJr6cQ8+rHCQCl0pLz2lbdOLmOnu7TJGlOoTtKCRF7Hgs5WgCxh1UdfOLCJKWU3FmlbPGdff63s8GLvuRFMmNsHAKb+lY5VPkFefRRhFHfVTywJG2breLV199FQsLC/j85z+Pxx57LBwEo/eXeSdPNd7U4KkeDu1AztY9kjIzMzMW1dP01cOleuv71ZSEOrmIvA8ONnTXMm28jGQxmuQNXz3WLL+uZdP6oiFlflq3JIvUi+vWtN4cOPF5UketPy2nvrCc1+qHbcKJvefH+lFvuLYFtjEd9FKAVPOK6lHzi0CoA8ZU+v6sgb2pCP1+H71eD2tra3j99dextbXVrGU7Qul2u7h06RLm5+fxhS98AY899tgY0IkAt3qPtU26vXBQofdHbYIS9etoMyPvW/ytfZu7WfKY3qu6A7EjI+oDURunjhqFKiOjLLOv8YhsudotBzN5vvfibL1WddVZBWVrDnktr9MIWUTYorrSZ6t2VtsV7VGKePmzjEiy16+K2spIx7L7HZxqHfd6Pdy5cweXLl3C1tZWs5btiKXdbuMXv/gFFhcX8fTTT+P8+fMj530M8qmUOu6lvtUmqaSibypVoNtF+68676vEiYpjwJQjoir9lP7RPe5U8jQUV3qUX6OidcXLpN/ESTr7zDFJyqGTygMYnV3G74j8RHYqdS6SlD1TPaIyaXm8Xre3t9HtdnHr1i08++yz2NzcxObmZqUu90IeONLW7/dx+fJlzMzM4PHHH8e5c+fGiIg2EiU66r3w6QD81ntU2Cgi0qZExdNw0uHigEojgrq1vjY6JZz6zfS0jNrpvbM5cHNi6+lwsKVXlNfqi8edIDvgUkM0GAwq60R1VPLk12k5+MoGfjsocmClnV3bj78vKQLOKYkMNr2VDmojYxLVf+p8BNh9kf8bb7yRHCgauTfS7/fxwQcfFLbp7NmzI4CCkgLU2sa8jTi4L7NrniZ/ex9gGkrE/D69Xqcn+fRIXuPAhenpt9tPF7Wdaosj26Qf3fDD68/top5zh9JwOEzueqYOpmisiciNXueRtuiZpMqneXib4pR6fU7MO1pjWWZPVB/9LhMn7CkCxw9tFG3TR+nJflil1+vh7bffxuzsLH7lV35ljLS5OHkDxjdVA8ajVR4FA0b7rjtRKRGgriPa7/jtm4C5RGNvlK5LZBf9XDSeu82J0vUP+0T0LsxIFx7zfltFgjTCpjg15ahJ4U63ZRrRqjMTKcqnSjTf1O+6462PJYPBADdv3sQLL7zQRNruhezs7ODy5ctot9v4+Mc/jo997GNjg2KKePnAwkHNyZaKErOI2evgrV7VaHBmnhqCBUYbdioCU+ZVcODuHhkHWhqFYhmYjhI+J6YKXHi9d2T+1ukwwN4aPl8TpnkqMFH9NE0XnwqpkVetP69TJ0UKEn3wiEAVRaOs0f3aDnSQ0zRoqH2AoyH1vMuicVmWYWNjA4PBAJubm2F7aeRoRG3TE088gY997GMjQFttTdS/U8e13zk4imxbRAi8b6Rsk6fnOntbjAb4KuKm4o4z9456X9P2r1NaItvk3ykd3LPNdFLALwKLnocTNK//MtsSjTHR2OTPpGwKd8p+RQCJ+UV1r+nVJYQqfO3IxsbGvqMGjRxOdnZ28O6772JzcxOPP/44zp8/XwqQo3GOv9n2ffkBkCYIqbzcZkX/Pd0yYqLtNJIqIlGWZkpHPe74QrGLj9tOGPQax3Ep/Bfprbq7nj6TKdWfy8iP2z3Ph/ZD7Xvd/p6q20g34ky/J3rG0ZjpuG9lZQW9Xg/r6+sfuX16oEnbL3/5S7z77ruYnZ3Fpz71qREPMIGudx6NiOnDA0bBkAIs7Xi+LsjJ2sTExFikB9h7lwV14OYbJEHR+rJoWhCwB07KwJ1P61FdqZeSB+9M1ItRNV0Eyw6iHUKBkNY502Xa3F2Px3RalXv03NPu5aSQqHGzEn8RMa/XcnqbcKAVgbHIaKleDqrUgDhoV3Aeefyph5JQB7Cuv4M3bp/dELaPVtQ2TU9P4+Mf//gIEYmm5FQNDBHA9wiUTxfU/Hgt+0b0vkIAI6TFAbpKHaCutontOgU4oqiVl5tpuQNN+0DkAFPddF0v9aIX1W2cO3e8bBHJ0uehRFnrXccKf6bReOVgyL+17/szikifPydPq6p8+swi0q8S5ZPnOW7fvt04k+6TbG9v47XXXsMbb7yBb33rW2MRt+iZRI4JHyO9XbvNKAPQ0ZgZ5RvplwL3Ze0ywk5R+lV9KrqHvxWDOUFTJ7bep9gNGLfpeqzMYeJYISo/7RI3H4meGdNMEbnUc/FIpq5x07GuLoGPylh1PFU/kXNPnVN5nuPmzZt4//33S/M7KnlgSRsw/gAoagAiT4YO7npOwVCqoyhpUUDk5M3XOmg67q2iOGnjsTqeFb2GeinwSJEgJaWcssJvghiPsCmoifTjvW4YFRCWPScte8obpuXid1R/Wq9a3w5K9dmnIrVaj/phXUTRUdcjKq96iVQvB3/+zB3kaZ2wLTag6P6Ity8g/RwjiQiD3utOJ7eBOkh62yyLkKS8kKqT66f/HdhVlZM6ev/1PCKSph+360wn6u9aLu2L0Y6wPmb4rAQXB7HRx0Wv1zy9riNSq2XVqB4wuntn9MwjsOp6ROejiK/m6bpHNjZKv5GPTiL7REmNNZH4OjdfiuHp6VhXpltZO63Sl8dS5Osw7a6MsEW40m0Oj6cIXYRneZ3bxTLi6cei5+GO7cPWUeo5lDkr95NWlaTaaXQsZdtS/z9KeaBJm0o0bx+IgYgOOnm+t5U7Jdpt0DsSt5OPvKge8WHeg8FgZD2Yg5sIYLFseZ6Hjd6BPgdupqmeL59mp2lwDRRfzMw8dVG+k0KWTcP56gX39LUOtSy+fW20e1FqINApnlFEKs/3NjRRMuTv4SDooNdJ65H1OjU1he3t7eJ1DSS3avQ80ubgTdtStMMddVQASf2Yv5M13xCG3jNuqd3I/ZOoDfC4no/atxIUSio6xnPA3hpT7RMeYeNvJSy6iYeK6u4eSf1OkTp3jqi+KZunZWN/5SwHfmhTHBCpnj7FSPsfbbxvEqT3K5jyukgBCydRZWXT5+m6er2l7KLqrDNMFJy5Iyoa0zw9HSdUJwrbF+2NlknHXE3Hx8VGjr84AaKo7XBHdpZlI+M502C/2g8o9/bo+UfXut5VBCeVTtW1ji+BuB+77fF0HaNS5+jaMuLjxyIMxeczPT09ssmd5lW33qI6igizblilju4yclTlZIrE83VHlo+pZQ6q+yUPBWlrt9u4c+cO5ubmcObMmbFIlpMv9Q7pwK6Dp96r4sBEG4Z7Eyiev/6vEr227PpITw9RR/dwQCZ4IXDTKUNaHz7o+381UEzb9asy2KmoWWTsIwAVpR9FECLQEt2vda+RPb8+5YX3Z1dnMPB01FBHbRDACDnV59bI/RPaplarhVOnTiWn7UVtBBjf5bbsmTrQ9t+pQTBlmyIAwd8pYrefwa4OcIvsSh1bGvV37/NlNsB1cL29z1eVUctadk9ZWygTn1mRagsUL/d+AZHnHc0qcR2YL9+F1Mj9F9qn2dlZLCws7ItMAaPgnnhAI7xqExwz8L6DShVpqUu89iuaXlkknxjKnbF10k2dvxf1pTg15VC6V5Iag3ya5L0UdTxp3q5TJO4EvB/ywJO2PM/xxhtv4MMPP8STTz6Jb37zm8ULSwGMeWPZgZTUuBfVo2HauDVaFUXafGqabrzB92W5/upJUoKSYv/UTY2ierC8M5YBKurY6/VGXsycCtNrvekaEAdFWn4gvf23Gn1e47tAankp7h3S/H2nTg4UGtHTdsE8VQcaWDfGXifaFjSdSJT4RcBMjZmSQ5aVdcIy8X5u03vq1ClMTk5idXUVq6urDTC6z5LnOd566y1cuXIFTz75JL7xjW+MrCfVCL9+qx2Ipvul2iCwFzF2O+BrZoE9h4w7bFKA3gGY5h+V3c+rrUvtWOlpUS/aT++LUR9SuxPpo2mnypBy3HlUP7LTkQ3m8SjypmnoLAfXze/R7yiP1JhQNq6UEb1I+Cynp6fHgKk+U9qtzc3NYqxp5P5KZJ90x2S9LnXM26M7zBUz8foI77hExI73Rm3e9UrZn/1I5LBS++h2yHGjY4YyW5Fy1KT6alUZo7LSBnAMisaEqMxVxFfPVz1Pnd3gmM6jX1E5y/LwcUuxuJZXj2seeZ6j0+kU+03cL3ngSRsAbG1tYWtrC2fPni2m97VaLWRZNgJMIuCdGsQ0nM2H68QjRY4cYOnaMAcnZQYx+q+du6wxu0FLdTrtQLqOze9RQsM6cy9TKv2UpPTXeo08MimD74NB1ClTBNO/o+tdXF89pvpoGpHBqTtVSMEXsDcoRtNSUluWN/LRitumPM+L6dPetiLw7IRJQTHFt3/n9d4PUuBGpwp7Xz7KaWyRPi4aNY6ibZFE/a2KjJaRmUjvCOh4udwe+7OI7Fcde5OSyGueev4udYFRStwOed1Stre30e/395V2I0cnap96vR7yPA+JW13R566RN20TLhHov5cROdXrIOlF47ZiCLdN0SyXqF+ndDgoySwT7Z9KYHiuDiGuqrOy855XFSk87PNWiV7JksLHHG/upzwUpI1y9epVfP/738fS0hK+9KUvYW5urvIebSy+1Soly7Ji7i8B18zMTLhNqoIqEiB+9M3qCsBT5KJM14hARuBPiYMLPddca0fipvnrhgZaPgVBuvhYO3+KXKmOzFO9H3xniD4T31iBdc+89Lim4ySH+fJ69QYyWjo5ORnOe9ZFuzoNkdHWaFoidYsIuw9Q7izQQcE99NSD65KGwyFWV1eLaGkjx0uuXbuGH/zgBzh79iyeeeYZLCwsFOfKvJQ8532OolEVj/S7XdH2784LjfBoHxkO994t6M6jKA8tR0SCojT8GLDXV/W9kFEEJ5W+DrwpMpYCJpFjRwmJ1qfacH58Z0hfU+Z9mY4WtzdqazRdJ/pKlPidemas27Lnkmo7UV0Coy9B9+m/vHdjY6NYl9jI8ZNr167h+9//Ps6dO4evfOUrmJ+fr3VfCmyzXbKPOCYA9iIheq/2C457VSQmIkKRnfFrysTT0basxEzX/CtxS+mSsvFRPy2TsjFDjytecIyjtiyqn1SdRXnrPany6qw02gElSVG+jmmjdKMy6BjGfGmngNGdPYfDITqdzrFxdj9UpG1jYwMbGxt47LHH8OlPf3oEuEcezuhBa8d074ROi0ntDqnihE2JQES6qIMPkDqtRQmKigOgyBA42KHXk41VgZGKR9g8Euf1xTKU1Y+T0+FwWBBjBSeajj4/XqMd3rcb9kFAdfY2UfZuN79eQ/1K3CcmJop69HtTRDw1yHhb5LXUUXfnJEDrdDrHwug0Mi60TefPn8dTTz018joQSllUKxX95n3uBEoRGnUUaBvzmQCqTwQoooE7IlIp8TSdSOgrRyLC6oDO09TryvpdmX6ap44jXi9OwJy8qJ2JrvU8XT+1LzrzINUWdIxQ+xLVc5lEz1911bzd5vIa6tvtdpsXaB9joX26ePEinn76aczNzdXuyypR++UeAjzubTu6r8yBVSdPP7cf25TKw22mTtvWvNzRE0kdcll2bd009Ryxg2IczbtKnJCl8ud1EZFTPO3TI/f7fCLsnqo/tU3u/KMz6bjYp4eKtFG2trbw8ssvY3FxEU8++SROnz49FiWhaGeMALK+KT7lJWU6DthJiNxDkyIWKUkNkCq+tkwbsQMtXsuGGk2Hci9vitCp90w/vkaMkgJRWjb+jsqbIqw850RRo1hqcBX4qI4e4aIOKUOo5UxNv9Ly6O8yIheRTv0w4ssX1BLcNnK8hbbp1KlT+PSnP43Tp0+HZM0BgB4DUDikNLKmwEjviSJs0TTDFAnQcxHZqgImdaZRU3iegCiKUAOja0e9H/n0d9evytbWBUcRWdFvH0u8DzM//9boutdN6nn5s9MoRhVh8zpy2xmV3e1wZK/6/T7a7Xaz8cgJks3NTTz//PM4ffo0nnrqKZw5c2bkfBVw5zUuOpZGjg/fAVkJf6q/ptp/StSG1L3ebaVu1KazE1QOQw7r6JTKI7LfStJ019Yqm830ykh0lH/qercvvudEGS4syy9Kn/8dB+rxiYmJkd3Sj5N9eihJW7vdxuuvv475+Xk8+uijWFhYGAmN+gAfbfmspE2/oykuTMc7tC5o1HRpiLQBqXjjrRr8SaicsEVTqdSrHoWDNYqkHTAyTn6PDv6pramrwEP0rWl5nSuISZFg5qdzz7l1vtdxFNHQa/S4AqPI6+PlisTBGq/39uF1Mj09jVarheFwWACjRo6/bG1t4dKlS1hYWMDZs2eLHds86qZ2IxqoaZOA8f7h4lNBUoNk5NRSiQiNO21cz4hgRP9px9S5pVO1I1KhtiWyKSnPa8rx49NDXdz+alpKnlW/yKEU1YN+6zR9vzZVn36MbcrtCscA1k0EjCPbyeNMV6MJbv+5Mcn29jba7fax8WA3Ui2bm5t46aWXsLi4iMcee6wgbd4+vB3WIVZsM27rtF3rK3SA0Zcel+XhDoYU+dgP0XN75GTNsULZTIlIlyqJbFTkSFEd3BZrdE2de3VIW+pcZLN4vqx8apMUi3PWkDudy2zdfiSywcTh3W73WBE24CElbZTt7W1cvXoV3W4Xjz/+OM6dOzdy3h+WgmQ29ois8V69X3c30/VhHsVKrUvQT+Q1iAhbZFR0kPa0/N1r0RoKJ4RRFDISNxRaLv5OHfNpjTyXmu4Y5Z0CRXxW7jFTQuie8SpRkKZl0vxThlzLEEUgtB3oNRTqOxgM0Ol00G63j53RaaRaBoNBYZsuXryIpaUlAPHAr30LGF1bGfURIJ7Ok+d5Qe4VuDMPn4pMqeNo8ev5rXm7k8XvSZFKByJRPnV183uBmCBXOYIix0oEhrR+U2RWy+02m2PFQeyT5qPEjEQtcgaVidsmCnVX73mn0ym82I2cPBkMBrh8+TK63S7Onz+Ps2fPhtd5uyxz2KRsE/87riHJIKivihKpIyHSwbGTS6pdK77S6D/FnV2RPYnqJ6q/KlJXRbacrKldcofTfqXMoeXXVeXhBI5EWNPQ7/3mGeXP5zkYDNDtdouZccdNHmrS1u/3cenSJUxNTeHb3/72CDDyjsdGRA+2r6/itup6j0asdnZ2inn76o2h8dF3aPnW7e79pD7+0VcJ8KPRvdSgyjSpDyOA7CRaTg68Hp2KxA0h0+I5TUf/0/gBKOrCSRD11q3BnfBo/mUvnuXz0I1gaMD89QB1OnEUWfQXiWrdOqjzTQKctOsxF9bVrVu3cOXKlQNNK2jk/ku/38crr7yC6elpfOtb38KZM2eKtuTRDWB8Mwp3LvmgrWmoA0m3pdZ0mY57Qd3plBoYHQylHEpRu3Z75s4Vd1rx/tTmLCoph0zUb7zvqc11IKi2Q5+N36/PTD3RWgba2LJdQaMyRsBExxgSPoJerWcHwJ53yrGk31ofeZ4X0f/GNp186fV6eOGFFzA1NYXvfve7BXaiRH3Kx9GIrAHlmILiDmTiMidvEWmMolGR89SJgeukGM43alOnr/ZTd5K4blF/qCKRKcePp6FlnZ6eHluHG+2iGKXrz05th+OrlL5ljjRPc2pqamwzlyopS7/qvl6vh7W1tWNrmx5q0gbsDeyrq6tYXl7G3NwcFhcXRxqfvmMriqpFwgbmO0P6piNs6Bpdcw8TxY2R5++Dr4Ix3/Ux1REdODEfNZIOXnSwTpFK1V3L5YbRQYN7qCNQqGWJDGH07WVWABF5nyJdqwykRxQdqKX08jKlDDnzYHpTU1PF2jW+T++4Gp5GqkVt040bN7CwsFDYJhW3SVUe06j/+rb5ep0Cfb9fJeXJJlDSY+qYcdIGpPtp1JfcMeT3qK51+pnr6mlG9/qx6LhLmU2Lyq2SmsKkgFF/a/p8npGtjkTvqRLVUx1fnA7Z7XYb2/SACLEF7dPc3BxOnz4NYHwqrkrZubriTiVgfCfpVB+M+psTuQh/RQ7myG56np7uQaLLdfpKGRmipKL9Zc+h6nm5jaxDjOo8d8WeipOV8JYRXdXNSavqQlvE9xHr+1GPozz0pA3Y7Xyvv/463n33XTz11FN45plnMD09XWzmoFvEq/caGAdAPvBzu3xd1KiNwg2JbzmamqJIb4mXQwmUes5JGNlgp6enR+6PCBh3sKMXS8uoW9qqJ1jrRj05SiajenOPbVTXEQnUzuzCZ+bvHdEyq+Fl/TK6p+QqApbuWaKooYmId2rQ8GP6O8pTyVqr1cLOzg5WVlawvLxcusawkZMjtE3vvPMOPvvZz+LLX/5y0Xf5/PmtpE2JjYqSJXUq6ayASDT664MmRW1Z5F12EhLtSAmMroPSegD2+qES08h5xfRdZ3VylBG2lBOL5XNPv+qt+rjjx4+nSLbqrYDQPeJ6rd6bcjSlopGqV6pOvFw8liL5rGeuy/zggw9w48aNxjY9QDIcDnHp0iW89dZbePrpp/HNb36zsD+UqF3XcSqVEYTIGcOp3b4mLnJOeL+MXoOis4nUbmo5FENEjpWpqSnMzs4W9+tUTu83qmvUP9zeKmnRMqZsgc822tnZGcFZKedXRIxSepY5pyK93IZFWIo6OraNxiCvi0gP5utEe3NzE7du3ToQqf4opSFtd6Xb7aLb7WJtbQ1bW1totVqYmZkZA0Y62EYeWQcojKw5OCLwcCnzSgGj0yXVqPBaHeQ1P/ceuL6aTkonNnTe5xu06PUpsOL6psguML6IPZIyA880ogEiAmOqe2TA9L6yPP0+NdJ1PdbU3a9Necn4jPv9fvMetgdMaJs2NjbQbrcxOzs7NgB7e61jRxRs+FqMssE3la4OmFEkPSJt6ihK6R55uFOzHFJ2OCpLWT6Rgym6X8lLJGXgtMzOaHncoVMG0PR36hm6bVJ77XnVAWV+TttQY5sefOH6xM3NTWxtbRUO74gA7EdSbThKT69NTeWtausRiVBiFtkF/3jfYv6R4yMq672uI6+DSOr06dTxo3a+RM/M6zjlIIj0jYTv+mRw5bhLQ9pMrl27hq2tLVy4cAHf+MY3MDc3N/YyVGDcC8nG45t5sEEw6kVRjy/nF6fWoTiQolFiA/OonAIy306Z0UM3Uhqlo35OGBTcpaZ4+no/6qdekojwMS+PHLgRpW4pcEldNBLh6XgUkulEBC8y1t4GtA61LtzA69rF1GCggIz60Dun9UDST2N85coVLC8vo91uo5EHU65cuYLNzU2cP38eX//618O+EgESd+74Dmfej4HRSJC22xQISzl/UiBHo9vML3o/kPctYLT/a35Mm3bRSSjLov1G9eE9EeFkvvzW3y4RkNL/tIs+9VvzUvvo9joFLN0epfTghzZE64YRVQAjU+qVKLsOtFHqTOTz7Pf7+OCDD3Dz5s3GNj3g8v7772NtbQ0XLlzA17/+9SLCpKJ9KuVY8vE35dSouj/lsAHGp1DqGMt73Y6lnK0RPlAy4U4q2qdU3QDx++nqElgVtxssg0fYUrMBNH1e5/nxXORMKnPGRbrqb97LZzU9PT0S8PAxRPWKCHCEe3d2dnD9+nWsrKyg2+2W6ndcpCFtJltbW9ja2irWB83OzgKIDYQ2Ch/0uYZNNx5xb4sCiJTXPDIEDvaj30pM9H7mH3WgyPi4Z0Mjed4pFDQqsHFSmSJBnk4EUPg7ukfPqR5lRIxgpE6eVV6lyOPjRrdOpM2NnN7jJBvYrd+NjQ2srq6WptvIyRbapsnJSQwGg5FpktGg7m1Q27xOh1RA4gNn5MxIEbeof7udcPuk6SkoiPJJ2QC1ixFBjBwhERmssktaJ8CoHa26J/qfAjFu0zXfqO5d5wgQe/5+jTqaysR1VzAXkXXapjt37pSm28jJF76AO8sy9Hq9ghiUtXNKCo/wuwrw63X67TaAohuBuQ7MNzWTqkzXMt2i7+iaOmWtkjp6un0vy7uKNB6lkLilbGFE0KK25bia9qndbmNjY+MjKs3hpSFtCblz5w5++tOfYmlpCV/+8peL3duiAQ/YG6QY2eKLs7kxhJMJ3RVxZmZmbCqmrz0A9tagRDtC8rz/Vm/F5OQkZmZminVeTF8BnN+XZbteVHYaXy+inhr1ZAN7htG9+cyLwgid6unkyUXrMQU0fVqCeopTBjIyqlWEUcuhOjCSEYEvrQM3nrpDJ6/VvFmXm5ubuHTpEtbX17G+vp7Uq5EHS+7cuYOf/exnOHPmDJ555hmcOnVq5MWoEXimbQIwtoMtRQc1ff+kv6Rb02Y7d5IWrQHlPaqXtn21S+yjOmvACWDk1GD5eZ1HIJWs8dsdUZ4H65U71ZZ5pZmXRidVVB/mFQHHOkBX/7tNS6Xjzquo/sqAXQSYIicebdPm5ibW1tbCsjTyYArt0+nTp/H0008Xm5MA9abclp2v6xyJxvfIdlRFzzwNJwopfWi7OJsncmBV1UNUviqi6zoohlK8xrXw0Vq+KolspJ+v0rFO/flv1dtnAVTlp/gP2J3S+9prr2Ftbe1EETagIW1J2dzcxOuvv46zZ8/i05/+dPEC7tT0HSUj/JCwESw5MeGHUwoVsPugq+BFX86tEhkF/if4UhCmA64OvARc2pl9eqMO+Aq6HHAp8NKPCzsVNz9R/SMjocQstTZQ9dBjWq/+HLXu9Nt/p/LTtNyguF7RcW9jHr3QdNvtNt5+++2GsD1kQtu0tLSEJ598EouLi2Ptw50e2heVsPEl8r54X/uW97OUl5hp06Gk16b6PL+VGCj5dNuk0zgdkPhvJRgR4VS91M74jAi3Nyo6E0Hz0+nhLk7aNNpfJu4srAJ9KccX7X4d0BQ5xMpAHtNst9t45513Gtv0EMrGxgZeffVVLC0t4dOf/nTxAu6Ug8GPqUTtN7qm7LxKqs9EfSF1bR2Co/Ykeil0ylanpKqeqiTCa2U7WKcIouOisjqpena0Q6n7XRg4INb0WWApiWxWt9vF+++/fyJnJzWkrUK63S7eeust3Lx5E0888QTOnj078u4NDn4EKSRqGl3T3ScZYfP3j/mgrZ5gdnx6bqJ3FalohyLQIDEkaeN11N2nSg2Hw6KTuFdEAZZ64X2diAOtiMRoZDFaxxeRLl1/oUTRJWWIUyBPn4FPFYpIXApAOQB0Qqf/o+iIp6PAcjgc4s6dO/jwww+xtrY2RtwbeXik1+vhzTffxPLyMj7xiU9gaWlpZM0kgBHbFO3W6M4PfdeRTt+O2nrKIaPpl00FdlIVER3fvCnq06nBW73KbldcV09XI0u6Bi1VD369Xxvdm3IIlZEprz+1/6nxwKWszG4PSSj9OXoaaps++OCDxjY1MmKfiJ2cuCm+cClzDJQ5L8ow0b2QKP065OEg4thrv/e6w0nXsgF7fT6yJSpV+adwUR0d9yPq1NNxLrXrMYVlXllZwfvvv487d+6c2E2RGtJWIZ1OB8899xxmZmbwV//qX8Xc3BxarRYmJycLzzKwt7ifpMoHv8nJSczOziLLsuJ+7Ui+pb6uV4oieO4R1s6t+ZIgMk/+18gdp3T6ws6oIzgQ0tcCZFk2MhWS9ZB6ya1H6XxKqNcFr1HymQrvVxG2CFi6J1k9Qa5TtJ7F02Nd+BQtlp158jsi7loG1umNGzfw05/+dGyTmUYeLul0Onj++ecxMzOD6elpLCwsIM93X2KsfcenP0fETV/toc4Yjy6lHAlVfV2F4IBt3p1XmoevB47IDfuY9yl1rtGuuCPJp3aqqK2LpjW6qGNOnVjuoEkBoMihpN/u1S4DWVF9e5pq99R5pHVKmx61AV6vY8ny8jJ+9rOfNbapkRH79Nu//ds4e/ZsrUhRFPHxvlAlKYdI5ICO8q1ygPj9UV+tQ4CiqKNLFPVKlSEqC7C3f4LaWn8tixO3snIfVFLpl9kxv14DBpE9i67l+LC8vIwf/ehHxbsiT6I0pK2GEDzcunULMzMzePTRR/HII4+MABSNVvkcW+0kPpc46jz8+Jb9UfqRqHdc81OPs0bWIiCmwIpp8tu9z/oOJ6ataaYAkUbXPALlndenaTlRc301DU/TwQ+BouqkZSojfwrkPN1oQFADoqLH1SgrIFpdXcXq6ipu3bpVtIdGHm6hbbh58yZmZ2dx7tw5LC0tFeeduKkjQMmZTt3WfulRKu3T/JCwlfV1t4n+XjnNIxW50zS0/6g9cO9yBMSiKJumrTbJ044kdZ33/7ogTu2JE1x+R6A0sttMswqkqi2MIpdapoi0NbapkUjUPrVaLSwtLY2scYukrjOijkQksQ5x5HUHyS8lqTwjfarIU528FVO4vXUHeWSz9pNX1fHofIpYV4naKJZRZ4b5WAPsrrNcX1/H8vLyiXcoNaStpmxvb+Pll1/G66+/jl/7tV/DwsICgL2tmXUDEvX86uYfc3NzmJiYwOzs7Eh0CRidBqnTgXq93si73nTAdFDCRsypkCRs6mGh7OzsoN/vh9MtfZORqMNzDR7z8V0y3Uuunlv1RPvWsyrsWH6tTot0o6P1qQAjqjc1VOolZ17R9CkCYM0rAknu4dEIQp7nY2CYU1aZrtZhv9/H9vY23nrrLbz88stFW2ikEWDcNn3lK18ZAf+MzPsrR9SRxFeBsB2yX3vb98gd7YWvYYucPZqvEkZfx8n0+LoUTdcdJtrP6EhSAsp7PLKmNo/i/VWnijrpclsSgaMUadPyqESET+tR82I9OYl2wuU2zvNym6vOKz5vLvz363Td9ptvvomXXnqpsU2NjAnt02uvvYZf//Vfx9e+9rVaEanoWMrp4JGnuuTDnRxl5CEiUlWO4UiiNKLrI0dwSi8gXiPs2Ekxp6dbVoay56D/65Cy6Jr9EFS3975ze1S+119/Hc8+++yJeRdbmTSkbR/S7/fR7/exvr6O1dVVTE1NYWZmZgTQULzTKFHRBpdl2Uij83VlCpLcMLnwmJK1CBRpuv4ONSDuYDRskRea97iH3HX2uokAkZIuEh3NLxVpSwEQBXt6XcqIRMaoyguUAlrRNaljUV3wGW1tbaHT6RQvV26kERe3TTMzM2i1WgDGpwr7oB5FvaK+5FML3e7V6SdK2jRPvd9tnp5z0sZ01fZFBCmyrXreHTDRR8uR6rt6LJJUHdXxrO8HjPp9+0nLPdksn9fZcDjE1tbWyIvfG2kkkl6vh16vV9in6elpzM3NHSrNg0SjqqTOeH9YOazeZQTKbas7kerk+1HUwUFE9VK7FDmraKva7TYGgwHW1tawubl5X/S+19KQtgPIL3/5S1y/fh0XL17EF77whbFt6rl2jFv5z87OFgRPO9JwOBxZT8bol64R4X+KEyX95lov5qlTLzW/nZ2dwoi6N1s9FezsXDOjZNNfGUDPuK6R87V9ug5NN2XRzsi8o/nWbnyc/FEXrxsnaFp/0bQEAGO6pwyler4V+Gleql8E7NTQ8jijtu12Gy+99BKuXLmCra2tsbbYSCMqtE0f+9jH8KUvfamIFgF77VOj7/raEXXKRE6YsqnaKWcSzzMf2qhoWrivC46iYd4P3Yus5eS1uuMubZ2+boP3OIn19CIPMe1lRBZTdRHZJP/NZ+DXRTMHUuI2Re9XXfV5p9LRMYvjVLfbxYsvvogPP/zwgQFEjRytvP3227h27Ro++clP4pvf/ObIDBNgnNA41nGpioxpGvu5JiIuddLR/wfNNyUpZzP7uGI+j/ZH2KRMvN71P/WInk10PIWxUuX2uivDXpwNwv8a5R8MBnjuuefw/vvvP1D2qSFtBxC+5HZmZgadTqd4AbcO3BFB8c6kwEg3GonAkpOVSBR06NQjYNyLHb07TUW94j41MiI+rq+n6UTG0+O1EZjQ8vl5/bgXvg6wUUkRPT/vknoeZQaSACj1XEnYu90uVldXcfPmzdrlaOThFdqmVquFTqdTOI500PZ+rU6DqC+pjfDIfIp8uGi/12mHQPq9cvq/LN0yT7JHBT39lAMoNcXRf7sN0nL5tXWJll9XBnrq2LcqMplKO3W92qbbt29jeXm5UodGGgF2X1eyubmJU6dOFbv36VKBuhKRiTIpu+4oInaHlRRpSl1HWxXhzHtZthSZqkOQDyuRw44RtomJiRGH/fb2Nnq9HlZWVnD9+vUj0+l+SCVpy7LsvwTwbwNYzvP8S3ePnQPw3wH4FID3APytPM/vZLtP7B8C+BsA2gD+l3meP3c0qt9/uX37Np5//nmcOXMGn/vc57CwsFCQtfn5+cLzQdCkIIUDn+8OySiVgwv1KDvY4XGundP1a2zI9DRrdI2RMZ3j6+BqamoKs7OzBTGl+NqQwWAwEmFT0Z2L6GnnTpq+u5uDxghURlMraSwUSDrB03yUsKYMmwI9fU485/c6iNV39KlHSIXlcKC6tbWFF198EcvLyw1hK5HGPsWysrKCX/ziFzh16hSefvppzM/Pj70wW1//oW0YQNJ5pH1B+yiw18+B0XUWWZZhZmYmuQsj09fXpfBDW6LRbHWK6TsuVWib3L66faA9Vcea7/4YRbv426Pk0esBnASn7FPqukj0XJXjzetaCXgZSXfnF5/T1tYWnn32Wdy+fRu3bt1K6viwS2Ob0rK8vIwf/vCHOHv2LL785S9jfn4eQH3Q79e5g9f7qEb1FaNUOYSi7+g+d8xE9qgsfR37U1jE7+V1rVarwFf+uhH/3o8TW+8rkyi6VjevsnpSTBg5ByPHGbA7JfKFF17A7du3cePGjUodTpqMv5V4XP4IwF+3Y38PwPfyPP8sgO/d/Q8Avwvgs3c/fwDgH90bNY+ntNttfPjhh7h27VphBGggpqenC7Ljiz89skZwkYq0AeNRNF0rp1MxfQMSHaB1cX+0DTiFHYBpK0Dy6VM+NVI/lGjaET+Rp5o68NvL7eBPJVpL5yTPgVEEkpxERYRNy6cAz0lhFD1QvbQcvG4wGODy5ct47733mmmR5fJHaOzTmGxtbeH999/HtWvX0O/3R9oc+7XvFAmMr03VqYVuk7yPeT9nn1WblNqNUm1iNC3S7ZPnp95lpuuETQkJRT3SWjdRtC1lm1IRS17jxEjLker/KZvk3/ydWo+cStejpm6fIlvIT7fbxeXLl/HOO+88UNOOjkD+CI1tCmV9fR1vvvkm3n33XfR6vX2TiTqiUSh3yKTIQoocHTSCVNavIl2r0nFSF9lYtV2ptOrkmdLT7Yp+q65V5YnKt1+Jpq73+3289957ePvtt7GxsbHvNI+7VEba8jz/UZZln7LDfxPAb939/V8D+AGA//3d4//PfLf2f5pl2VKWZY/neX7tnml8DKXT6eDNN99Eq9UqyMjnP/95fPKTnxy71teEcGc33yES2G3IutPa9PR0kY4aH3ZY9Sj5uhO+l4I7EfoLwBUIMWI3OztbpE199CXfXhZ2PPWK0wPEdBltm5mZKcpCkpICgSoOhlKGyb1i7s1S8KLviON5vTdFutyYK4BSgBgBI17Hevvwww/x7rvvFsSw3W43gKiGNPapXNrtNt54443CNk1OTuLJJ5/EE088MXKdEh0AIVFzR4Q6d5S8AKMRMY1IAaMEQx1V/s5I7StOBGmjfKp5nucj9s2dLWo3qJ96qdWZpPXC3wDGysNj/E4RsTJRG+V20IlfKqqgevhxPabEW8mwR+pYh1evXsV7771X1GWn02kcSTWksU3VsrW1hZdeeqnYNGliYgKf+MQncOHChX2nFUXf6CSemZkp8ErUX1IEJtW36khEAOtcF/VbxTmKCXVfAJ21VJav45z9ROFSurotrEorsp1ML8JrKT2zLMPVq1fx5ptvFvaKSwQeVDnomrYLYkyuA2AP+xUAl+W6D+8ee6ANT6fTwRtvvFH8n5ycxNLSEj7xiU+MXMfBkobDNyHxqYrA3tbbJDvaqNl5+QoB/ldvtU6L5AJyf2GtGjeSK25mQqKo3lkHV76GTcGcGheNBpK0aZ1kWVYAL5ZZ03OSFHl8VNx4OLjTKKavX6EoudPy6bdLtLYvik4AKKaVvvvuu/j+978feswb2bc09umudDodvP7668X/yclJLC4uFqTNiZT2x4iwAaORYp1a6BEojUSxr/oaM3UAuU1RnZmOTjnn1E51lrgjyaPuGlFz/ekYU5un9oLHUvbC7VTkKNJrXRykDIfDcB20i0/5jNLUa/XDZxIJp9C/9957+NGPftTYpnsjjW0S2drawgsvvFD8Z9920lYWHUqBeXUaz87OFq84qkrPZT/kJoVDqtJJ6eP/dbaRvqYl6vdRhPCgEUNPW3/T8R0RN+qRksPow3uvXLlS2KeHwTYdeiOSPM/zLMv2XVNZlv0BdqcBPHAyHA5x/fp1vPbaazh37hwuXrxYHFfSpkQo5Y2NPLj87+8RcuDl046iqUcKYuhlVi82RT3x/nHvu0bJPG1Ot9Spmw6sUmVPiRNGT8M93vzo+hMHYhHYigijHtOFsawHJ2t89qy7a9euFYtlHxaj81HKQezTg26bbty4gTfeeANnz57FhQsXRtqw2iInLWU2yiNCagfck+rv1VEbEE1fVKeSTg1XEpOKCjoh8d1vfZ0f0y6zTVG/dzuTskN+TsGNXx/tAldGBOuI665ebbXxHMNWVlZw8+bNxjYdgTTYaVyGwyGWl5fx5ptvYmlpCY899lhtYJ8iVdqmFSvsR1I61I1qHVYcS0WYJco3RWj3GyFTu+X3+9rfOpG2KN3oeCqd4XBYYKerV68+VPbpoKTtRnY3dJ9l2eMAuH3UFQAfl+ueuHtsTPI8/0MAfwgABzFcx1nyPMelS5fw+uuv45lnnsF3v/vdkc6jxsN/a/SH3z71SNeGKWDS6BqNFF8ZwHVsvEaBlW6eMjU1VUylYrq6AQE3T+G3p6eeIN3me3p6Gq1WC3Nzc0Vd+BSmyDsUAcKovlmP0f3s/FGETXXm9ZquSpQuML7td6QLnwufR6/XQ7/fx/PPP49Lly6NTQdr5FByKPv0oNum1157DW+++Sa+9KUv4dSpU8mpiw52dJt8BwVun3QnXdqQiKCpDfGZBur8abVamJycLCJt6qjSKZ15no9MOWffJAlywKOzAHQtW6Svlpf6qR0tq3Ott8hOKRFTmxdFKp24uV76X21zirCxfLox1WAwwIsvvohXXnmlsU33VhrsVCJ5nuONN97A22+/jS9+8Yt45JFH9r27pLdxzuJh5FhJWxU50PSUYKQiWTxXps9+hH1f9xbgdEi3wa5DSr/UPTweRQA1Tb/f68QJYln6nq4fT8nOzg6ef/55/OIXv3jo7NNBSdu/APB7AP7ju9//XI7/r7Ms+ycAfgPAWv6Az8lOCTfnWF1dxY0bN4qoy+TkJObn54vdBCMyQVHvii+Y10auETYnQvrt6bNTayRM86NoZCjyPitwcX1J2nwKlaat6XkZU4AjJfvx8njaHmGIPP/RfWULfnkvt6C9efNmMU1jMBhgfX292Pq4kXsmjX0qEfbl9fV1LC8vjxAE7oCr5M37gPd3tUdRZE37khO2qkh7tNGIp890+N/T0G8tq6afSlvJkUfUtC7KRIlaCvik7tP069gm1T0iaQ7C+On3+7h9+/bIO/LW19fR7/dLdWxk39LYpgqhfdrc3MTy8vJIdPzUqVMj6+HLhA6bMgwEfPTTfVP5RURIMVXZBmx18ovIURWh3A+eSuVdlkcd0gzsbi5y586dkV3LV1dXH0rsVGfL/3+M3YWzj2ZZ9iGAf4Bdg/PfZ1n2+wDeB/C37l7+/8XulrVvY3fb2r9zBDqfKLl8+TJWVlaK/wsLC/j1X/91nD17doz4ULiuTDcF0ak7Go5WwMM1IRpt4wYkCmzUgzs7O4u5ubkiEqYLW9X7zTVxuvMkgcxwOByZX61r40hSdY2cbrqi6QEIveE02hrB8vJzSlME/qLjDjw1Pf3oznv6nCIyqRFJXfvH4zdu3MD3v/99bGxsFHp3Op3DNrGHWhr7dHC5fPkybt26VbTfhYUFfOMb38DS0tLIddrnNIrmryDRvqrEAhh/hUC06YivY+NmSOr44eyCaOq32hHqk+d5kZb2d9pT3WxJHWlKBtVu+lRFd9hEpI7fkW1iXem3pkN9vbxab56Xi+atY4N+bty4gR/84AfFbmt5nqPdbofpNVJPGtt0OHH7dOrUKfyVv/JX8OijjxbXVEVoOIaXOR/KImPRtVV9uCrKFWE+j5wRnxFDqdO7irRF9iTleOZvJU+un5IqxV4ukUPe/6ecSVVy69Yt/PEf/zHW1taK6x/Wjdrq7B75txOnfie4Ngfw7x9WqQdJer3eiDeg3+9jc3MTMzMzReOLQt4KLHTqnYp7XFPe7KgjqvdGpzRGkScHW56eTtdUfT19n3qUIllRhK3MoxxJ5J3m/4hwERhF0TYXBWqun9ZZp9NBp9Mp6m11dRUrKysP5Da090sa+3Rwcds0GAywubk58k5G9/ACo+Ql5fnV/hCtM3O7pf3Mpx1WRek9Wuf2SXX1GQtRlK0s8qd6eRQsJRHoqXNPFCWLPlVe96heer1eYZsY8b99+3Zjm+6hNLbpcOL2idG3hYWFoh1zWnNKoj5cRmZc6kS06pCOOum7494jbMQddXXaTzTObVT0+6MU3TQG2H1FxK1bt7C6uvqR63Lc5NAbkTSyP+l2u3jppZdGDM0nPvEJfOpTnxrZqENfH+CgyTcL4H9//5ru7MgP05mdnR3ZJVKnC/FaeqgGg8FIxE4Hf912Vn/r+hNGC/V1BHzJN9dc+LSlKMKWAlL8Vs8+QY/fq3lxDYtuPuAv3VQdgFFA6WCI9d/tdtHv9/HKK6/g1VdfLfQiUGqkkeMonU4HL7zwwsj0o09+8pP45Cc/Wez4qiRKo1fA+JbxSqY80qa2hP+1X6oNUbtAYbSeH18TDOw5piLnF22T21dNV9MBxqNfBwFFDqbcmRStZWNdRpE/10FnDfgYoWtpX375Zbz22muNbWrkxEi73cZf/uVfYnZ2tugvn/vc5/D0009X3nsQ4lEWufZ0Nf260Sh3gtG26rfarDoOojoRMb3WHc4pPZ28RWQuckylxKN7ns7LL7+Ml19+uTjX7XYf6G389yMNafuIZWdnBzdv3hw5dvr0aezs7CDL9naETL2A2hfGp6JhkfcZ2DMQTrSUJDFdnR7JRf7Rujt/6bWTN18jx3rQ6VDuuU4RI5cUCEp5qRV4uQdL7/d0XH/XidOOuNlIr9fD8vIyfvnLX47p3Egjx1Ei23TmzBk88cQTRYRcCUtEGiLiplG1VMQNGLVNEaFSIBJF73xdm97r622jtWwOdNQGeFmjsruovUnZL81H041Iodr9aG1OlK464Pg9GAxw8+bNxjY1cqJke3sb166NLvN79NFHR3AEgBEcA6Q30zhqSeXldiSKqvnU86OO+NVJow5xqyPuaAfG3xe5vLw88hqtRvakIW3HQJaXl/Hiiy8WHXdpaQm//uu/PjJNiaQgWkzrW+8rcXPgoWvldL0chRGj4XCIbrdbrGXzneNoYFqt1kjESneN9GlN+toBfcmle6/1ExFF3sNvBYUOkJywurc8RdgcAGqkjf+VHG9sbOAv//Ivsba2VkTcrlwJN/9qpJETI9evX8f29nbRn0+fPo1nnnkG8/PzxTXaP31ajb7eJGWb2KfU2aMvu2Z6zEsdJJ4WgGKquc5UcDCkO0VqRF5tKfNUT7faDSdiTu6i6L/WU+r+KJIX2aZI3G7t7OxgY2MDzz//PNbX14sx5MMPP0ym0UgjJ0UuX748EhVfXFzEF7/4xRH7BNQjawchc3UcMZ427Z07kJzA7VefsusdA/nxOuTLyW9V/inC6umsr6/jhRdewPr6enHs/fffr9TnYZWGtB0DuX37Nm7fvl38v3jxIr785S+PdDAlbDRS9Cg5cNHpMBSmxSmYOmVRPVMeMeIW9UpaSPq4kQkBEMmcTp+KpvgokFMSGHm9eR/z1rKoODlz0uZTEdRARiTPvXeqC/XgNVyv9txzz415Ahtp5CSL26bz58/jc5/73AgoclIG7K0R9QiYzxSguO2I1tIpqfIPhcSMDipfT5vyZDthK3MouU3jdfx20paaRlRG3KIIXSodvZfCOiEoev7553Hjxg000siDJDdu3Bhp14899hg+85nPFOveqsjIvYq6lU1H9Dx0GrjOKtDrfUOnKO1oVtF+dU45lTwPP1ZmeyIps12dTgfPP/88rl+/Xlv3h1ka0nYMpd1u49VXX8Xi4iKA3Q7x6KOP4uzZswDSc5F93QiwR3T0nWm+OyNFt1NNARem02q1iv8Krnz3RwUevsubkjYK82K5UlOUqowGy6/vamK67sny6VYpQ6XXLi8v4+rVq8X5jY2NZs51Iw+8dDodvP7661hcXCz69/nz53Hu3LniGkaugNFItdsmj2T5K0ecsNGGuFPKvdQaaVOy5te6Y8jX7Pp5kkEtl5Y5ciTxXETUojV4kSc8NQ3U9WC6tE08t7Gx0axXa+ShkG63izfeeAOLi4tF+7948eLIjpOHmSJZd0og01es4bYn9aqRVFp1j5eJ26QyrHPQOoru13q7du0aLl++PGKfmp1q60tD2o6hrK+v48c//nHxf2JiAr/xG7+BZ555ZiRKRHFSpIO6b7/Pb5ItggRfe6LbSTOvmZmZgqzxXXM+5TDaoICRQb4DiN9q0Dz6peXSeuBx/QbS0yVJQJ1Y6jo7BWy6EYkCKF+T88Ybb+BHP/rRCDhNRecaaeRBkY2NDfz85z8v/k9MTOCb3/wmFhYWRoCJ9xt/Sbc6jdShlNot16d+87faDJ36rUDI17KpvVESpYQwInbAKDlzpxZ/81zkXda6UMeVzyLQ+mOZtdyaP785g+Gtt97Cj370o7GZF4008qBLZJ++853vjJC2lOiYX0XMUsSG9+qUb5+STQeSk5oofT9XdjxyKNWJnnkQoCrNlERTH1UHfr/zzjv4kz/5kwY7HVAa0nZMRRvxcDjEnTt3cOXKlWKAn52dxaOPPorJycmxXdjUA63gyKf6UBQMOZhQksOpldHmImUGiHmkpgGlFtumplG5YUh5hFKkrsqjrfdmWYbt7W3cvHkT3W63uObWrVsYDAa1jFkjjTxI4rZpdXUVV65cKfrV7Owszp07V9gmXhetsY0+aleA0c2W3InjNsoJXxkh8jwo0flo7atL3SlCHimLgJECKbVNWg8EO7du3Sp29x0Oh1hZWRlZM9xIIw+TRNiJaziHwyFarRYeeeSRkSmJQP0dF8tE7ZE6sVNkLUq/DpY6aBQsSuuw15TpQuykkf6bN2822OkQ0pC2EyD0nr733nvFsYsXL+K73/0u5ufniwFapwK6d0e3kvW1ZvTi+ou4df0HNweYm5sbAUYkjBHo8rUs/NZ1J9F0JQUpTrLck830/LiDQ0pEXFlmvtpAZTgcYn19HT/4wQ9GpkP6S7cbaeRhlMg2XbhwAd/5zncwPz8/FqHWvudOJY2IUXgfN0diX1Wixns4C4A2Rac5qm2KbIVGsJzkRfd4WbQ+opkAnpdHzCIPtTrTOENByVue59jY2MCPfvSjkbW0jW1qpJFdyfMcr7/+Ot55553i2MWLF/Fbv/VbWFhYKI5FxKMs4hZF2ACEswZIDt0Zpc7xsghVqlxlJDM6lormVeVTJiknGM+1221873vfw+XLl4vjjX06nDSk7YQINwWhbGxsYG1trdgoRAd4Tl0Exj3aqSiTkx0KwZHvwhZFx5iubtahACMVaSvzgOu1Lilj5aAolY56q7e3t9Fut8de3kjStra21rx4tpFGAnHbtLm5ObJToZK2VqtVkCuKT59RiWyH2hbaNI2uOTiKbIwSo8julUlEyvx/lW2KbKGKrsmlbeLuak7a1tfXG9vUSCMJSdmnaEre7OwsWq1W8d+dP5EornJHlC8hAdLTE8t+H6XUyafqmna7jV6vN2bbiJ1ouxo5vGTHgfFmWXb/lThhMj09jaWlJUxMTIyBiM985jN4+umnMT09jdnZ2WI6Jb3RvlskI2uM2PlUIH0BNxf580Nglpp+med56CHe2dkZWf/Gj4Mp31nJpwdR34mJ3d3qSGI1AgigeMUB1/VpZHJ1dRXdbhfPPvssLl26NFLPvO7OnTsjhr+RepLn+dGPOkcojW3av0xPT+PMmTOYnJwMbdPnPve5kRdn85u2SW2B9tPIu8z+7NF7YI/c+PRwCtOmjVLb4kAs8oarFz1FBim0r5FtUofY1NTUiNNpa2sL/X4fzz33HF599dWRPAA0tulw8mye51+/30ocRhr7tH+ZmZnB0tLS2PvcAOALX/jC2M7dkZOF39GMJrUZ7tSOnEWpKB+/I9sTOXpS0bXIQeRR/jpTMlM65nmOn/zkJ3jxxRfHrtXp243sT1LYqYm0nVDhC1IjOX/+PAaDAQCMgBUFUUC8VkTBCs/59ttlUTGm63lE3vJUlC1lJFMOBp9OpATR88nzvCB2fLVBu91Gu93GrVu3mnerNdLIIWUwGODWrVvhuccee6wgSLRJg8EAk5OTha0BRqPg/A+MR+XKXhUSidumaB1rBIqiGQipCGFk7yJnk5eHTqc839tAqdPpoNfrYWVlpbFNjTRyD6Tf72N5eTk8d+HCBfT7/THHM4CRaL46qH35SZ3Imh8vm4oZ2Z79SCrtiAiWCTGT68B1tM271T4aaUjbAyhXrlxBt9stPEHArjd3ZmYGX/va13Dx4sXiWgVFulYEGN11rcyzo4bMDRLTjaYiKHjhN4FNattvXqMAKMuyIo9utzsC9lT/iYkJXLlyBc8991wRyidQ2t7ebt5j1EgjRyxXr15Ft9sdI1qtVgtf/vKXcfHixbFIG/tp5ORJEaZImI7+1ymcqfwi26VeencaqR5K1gaDwUjUUNPIsgxXr17F888/PxL1o36NbWqkkaOXy5cvo9vtAhidhj0zM4Nf/dVfxYULF0bWqnGWgEfcgZisRc5o/Z+yXX5d2fEyG6h6RfmXybVr1/Dzn/+8CAiocKOXRo5eGtL2AMrq6urY2iwAaLVa+OQnP4lHHnmkOBaF64fD4dhmJS5V3h9Pzxf506sekTz+1rVzmq7vRMd7dLG+3zM5OYnt7W3cunULP//5z5v3FjXSyH2QMtv0iU98Ao888shIpB8Y3W3Rt/KPvNl05EQ2xY+5A6jsfs3XxUmfEziuTdPp6Iw28hUIt2/fxgsvvFCAxkYaaeSjlZWVFaysrIwdb7Va+NSnPgVgL8rGDdpSDu0qEsbz6qSqmqZYNnWxTgQu0qdqRgGPra6u4qWXXmqw032WhrQ9RLK9vY0333wTt2/fHjmu4KjVauGzn/0sTp8+PbJmg1MGfH0HAUq0kxqByfb2drGGzb3aVe/nYLoKsHTBK4/v7OxgdXUVb7755sjuRLouZWpqCtevXw89RY000sj9k+3tbbz99ttjtkllenoaTz31FE6fPj22HiUFdgiE1EGkZIpESkU3Tynzhvs7MZmeRtdom9bW1vD222+j3+8XNs+nri8vLxfTjxpppJHjI4qdtN8qaZudncUXvvAFLC0tAUgv51BHUxVJ248cJLpGWV1dxWuvvZZce5bnOW7cuNFgp2MgDWl7iGR7e7tYzJ6SU6dO4ezZs2i1WgVhI/DQd40QrKj32TcR8O26ARTEzYESJbXzmwIhTmfUcvX7fVy/fh0//elPsbm5WVrGOlMQGmmkkY9OaJvKgMvi4iLOnTuHubm54piCkZQXOVrIz81ASNo838iZxGt0KpRH6HTTJV03e/36dfzkJz/B1tZWaT00tqmRRo6fbG9v4/XXXy+1T2fOnMGFCxdGSFudqYx6rW4sp+d5T9n0yuj6svO8Jssy3L59Gz/84Q+xtraWLF90fyMfvTSk7SGTqk7X7/eLNXHcgEQ3JyGp8ilDuhZOwYzulnbhwgWcO3cOd+7cwfLycinIYnrRBiUERurx5tTH5qWNjTRycqWs7w4GgzHbBGDEWeSS2uhIZwEAuxuknDlzBmtra1hZWQmdSroGz9f5Uu8o0jYYDHD79u3GNjXSyAmXsv7b7/fx7rvvotPphOTJ8ZJjKL1W88uyDI8//jjOnTuH27dv4/r16yP31bEpZZG2LMtw7dq1YgZTI8dbmi3/GxkTbqHtctDwPdeU/eZv/iaeeeYZvPjii/jxj3884s3eT9pRm1WA1MjxkbzZ8r+ReyjcWruOvSi7Rm3I5OQkvv3tb+OLX/wiLl26hJ/85CfJmQBVaTe26URJs+V/I/dMsixLYqfDyNTUFP7aX/tr+MY3voGf/vSn+NM//dPKZSX7Fd25tpHjISns1ETaGhmTo3jnD7f2pne70+lUAqNGGmmkEZWjID4TExNFhGx7exvdbrexTY000si+JM/zI3kfGTdRA3ZnFXU6nXtO2ho5OXJcIm03AWwBiF/uc3zlUZwsnRt9j15Oms5Hqe8n8zx/7IjS/kjkrm16H81zPWo5afoCJ0/nRt9ReVDs00nDTietHQInT+dG36OX+4KdjgVpA4Asy35x0qYqnDSdG32PXk6azidN3/slJ62eGn2PXk6azo2+D6actHo6afoCJ0/nRt+jl/ul872dfNtII4000kgjjTTSSCONNNLIPZWGtDXSSCONNNJII4000kgjjRxjOU6k7Q/vtwIHkJOmc6Pv0ctJ0/mk6Xu/5KTVU6Pv0ctJ07nR98GUk1ZPJ01f4OTp3Oh79HJfdD42a9oaaaSRRhpppJFGGmmkkUYaGZfjFGlrpJFGGmmkkUYaaaSRRhppxORYkLYsy/56lmVvZFn2dpZlf+9+6+OSZdnHsyz7fpZlr2ZZdinLsr979/i5LMv+NMuyt+5+n73fuqpkWTaZZdnzWZb9y7v/P51l2c/u1vN/l2XZzP3WUSXLsqUsy/5plmWvZ1n2WpZl3z7OdZxl2X90tz28kmXZP86yrHXc6jjLsv8yy7LlLMtekWNhnWa78n+7q/tLWZZ97f5pfjyksU1HI41tOlppbNPDIY19Ohpp7NPRynG3T8fZNt130pZl2SSA/xzA7wL4IoC/nWXZF++vVmOyDeB/m+f5FwF8C8C/f1fHvwfge3mefxbA9+7+P07ydwG8Jv//EwD/WZ7nTwG4A+D374tWafmHAP5/eZ5/AcBXsKv7sazjLMt+BcB/CODreZ5/CcAkgH8Px6+O/wjAX7djqTr9XQCfvfv5AwD/6CPS8VhKY5uOVBrbdETS2KaHQxr7dKTS2KcjkhNin/4Ix9U25Xl+Xz8Avg3gf5T/fx/A37/felXo/M8B/E8AvAHg8bvHHgfwxv3WTXR84m7D+jcB/EsAGXZfBDgV1fv9/gA4A+Bd3F1nKcePZR0D+BUAlwGcAzB1t47/2nGsYwCfAvBKVZ0C+L8D+NvRdQ/jp7FNR6ZjY5uOVt/GNj0En8Y+HZmOjX06Wn1PhH06rrbpvkfasPcAKR/ePXYsJcuyTwH4NQA/A3Ahz/Nrd09dB3DhfukVyP8VwP8OwPDu/0cArOZ5vn33/3Gr508DuAngv7o7LeH/kWXZAo5pHed5fgXAfwrgAwDXAKwBeBbHu44pqTo9UX3xI5ATVR+NbToyaWzTRyeNbaovJ6pOGvt0ZNLYp49GjoVtOg6k7cRIlmWLAP5fAP43eZ6v67l8l2Ifi604syz7twEs53n+7P3WZR8yBeBrAP5Rnue/BmALFs4/ZnV8FsDfxK7B/BiABYyH04+9HKc6beTg0timI5XGNt0HOU512sjhpLFPRyqNffqI5X7W53EgbVcAfFz+P3H32LGSLMumsWt0/ts8z//Z3cM3six7/O75xwEs3y/9TP4NAP9OlmXvAfgn2A3z/0MAS1mWTd295rjV84cAPszz/Gd3//9T7Bqi41rH/xaAd/M8v5nn+QDAP8NuvR/nOqak6vRE9MWPUE5EfTS26cilsU0fnTS2qb6ciDpp7NORS2OfPho5FrbpOJC2nwP47N2dY2awuyDxX9xnnUYky7IMwH8B4LU8z/8vcupfAPi9u79/D7vzte+75Hn+9/M8fyLP809htz7/PM/z/xmA7wP4d+9edmz0BYA8z68DuJxl2efvHvodAK/imNYxdkP738qybP5u+6C+x7aORVJ1+i8A/C/u7ob0LQBrMh3gYZTGNt1jaWzTRyKNbXo4pLFP91ga+/SRyEm1T8fDNh3VYrn9fAD8DQBvAvglgP/D/dYn0O+72A2FvgTghbufv4Hduc7fA/AWgD8DcO5+6xro/lsA/uXd308C+EsAbwP4HwDM3m/9TNevAvjF3Xr+fwM4e5zrGMD/CcDrAF4B8N8AmD1udQzgH2N33vgAux6530/VKXYXXP/nd/vhy9jd3em+1/N9rr/GNh2d7o1tOjp9G9v0EHwa+3Skujf26ej0Pdb26Tjbpuxupo000kgjjTTSSCONNNJII40cQzkO0yMbaaSRRhpppJFGGmmkkUYaSUhD2hpppJFGGmmkkUYaaaSRRo6xNKStkUYaaaSRRhpppJFGGmnkGEtD2hpppJFGGmmkkUYaaaSRRo6xNKStkUYaaaSRRhpppJFGGmnkGEtD2hpppJFGGmmkkUYaaaSRRo6xNKStkUYaaaSRRhpppJFGGmnkGEtD2hpppJFGGmmkkUYaaaSRRo6x/P8BokiECH6V/NIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,5))\n", + "plt.subplot(1,3,1)\n", + "plt.imshow(fbp_img, cmap='gray', vmin=y_real[0].min(), vmax=y_real[0].max())\n", + "plt.title('Filtered Backprojection');\n", + "plt.subplot(1,3,2)\n", + "plt.imshow(pred_img[0].detach(), cmap='gray', vmin=y_real[0].min(), vmax=y_real[0].max())\n", + "plt.title('Prediction');\n", + "plt.subplot(1,3,3)\n", + "plt.imshow(y_real[0], cmap='gray')\n", + "plt.title('Ground Truth');" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/MNIST - TRec Example.ipynb b/examples/MNIST - TRec Example.ipynb index 4675490..61b91bd 100644 --- a/examples/MNIST - TRec Example.ipynb +++ b/examples/MNIST - TRec Example.ipynb @@ -51,6 +51,7 @@ "outputs": [], "source": [ "dm = MNIST_TRecFITDM(root_dir='./datamodules/data/', batch_size=32, num_angles=7)\n", + "# FIT: TRec + FBP vs FIT: TRec\n", "with_fbp = False\n", "\n", "dm.prepare_data()\n", diff --git a/examples/TinyLoDoPaB - TRec - PolarCoords.ipynb b/examples/TinyLoDoPaB - TRec - PolarCoords.ipynb deleted file mode 100644 index d11767c..0000000 --- a/examples/TinyLoDoPaB - TRec - PolarCoords.ipynb +++ /dev/null @@ -1,569 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from fit.datamodules.tomo_rec.TRecDataModule import LoDoPaBFourierTargetDataModule\n", - "from fit.utils import convert2FC, fft_interpolate\n", - "from fit.utils.tomo_utils import get_proj_coords_pol, get_img_coords_pol, pol2cart\n", - "\n", - "from fit.modules import TRecTransformerModule\n", - "\n", - "from matplotlib import pyplot as plt\n", - "\n", - "import torch\n", - "\n", - "import numpy as np\n", - "\n", - "from pytorch_lightning import Trainer, seed_everything\n", - "from pytorch_lightning.callbacks import ModelCheckpoint" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "22122020" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "seed_everything(22122020)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "dm = LoDoPaBFourierTargetDataModule(batch_size=4, gt_shape=111, num_angles=33)\n", - "dm.setup()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "det_len = dm.gt_ds.get_ray_trafo().geometry.detector.shape[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "proj_r, proj_phi, src_flatten = get_proj_coords_pol(angles=dm.gt_ds.get_ray_trafo().geometry.angles, \n", - " det_len=det_len)\n", - "target_r, target_phi, dst_flatten, order = get_img_coords_pol(img_shape=dm.gt_shape, det_len=det_len)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "model = TRecTransformerModule(d_model=128, y_coords_proj=proj_r, x_coords_proj=proj_phi,\n", - " y_coords_img=target_r, x_coords_img=target_phi, \n", - " src_flatten_coords=src_flatten, dst_flatten_coords=dst_flatten, \n", - " dst_order=order,\n", - " angles=dm.gt_ds.get_ray_trafo().geometry.angles, img_shape=dm.gt_shape,\n", - " detector_len=det_len,\n", - " loss='prod', use_fbp=True,\n", - " init_bin_factor=2, bin_factor_cd=5,\n", - " lr=0.0001, weight_decay=0.01, attention_type='linear', n_layers=4,\n", - " n_heads=8, d_query=128//8, dropout=0.1, attention_dropout=0.1)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAACdwElEQVR4nOzdd3gcxfnA8e/sXm869S5bkmVL7r13gykGTO+dUAKkAEkIKaTxI5QQWoDQq+nVdAMGF9x7k1zkot7L9bY7vz/k2DiSIQm2aft5Hh6s27nb2b3Tq713Z94RUkoMBoPB8P2kfNMdMBgMBsPhYwR5g8Fg+B4zgrzBYDB8jxlB3mAwGL7HjCBvMBgM32NGkDcYDIbvsUMS5IUQXiHEq0KICiFEuRBinBAiRQjxkRBi+97/Jx+KfRkMBoPhP3eoruTvBT6QUpYCQ4By4NfAJ1LKEuCTvT8bDAaD4QgSX3cylBAiCVgHFMkvvJgQYiswVUpZL4TIBj6TUvb7WjszGAwGw3/FdAheoxBoBp4UQgwBVgM/AzKllPV72zQAmV/1QmlpabJ3796HoEsGg8Hww7F69eoWKWV6T9sORZA3AcOBn0gplwsh7uXfUjNSSimE6PErgxDiCuAKgIKCAlatWnUIumQwGAw/HEKIPQfbdihy8jVAjZRy+d6fX6Ur6DfuTdOw9/9NPT1ZSvmIlHKklHJkenqPf4gMBoPB8D/62kFeStkAVAsh/pVvnwFsAeYCF+197CLgra+7L4PBYDD8dw5FugbgJ8AcIYQF2AlcQtcfkJeFEJcBe4AzD9G+DAaDwfAfOiRBXkq5DhjZw6YZh+L1DQaDwfC/MWa8GgwGw/eYEeQNBoPhe8wI8gaDwfA9ZgR5wxFV09DB8Zc/yE/+/DJfNtta1yXRWOII9sxg+H4ygrzhiNpZ3UIgGGVdRS2afvAgf9lv5nD0xfdTXtlwBHtnMHz/GEHecERZOyNYyxspbAljUg/+8auub0MIaGr1H7RNJBpnzeZq4gntcHTVYPheOFTj5A2G/0g0FMXSHESYzAdtU7OjEeuy3ZhtZoYUZR203Z//8R6LV+/k5KOHcP0l0w9Hdw2G7zwjyBuOqLqKarS2NtSkg3/0pNShxYfd48BsPXi7UEsATdNJSXIcjq4aDN8LRrrGcER5M71o0RjZRQcvSrr0zRXEO32YYxGcbnuPbRqqWtj27DKSVlYzqW/uQV9r2+4m/vLA+1RWNX/tvhsM30VGkDccUeWbG1Dz8/BhOWgba7IbS24Ww48ddtA2LdUtmIJ+MjxWcgoPXtjugecW8P7CLTz0wuKv1W+D4bvKSNcYjqjMUQUEa2oYMHngQdvMf2c9mmJCuN0HbfPJnIWEO4OYtTh2p63HNu3NPuo/KseZ4eSML/mDYTB8nxlB3nBEfb6njohVoTwcPGibcLEX2dDGpDN6KocEUkrKd7RjKSzgzN+cetDX2bF+D8Gt9Zi3KwzonXHQdvGERjAUxesxcvuG7x8jXWM4opKHOIln6wwd33MeXdcl60MddAxNIWTp+eOp6zp1Va2oZhV3uveg+3rypudItLYx+4LxuL7k5uylv36OE696mDWbq/+rYzEYvguMK3nDEbUlUY8Y5qdK6ehxe3Wwg46JcVQURg0u6LHNp2sqaRuegQeFMTP699gmHIzii0qwWCgZ2uug/WmqaaOhsQNFgD8Y+a+Px2D4tjOCvOGIOqXfOlqiW5maMb7H7REthhQ6CAGi59do1oLEbAre/DSE6LnRBy8toy2o4elTwPRzJh60P/f96gXUzysZOa2MKaNL/uvjMRi+7YwgbziiPIoflymAWel5lqo/sZBzy5aTYk3HY+n5huoD9UtonRTl7CE9X6FLKVlS34RwmJl88vCD9mVPeQ3bPluHKaYz66Se8/8Gw3edkZM3HFHTrKuZ7mygr7Xn1EiGOc5x3koGJvU8LDKmhTit70ZOKK1ken6fHttEonHmV1XROiaTIacMPWhfFr2xko5WP2ZdY/qpow7abuO2Os69/kne+XTjwQ/MYPiWMoK84YhS1AwEGoqa3+P2lOizlFk7GOeM9bi9IbIVRdlDb281/ZJdPbZ5fPtK2ifFyDkqmfEDe/fYprm+g1eeXYYlP4/rn7j6oP2VUvLC68vZXdvGS++t+fKDMxi+hYwgbzhipIwgtB0oKCBbe2wjhAewYbIe0+P2tMQCBlkameQdgt2U1GObnf6dKEKQme3BZFJ7bLOqogpN0zFZTAyaWHbQPn/88jLWPraQ1FCCm66c+eUHaDB8Cxk5ecMRI6WZBtkPu2zGYhrcw/YYJJajChVBtOfXiK9ipL0dk63n7c2RneR5X+SUEjc3Drr4oH3560sLiI3O5NozJuFN63nSla/Nzzv/eA+9pZO+Io/+fbK/+iANhm8Z40recMSEtHbe9em85k+nOdb9St6faGdhOJ8t8WywTum2XeodyNgKFBSsjkt63Ic9sZoTXVWMTZN4rck9tpmzbS0NE0M4hzqZNr70oP397KWlVCzfDoEgf33lp//hURoM3y5GkDccMQndyTObZ/Lclul4TN1vmgbiLSxqz2ZhwIsmuw+NDCVCrI6m0ao7Eaaeb8zKwL1kmjo5PrU/JsXafbuUvFe1hgQ6JaMyyE3vOeVTU9nEY/d+jKVXHpf+9Vws1oOXRt64rY5r//SyMZnK8K1kBHnDEdMSCeKL6rRFoDPW/cbqB3uCvLx1OAv2nIRVdXbbvqbjHdZFHXwWHYqidp8xq8U3osh6VCUFq/OiHvuw1fcpAzPnclSvOv4y+tge20gpefPT9fty9rOv6bkdQCwa58GnPmXNlmqeeG3pQdsZDN8UI8gbjhw/uDeYSdtsI93aPYjHIhq6lCSZe86Rf7QnhVe2jiPbdlyP24ORtUgEoKGYenfbLqVOSvxNJjv3MC1fkG7v3geAnbWtPLd0E+3DM/jts1dgc3T/RvAv994wh12vryHXbuXKsw8+6cpg+KYYN14NR4yu6zgroqhJ1h4X8V741g68zVYGT+h5NagXtlcicdIR6V7KQErJnPpXyFWzGJJ+PT2Fby2+FVtsLoNsgtFpV/W4j7iu8aMVrxBL0RnZrxeDB/VcWgFgwatLWfbqYtAUZvXLZ1DfnIO2NRi+KUaQNxwxzVsaSaroQFEUrObuH720hII1IhjVwyIgW3Y34Nik4s6zMaug+5DH6kAHgZiD3aYYYyw9lzGO+/+MKkBYpmIy9+2xzZ7AJjzOchqG5XDl0ROw9NBPAH9HkKdueQNfUycTThnDRb8+6csO3WD4xhhB3nDEeFMc6AmdnMKUbjVnIuEY259fS6pJwXp293z9zt3NeLZpqJ3gNHdfcOSR8uU8v30I/bzJ/LS0ewCPaD5isU2YMGG2z0KInj/679X9hmkFOhf3m8CI9LyDHsufLn+CpoBOydQhXHHH+QetoWMwfNMOWU5eCKEKIdYKId7Z+3OhEGK5EGKHEOIlIcTBlwIy/CCUL95CfPcemtdWdNsW7Ahi97fhiPgZPLa42/ZP7vsUz/pWzunVu9u2SDTOhk9qsUcsXFLSc+Gz+Q338Lo/lY3aZEz2nmvQRzr/xDnuHeSaFaZk9/w6AE+9u4Ly5jZ0Xefkq2eSU3zwxcZ9gTDn3fAU1/zpJRKaftB2BsPhcihvvP4MKP/Cz7cDd0sp+wDtwGWHcF+G76DskhxsWRkMPrr7Kk27NlYR9oXorG9D+beLYl3XiQRC6JpOn5LuAbW+uZOWda24l6mMdHW/+q4P+XhgvYdP6vpgsc9CiO4fe6m3EQ+9ilVEOSnrRFKsPZddqPK38+T6lTQVOjnulpOYefrogx5vJBTl0f97i9ottawvrzVKGRu+EYckyAsh8oBZwGN7fxbAdODVvU2eBk4+FPsyfHdtWb2bWEKnenf3iVBNDT6k3cGA6UOwuw5cvLti+XZ2LViHVlPDkDFF3Z475//eJXlNM8clZVKUk9pt+3uV5VQ0R1jTUMrw1NN67Fuk7QqEDKJaxmBxXHjQYzjv4xeo7eVn8LEFXHjSmIO2k1Ly8n0fMP+ZxSRtbeHWG04i2Vh5yvANOFRX8vcAvwL+9X00FeiQUib2/lwD9LwUkOEHwzU4j8CkYkrO7H7121jXjup0oNi6D1dsbwthzUijZFQfkjMOnLykJTTqdzUidehX2H2Jvw5/mKf/uYK0pTZuHjSjx37tCazk1Y4oNQkrFsfpCKXnYPxh3d9wW3chgB9NGYP33/4YfdFzf3mVOX98CYvVxKwLJjJ5VM8VMw2Gw+1rB3khxAlAk5Ry9f/4/CuEEKuEEKuam5u/bncM32I7G9oRiqAhEOq2bVFbJ6FBOZSc3r3k77wXlxJN6HhyMlD/reDY0rdXUfnpGhK1tZx2efdSCFvW7yEWS6AimJLZPdevS8nbVW/RFItSzomYHWf02PdEbC1K5C2OKdzAK8cNYFzWwVebeu/5pbz92lqESWX4yHyu+FPP3x4MhiPhUIyumQCcJIQ4HrABHuBewCuEMO29ms8Dant6spTyEeARgJEjR3YfPG343mgqStDWKPGM93bbpvc20SotFBYdWK4gFk+wzqYQntSHU6/rPglq/bJKFJOJEdMGYOphuOM9P32epESMc645iuw0T7ftD21ewj0bXJQmT+ei6WcdtO+h1rMZbYtR6D6P3t6eK2QCbKqs57kHPsLvizDlwun84p7zD9rWYDgSvvaVvJTyJillnpSyN3A2MF9KeR7wKXD63mYXAW993X0Zvtss9jAZg5uxOQ68s+qLRlmg1BIqUbAWHLgaVCSWoCMQRpgUXOndZ8LOe2s1JCUx9tTx3YYxfv7mCmLtnbiFicmTu0+gam4P8PGybUgJeY4S0qyF3dpIKQm3nAIyhiLcFHovxKT0PFAskohzxd9epirHypBjBnDFH07FbDl4zZuEpjPv83J21/ZcdtlgOBQO5zj5G4EXhRC3AGuBxw/jvgzfAblZK1C8VQxJbzjgcUWJcuqI3fhDDoakHzh65tXKzTSO1Mm3J1HW58Bt8xaV0zo4h1ynnRlndr8J+uZD8whW1TPi6HSKyrrPRn390/VUL20jL9XFP845pcc+V/oX0+LfwwCrGXvyXagHmUTli0WY8uZDBMbHKFjv5srrTyY1s+fiZwCapvPiy0t4ZO4KPG477zzy44O2NRi+jkMa5KWUnwGf7f33TuDg48sMPzjDXCpl6g7y7AcG692hCsyWFrwWDaflwJy71dZAn9IqMtXudWHW19QjFIErw4PDdeA3gBUfbaR8cwNJhblce3/30bvla/fw5h/exj0ojZ/NmoxJ6f6lNpwI8m7dn1FIJy3pUoqtR/V4XBEtwJvVtxNMOFBVlcduPptCT8qXnou///xZPn19JZbeyQw4ufuIIYPhUDFmvBqOmFLlHaS9HZdpK7A/YBaoNQyzV5HtGIX531Ih5dEXGZAXY3bugfn0tnCIhzvXYhkmuOzMSQdsk1KyeEs14ewkMs1m8koOXOxD0zTee/hDRIuPtHIzsycP6tbXqJZg+ttPMCY7nSFpNrI95/U4q1XKGE0dDxGLL+GsUjdn937gSwO8lJJfH3ML5ZvrUYTKeceP4JJfnnzQ9gbD12UEecMR4zCVEY2vw2oZceCG+BqmO2tQTAcGR01r5OKUbdREbfR1H7iSVHO8kplDtrGttjclmWkHbKtp6OCNJRWIolSu/2P3m6nrP9vCx0/OR0vo3Dn/t92Ct5SSOfNWE9gS4f3wUH7U90Kcpp4XIIkGnsAbfYgTPS5q069lQMrBRwqHAhHu+80rrFuxCyUS5vK7Lmb2VUcftL3BcCgYQd5wxNi1jdgVBUU7cKCVQ6/ArtoQjlkHPB6NLMFFPaVWjVRL5gHbPmt6HZejjfNGFJLuOLDm5N2blxJLFQxKzaBP8YHPC/rD3HXdHDCZGH3MQAr6dV/Sr3JPEw+/tBiH2cQfjpvOwJSeyxbEAv8k4b8VELjt0xie3HNeH6AjEOaRf3zI4vfWoyR7ueamczj+RzNQekgTGQyHkhHkDUeELjXWxQtwykbyTUNwfWFbU0InFjeTpxw4W9USX4odMDkuOqAUgZaoYYz5DYQ1j6MyDgyscT3GRt9q2odZmTyuP1bLgR/xpSsraVYkltQUrr730m5BtqPFz69OvI+0eIJeFw7nhIHdR+UA7PB9TnnrB4yxWHHbj8aefO9Bjz0Qj/KH5z9g+ead5PXyctrJoznhCuMK3nBkGEHecEToMsb6QBydNGZrnfuCfFTrZLG/DoEHp9KPL46ST8QrcKj27mmceDn5pk6y3B1k2A8cNfNm7eMML97E1D59OavswFx7MBTlzw/PQ5RmcfnJY8j5txmyWkLj0RufI1zfhDkthT9dcgy2HoZAVgc6mFP5KF57gFTbGYzz3vilxz7r3SeodXTizbFw6gXHcc7MEV/aHmDb7iacdgu5md6vbGswfBkjyBuOCH9c58HK6ehScmz+/vHoMc1EUEvHrkZwm/cXF/PHqpjvayZVdTEi9Ty+WEBACdyJR7WA41IUZf/YeV1vx5FYjkRnaFpfrOqBH+/fL/kEzSPwSitTj+5+s3XZe2v55NkF6LrObW/+gvRsb7c2MU3j2HcfI66X8qOBWfRPvQah9DxUMpRo5/ldP8Ef74tQrPztp7OZmtt91u0X6brO54sq+P0jH6IoCu88+mMcNqOAq+F/ZwR5wxEhhIAWMygS9QspkkVNO7l76yg0qXN6kXff4y3RBCFdJU4S6hcCeVTrYH0YMoVKvuXAEbqR0DuMsHzMgBQrvbJfPmCbP97OitZlNIxM4oZpU0hPPXBi1Z6t9dx+7TMIm5VjzxrHoPEl3Y7BH4pwwV/mkOinI6wKJ+ffgNfS84LiWnw7kfZfkSqaOausnZNyH6Qs+eClEKDrm8RDv3uF959djDkvCcuQvAPOlcHwvzCCvOGIaGgKIDbYEVJinr3/Y6e0mbF8nsTokdmYlP1j5B/YupqP6qYxNLmA04v3Z/B3+d5hV6yDGiWLXrZp+x6XehBL6AFSVBdx9+XdRsz8s/KPTChtJE1OZ1ZxvwO2BUNR7pqzkGC+l2SrmavvuaRbrj4SivLw/82ltbyRpFY7L95yIUXe7hUvAfT4VqKdv8OUWM0UZxbDs/9CL+eXB/hoOMrFfX9KZ1hH2GzMmtSfH996Vrd7CgbDf8v4BBmOiBSHDYtUsFvNuO37Jy4t3bSHeETHV63te0xKiW8dmGtSmHXe8H2P61LnH1vb6OtKYVzG6V98eQKxCmx6OwoqDsfJB2wLh+bipooWzJxQNKJbGueNpRtZt60OLSeJB1+9DpvzwEqYUkpeefBjPn15FR4BN/35bIoyeg7w/ngTou0ihN6IqhZj9/yWFPvwHtv+y/ql2/nT5U8QjkoIBvnFQ5cy5ZTR3YqxGQz/CyPIG46IyvW1JH/WhJbQ4Q/7V0gKLqzFXRfi1On7c9WhaJwVG2tQFYXs2P6brqF4jAU7OlnkmsCw9AMrTn5afzN26abUexb5pv2vJaVG0H8Hs107MaWfTbrnwJuen9fs4c/bF5KULbhu2mQysruPh3/x9jeZ86dXcfTO47gLJjBxcM8zVIOJdp7ZeQmjrFH629zYk+9AtXSvqvlF9760kPlzlhIPx0gvyePGO89iwPh+X/ocg+G/YQR5wxGRkeZEra4jvywPm33/jcS2HU24q9sxh/YH/i0rd+Ep95PZN52xpQX7Hn/4vRWYVrvp3zedCRn7A/nq1j3sCDjJtZux2Q8sPaD7b8Gp1xMxF+NO+ukB2zpiLSzy3Uv/Xhot7gGcc+LIbv1+79lFvPKPj9DjcQaVpnL5b3pesHtVUw3nz3+eQk8/KBb0z30K1ZzWY1voqnXziyXvsHzHbmzJJmadO5pLL55GXnH3mvgGw9dhBHnDEbFtxQ6ivhB7Vlfue8zX6qdhyUaQMGDA/klJlZtrcO3swGVyYla7UhZSSqq2N4KUFCelo3xh3PzjW5awoKU/I9KO4aw++5cWDMRr6AgtI1OoeGzTUE29922TUqeq42kSWiVluQ7+cPRd3fL4GypqeeaVZQQ1mHTeVG567Ioej+2zNTv46+fzSaTqtEV6c0nxzThM3oOei/pwOU9UvMP8Wg2tl+TyfhO59IQxxigaw2FhBHnDEeHNSUZxOSkd+YVUhyIwmU1omo47Zf/N1XfufAO9po0Tfrp/wtD2LbVsf34DaVbB1b/af8W9prKWZa83kuRO5ZfXHXvAPtc0P0ddsJkcaz8mZf7hgG3h0CtkxO/jwhQ7nc6nsZkO/FUIxGLccOvrRGwqE84dx9W/PLHHevXLP9nC/Y99SItDY/zkAv5wwjFfGuDjobeoaHoCkznGyMwpzMydwaVl/1kdv7Vbqnl/4RZ+dMZ4MlK7l102GHpiBHnDEdG4pxVFVWhv8u17bNVHm0iYLUgTpOV25d7jsQTCYkEqCr3L9teBWf/hOsSuavpOHkRq+v5iZSuWbUdIsGhmBiXvb7+wcRvXrIzSx30U946agRD7b2LK+CaE/29AApdlEAXeA8sUB+MxJsx5BFNqjNyQkyt+fhypWd5ux7Tx86386YonUVTB2FMG8stjjqX3QYqTST1EPPQsEd9fGW6BTudELhh/EjmOnmfUflE0HOPRP73O+40ttIeiuBxWfnrh1K98nsEARpA3HCE+t51ocRZJo/fn0k3pHrRhRQzJS96XKlkxbwNtLUEUu41Bk8v2tX37nx8R84cZ3C8D894r6uaGDube8TEpSSZuvfuCfW3jCY03Fm5GCZiJOJMpcO//RpDQI1S1P0mq7iPVlI8p7cDx9BEtxDO776Q0r5l1iSLuOu10ilK659ZXfriOm0++AyUtjex+udzyi1NI7mFRE4BAvIW47xYssbkowg6mImZnPXLQtWS/aMlbK3nxzreorGwjnOmmZOYAju1hARSD4WCMIG84IqRNoXOwB3P6/sD26bIdRE0qAe/+VE1jJI5w2xg+tg/mvWPEN36+jZa2MN6CTM644cR9befe/z5idw15I/vSv+/+q/iP1m1nwZIqFOngmbMvOaAfFR3PssX3OS61gONy7zwgDy9ljPqOB/BFV9Mrw8ofht9ISQ8B/vV/fsKjf3wNzGZSLBqPfPSrHssQA9QGOni95nKKzA1MceiYnedj9fz2K89X0Bfm3t+8wsq3VxCobiSnrIBJp47hRzef+pXPNRi+yAjyhiNitaWVjn4qrb33p03q+ujUmc1cM37gvsc+WFhBoF8u7pHF+wLn1opahBCYLCZS9qZNdF3n3cfmEw9GOO64gTjdXWPvW5t9PH7TG1hKbBw1rox0+/6r60/rt/LQ1o2cmgsZzhkIy9AD+hgKPIE9cj/nJNupsd5L/9T8bsfx8AuLmffsQhRVYeRJo/ntY90nXkHXjeL5NTu4atHreG2DuXBAmBFJT5DlKOvW9t+9vXgzrz6zkJb5leiKhSFTB/Dzh6/sVhffYPhPGEHecESUZNn5cIdkSO7+nPXGtkZQIGjrGj7ZEQ6zNsuHKW7i1NO7bq5KKXnkrTXIgflccP3x+5775J9fJ6JB4Yg+zLp8/7DJBa8tJ7y7hdRmBzf+df9Y+rZAiKfmr6JcTeM1LuGVkisP6J8WfBwlcDsg8NiPYnzKgTdxdSl5auManntzBWS5OOW4IVzxk2OxHGREzO8ffZ+5lZuRgyVWJYPL+7yMTe2+kPgXtUSC/HzxXCpWNaCENYYMymHmsUM548rpX/o8g+HLGEHecES0OpYydsIubKluYCqBRIDCsi0kd1qZWdqVaumMhlFzO/C7nTiSumadbmtpoXOcFetOhQFDukoDRKNxNmyqQUooGVGEM6krBVS/q4lHf/4kUsKvXrgOd9L+smZ3v7WQ9SubyM/K4e8nHpjyqPbPR/ifJVOxkO6Yipr8wAHbNanx2o6F3LpsLZYyyQXZg7nywmk47d0DfGdbkJ+fei/NgTCOoSmc6x7Bj48Zh021d2v7RatbX2FZ84eUd+TQkefgdPcArj9nKpkpxigaw9djBHnDEXFaWpSYawmepK7671JqjEzZSZPbtW8s/Oe+eZSVVZFvKyIvqauy4zNr19FiiVEyIZVeBV2lBD5btJVN4RgM6c11910EdKVvHrrxRVAUktPdjJkxYN++35yzhJW3LyK5n5tzT55CvnP/t4ndgRZWNd2FlAGGeY6lOOmWA/otpeST+udZ2vkBqc7BDBzTlxuPnYnSQ4pm+buruffqx2iPKyhOB78/bwbHTBqA6UvKE+iJGkLtV7K8VRKTGicVFVDmOY4z+wz5X06zwdCNEeQNR4RL/5iE6iNZbABOQMY/4QTvBhBm0q1dNzcLTTuY6KrA4pgAQFgL0+D4iMw0DzdM7ErVRBMJ7qlaTeMkCxcmDd5X36V6dwvLlm/H7HLyy6eu3Xd1X7OtjnefWYSiCKZm53H+1ANr4Zz+2cMUOXtzTu9cMr2/QCgHXjm3t17EIDmf7Y4yxkxycHZB99WfpJQ8eetbfPTYR7RUt9B7cG+uvPcyRk4p/dJzEvPdTjz8KrrWxCRbEo3WS5lQcgl2U8+li3uybN1ufMEwR48vPejNX8MPmxHkDUdEpimLoF6P19o1Jt2CHYHEbu4aDqjLKGn6Q0z2qGSldJXv9cUawNpOWf9OBuV21ZSp9jezo6MN1So4/tT9s1t/ctNLaIMKOGpoL4bsHXoppeSeqx5l96IK+k0byPV/2Z+mCUSinH7bs8iIg21jsihLuRy3Zf8yf1JG0duvJhFbgkDl3LzT8LoPzOMDtHeG+OfTn7Hw/nkoSCacNpZL/nwWvcryurX9l7ZoFW/X/J6THUsxEcdkGUe/5EsYZD/mPz6f29dX8dID8/iovhnpsZGTnsTAvjlf/UTDD44R5A1HhKI3YRUOVL0DAEv0bYpMNth7M1JotbiVZGLCin3vH4J44CbOS9mMwz6LLFvXWq2PVf+D/gNCTEyZzMDMrsde3LCBmkES13rBrPMmoKpdJQ8e+OXzbFheidvr4Nxrj8G99+o+Eopx/9/epakjgKIovDbuxxQn7R8qGdN8bG65i6z4UlJUgfT8Cavzgm5Xyuub6nlw3lI2fb6TpL4ZzBhezLW3nY3F1n01qX+5cdl7fFa3heOKOviUPI5LPxaL62qE4jroc77I1+bn5tm309gWpaMtRHJ+Mqbe6eT1MFnLYAAjyBuOACl1VkZjJHTBEJFDClCZsNEStTLIdSIuQEYWkCLimBQbipqGlGGSZSf9bZ3YPF1X5tF4Bcd5FmHW0ziqV9fqUgk9wV2LF9NpT3DBT8YxYO8s2Q2bali0tR7V62bmhZMYf1LXaB1d13nl4U9Y/Ppakjwqt/zzIoqz9gf4jliIzxseJhB7nz1KGidmXoTiuOjfxtNLKvxr+cmn86gJmCke5OaC86f2WODsXyr2NPLTe95g14hOpCKxchwjs8ZidQ79j85hfYuPx//wOsvmribR2ISumug3aRCX//E0BvewwInB8C9GkDccAYLKUDad8TDDMrvGs9eHF5OQCdr1KC5gQ2ABbVEYlHxp1zqv0c+w63uwqzaE81wA2nz3kGPawWXZTnonDwXgocpHyOq9ncJQf84d3nWzMq5p3H7P+zQmdMZfMIlL/3javp68cd/7zPndC9hLenHqKROY0H//UoTxhMY1n79AY6yRiwvTGZRyGqrz0gOORMowFe1v82zNm4ztp7Fw4yTuPv1kBqZlHvTo/3TFk6xbvgPfgCSytjq48NzRXNi3e137nlS0N/HJ2m08M2clVn8ct9XCiFkjmTx7JMdcPO0rn28wGEHecNj5E2Eer+6PKhSm5HkpMoV4rnYkebZGBmd1jUfviFUDJmKiK/e+zfchGbrAYT8ZqzAj4+UkxT4jIdykJHUtnB2NlzPQ/CY1WV7GZ04n09WV8rj8jTfZ6O2kHx4uumwqFmtX+uS9pxbw9K1vokcTDCjwcNkXCprFEgmO/9MTtAVDREe7cZbdQv+UYXyR1H10tP0EQksQDCPTnseS868+oCLmF21YuIXfzrqVuGrBlJHOSQP6cMp5EyjrffA/CP/SGatnZctHXPNZA7ouSXKbycnM4PKzpzPlxGGYzMaCIob/jBHkDYedTVjwyiTCMkKuLZVwIsrm2nTKHSlc1k9lY8du/rZzKFmWDu7POwUpJes61uE1KQx0jyAXCIUXYhMquaoJYe2a5NTacQt5pk1cnjOK4swTAFjaspx4ykpkYSonjh9Dv5Kum6nrN1Yz59XlxKRg3GnjuPn5n+zrX0NtO7+99mnaCkA1KTw75jKGFxx44zShtUDLUbhkmFQ1xK97j8fl/lmPI1oSmsavZt/N1mUVJCJxvBkOLv3LqRx12sivXO1J6mHCnb+hMrCdtb4EDtNk4rqVv181mxG98nscm28wfJmvHeSFEPnAM0AmIIFHpJT3CiFSgJeA3sBu4EwpZfvX3Z/hu6eqtZPdC+2AnbZBUXY2t+Ffn4LHbiH3+FR2NLRRvyUVpSgds2LmzZplPFA1lj5OO0cXnkJMa2NF272kKFCcdicuIdBDb5CprSRkykLxXocQAk338X7tPzG5FH561FAu6DsU6JpJe9OdbxLWYdx5E/npr0/ad3N218Yq/vGL56jf00F6k4O/PX8Vg3plHdD/Pf4PWdb4e3qbBCNsJlLS56Kah3cL8LqULFpVye/unIspGMTlsHPShZM46cqjyO+Xy5fRZJyE704SkdfRtFaKVY215tE8f/R4ij2TsKjGlbvhf3MoruQTwA1SyjVCCDewWgjxEXAx8ImU8jYhxK+BXwM3HoL9Gb5j0qx2ijdomOwmeqV62V3Tgq7ppDmcADz20RrCNXaKvCWYFJWK2hZ0CU5zFoqw8E7tFl6rmcbpWVsosw5H00P4Qm/gQcVpLkGxTQWgumkW56fuZlXkRGbmH4UQgmgiwfTHnyAwJMGAnR5+9IWywdXb6rn9kgepXLuL3AH5XHPbOd0C/M9WvISF9xiVouBTylDT/oowdV+UO5wIceKrL9CyoQOPIkgrzeFnN5zEhFlDv3T8enM4yA7fKla2/x8XeHZjETFUUxmqbQaX5fzi0LwBhh+0rx3kpZT1QP3ef/uFEOVALjAbmLq32dPAZxhB/gepelczkaYgug7hQIzFL6wja5mf/mMySCQ07Ct85DfGOPm8Mlr8Qea8XYlqT+f887py5k/s/JT2uIsO8VssahpVnU9RGVhBuupkQMY/AdD9D5BBBw0ITso9BZc1jbAW5o7ye4loFlRV5dY/nEZRRtcY/E5fiGun/YV4KEpmr3Su/dsFjJy0f23VhnY/P39sLuWiBrVfbyZkTmVSzmyE6cB68VJGWd++gOerHyUjI43qXiVcMX4Mp48b/KULe3QEwnyybjt/qP2ImB7n3FIXn1v7MzNtGmbnjxCK8786x+FghF3bGrjzpUWoqsIDfzgTq+XgQzkNPxyHNCcvhOgNDAOWA5l7/wAANNCVzjH8ADlNArFxO6mZXrzJDlwygUWHsaOLaW70UbW5AUUR5Ch2tqzYQ8GKCKYRKZRlZfLEwlVUrzHRpzSLE/NGUxVs5veb13Fmpgur+1SEkkwkUY85+A9sSAq8v8VkPxopY1S3309MW82wkSnc1Pe3lKV3Bfg9Va1cfu1TqCYVk9XMn+feSNHA/RUnl87fwkOvLmKrJYwqrPz69BmckD8Mk3JgykRP1NDSfBIZegup6lDSs51c0/c0JuR1v9L/Fy2h8fI/P+XjLTvZqAWITUqgmFSmZv2YEWlDsZjT/6tz29HcySt/m8uKBduobgsSGJ6HENDcFiAvq/ui5IYfnkMW5IUQLuA14OdSSt+/jSuWQgh5kOddAVwBUFBQ0FMTw3dcW0MHQgj8rX50Tefzp+ajhWPQMZb1H61H31NHyag+lJRm88g980h0xhiV8OA0W1j36XbMjRYy0wpJs3r4x7r57Kj3cGdoJvNn/BopNZbXnkC6AoWOidgcXcMt/YGnEJH7uSDNQkPOkwxM7/psLdy9mxveeQ+RAylKIS/NuRqHs2tYp67rvHj7W7z17iY6/BEGz+rDhWdNZEbvA8ehx7QA8eAcLMG/oesRFEyclnsO2e4TcJoOfvX+1oMf8N5j86lpj6MLFSZn8euMKcyaOIBMx39eiCwUibFrTzP//OVLtGytpmVHDRa7FdWbzGmj+zJgTLER4A37HJIgL4Qw0xXg50gpX9/7cKMQIltKWS+EyAaaenqulPIR4BGAkSNH9viHwPDdFg5EkIrAk+YhEoph9zpRrWbGHD+MV/7+LoovgMXnp2ZbPeWvLcaakcLFV03j888q2PFhJWlScsffj2d9dT2PvbuJhJ7C4z85AYHgL5teprxjLOfnLCE/4zqE4kYPPo0zeBcZqpOw9ShKUyYDsLJtFfesWkpbNE7fUWk8ecLJ+wJ8R7OPF+54m7fuewfpsDP05HFce/kJ5Bfuv7KWUrLDX8vGlovQ9CAzHGaSrUNQPDeTZRnc47HH4gm2rNzFbZc/in93LfFIjIyyQgbOGMyv7j4XRel5+GVPWiMhHitfwdIPdtK8rgXvlib0SILMXumccNVMpp49kayC7oucGH7YDsXoGgE8DpRLKf/+hU1zgYuA2/b+/62vuy/Dd5PJZkZKsHsdtDV04AtEIaERj2t89MLnqGYTs689hj3lNeiRGEpdE+kZbh78+VOQ0Bg1oQSrqvLknfOQDp389CSGpRaytqaWDxvWYhIePO7HcVsH0BT8gITvUTKFgts6gaSUfwAQiiziiV3PY8vSOd4zgZ+NmEVWalchsMpdTfzzD6+y4e01OL0uhkwu5XePXnrAcMcWX5Anty7hxYaFXF8awaKoCM9fsTiO6jF/HtUSrKyt4bZb3ie6pR5zexBnZgrDx/fhqrsuIjnT+x+dO6kHicZ38FrdI8zbncKiWge2LBMep4mjrpjMsNI8pp40/KtfyPCDdSiu5CcAFwAbhRDr9j72G7qC+8tCiMuAPcCZh2Bfhu+gHU0B9MHFRHNTqG7yow0oJCPNRXK2F4vbTrzFT35JDn886x5QFE677gT8rQE2fLwBoSqcdfdZbF5RSfmCbWQ77Pzj6bOJxONc8shrmDK8nD6xlHFpQ9gdaGRe9TMU25qIO6dR4O265ohFPqe25QImOvPYZTuaK0cdR7o1FSkla2rq+PXPXkTqEmduMhf99FhmXzFjX981TWf92t1c89J7RLUEiVEW1nRcwh+HzMRt6Z5e7Brj/znPbdzKW+Wd2LIl6Z1ezpg1gqNOGkHRgIMXLjvgdbQWYsEniIXfQ9f24NGyyHLlkeucwvl9RjBrVhl5Gd5D8fYYvucOxeiaxcDBxojNOMjjhh+Q1KJk2ka6GNk7l45gGASoVjPzP95MZ14m5sIc3FnJxAqzIS4ZMWMgt1/6TxSziYmzR1I8tDdn5f0YJZbg5N+eQV6vVH519TNkVAXpHOPm4sKjUFC4cuWDRLReXFSQzbjknyIUJzL8NmrnL8lRbYxPinJO5i9QFCcJPcGr5Wv444efk2UHW1TlgQ9vIu8LK1fVVTbw4sOf8tEnW4hPTMVkVrh7zNmM612IRen+qxMJz2Nbx1xebm5F9WgIZTizJw3n/AsHU1ac1a39vwvGY1QFGljX8VdMsoljbKsACwLBAO8sStIncPsoo5SB4b9jzHg1HHaLWmsJpAjKHUE62nbTONrGwKH5bLcEaZ7k5PTsEj79ZDNtoTiu0nwySrKplwrSYWP0ccOY+8+P0BI6iqJw3KkjWPDGSio21WFSBc+ceypJDhsz7niMaB+weBUmZF2Pw5zLzvb7SQQfo9gksJvL6J36GkIIpExwe8WdbA9W4k3NI/nEEl4955x9E6RikThL31vLHRfch5bQEYV5nObO4Ue/PJ70pO7VImViB1rH9UTj23DEIziUCXjthSw852qynO6vrPPe5gvx4sdreSO8mZBzN2eWViKQROz5JLnOx2w/Fo+p9+F4aww/AEaQNxx2A8ssbPDUMTOljHqfH6dsY3BRJs8sX0vEouMs8/LM2nIimSYuP2cizzy5iFZd0PuY4Uw9cxyz03+EDlx1x3moqsI9lz2E8Li4+Jaz6VWYzt9vmUukso1wKJWnrj6HEncaj1XOo6J9AzNTo1htJ1GQcjNCCOKJavY0TudYp8qu4ER+N30iM3Om7Qvw2ysbmfO3d1jx8nKkLjFbTdz+3FWUDu99wE1SKSV1oTY2tf6UcKKKGbZGHKqdZFsxN+XcgslUeJCz0SUcCFO1rZ5//HEuraEw2/ItmLwqLaM8pJvPZER6ERkeY21Xw9dnBHnDYVcR24puitFoqmKd2EpynoY9uwPXsK301U2cOLCEORULiQ+3Y+/j4e0VK3EkWTjj7LH86ro5JHLS6F+QwqiZg7nx+NsQJpUMj4VZp4/k1cc+Y/FH5bg1nbt+dyZF6anMWb2Kp9o/QRFpHJV5LTnJFyIUF3roReKdt4KM4lEFN5X+nCLXAIQQBGIx3tlQzqP/9zEyqmOyqJx82Swu+u3J+1aZ+pd1u+p4uWYl8zpW8ovSHahCJWQ5Bqf7LFKtE7/0XLQ3+3j7iQXMf+IjGmo7ULMzkRIyywo589hRTB5XTKEn5Utf46vs2lLL8k8389rWKoLhGM/deREp3v9ucpXh+8MI8obD7sS03Ti0rZyYOQA3newIWellTwJ0UBO81fIxGQObKLb2JoSfQGaIVoeVjEHprPvUh+idysyrj+Hj99fT1tAJCO7+7I/Mf2EJz//mOSx9ezH7smmM6duLZ95fwd1Ll+Lo6+aYYUVMyzkDk6KwselnxKNLGWiKkmUbi9lzM1bLQAAqfFu5Y/5aFu+sx1mmkLvdxENL/0xer7QDUi3bNtfw/mcbeW7ndhJSR59oYU/4As4r6k+Gc9pB0zLBeIzdLe38/Z6PCK3eQ8emWpSgH2Jxjp49lKGT+zP1pGE9Pvc/IaXko1dXUr+thpf+8gq2lCRCZguBcb1QTSpNbQEjyP+AGUHecNh5xE5mp1RipZzJ7gVMdOsk6SEuztxIlmMC5aEKdHRKU3J5vvElcoZLrso+nz+//zH1rjhHnVNGdm4y9/79A2TvLH5/y+ms+GAdj/zmBfSEzsAcF5dePZ27bpnLR++sx1toZXDpIP40eDY1oVb+Xv4KhZYNDHQHCLrPxev+MULNIKG1Uu9/lft2LKNKy0KT6Vx2wjiuGDkKi2X/r0ZLbRsPXvcUazc3EHDZkONTSfc4uXXSKQxJzcOs9Fw8zB/vYGnrh9y/tJEtTXFSggKnIsnL9nLyZSczduZA8v7HJftqAp3Mq97Kwrk72L2rFfuSWvSqJtB0zIrE67Zz1ZkTySzMoLTImGz+Q2YEecNhV6KGwGICcxK9rQoxtS9hoeBwtKPZXJi0FyjJFxQmj+azpjgxxUyTWkOkdDXFKdkcX1rKJW+9jRhrZ3ooD2dOCo8++AlxCSOPHcKfX72eG4/9PzbV+MHl5LwxQ7nygpnM31LJ01Ufs0PdRaVlAifk5+BNugohFGTkExp9dxOJred4by5mNZnXT7wCj2X/jdV4PMGtFz9MxbIKWvY0YXXYSB9Zxt0Xn0zpwHxMaveJTFIPoSd20t7xS+Z1JrEupNErx0N58wBmTRvAhLMLOHpi2f90HuPhedRHG3i78XXe3DaWyk6JTah4ExZSc5Lo3TeHo44bwIijB5NR8N+VRzB8fxlB3nDYhbEQ0mKkyCACBav0Y9Uq8ZqsoEbJs5ppVEbQ5L+fn+U2k+66hBfrVqEKhdGlqaxPrMWa6icsXdxw42x+dvETtAfjjDpnEtfccDy3XfwQ6xZVoAjBFXdfzAkXTebdN1bz5/kLCGfoDJyYw+Wl0yj0DiaSqKPJP4eMyJPY9AghYGLmj5lVfOG+dEutz8f7723guccXYVtdiSqgZEQRs38886CrMYUTLVR2vkFf7QWEXouiReljcrDLNIFje53E9f0mUOT973LtYa2T7b4FFMv3IbYYTQ9QE/US1zMpSKqlMVTI1VPGUTg5maNH90NRvnwUj+GHyQjyhsNuV6QcXWp0RDZhSkQxWwrxx5tINWeSGluNgkaOyU623ka7ORsfPqa636DYNoQU10k8UDmX1P46d/S5jFP++RykJejrSObsK6bz/LOLWfz+ekDwk3svZuwJw3nyznd4691NeHVJ7rm9uXPoSeR4PbxXt5om/z8psC7Cb7JRZu1FStobCNFV2qA52sLCmk38/u316AlJtt1Mn1nDmDq6D6dcffS+ETj/EorG2dPWxh+2vYWZek7MeYd8VwSnENgdZzLQO47RzlP+q3O1ZmsNO1pauKtxEccXbibZvpN8zy4sQkMoyQxwJONKuorzi4aSZu19iN4hw/eZEeQNh12nHIxFbqQlls/OQJDJKT7iMkRLwk+H3obH5MErE1hQSTGlosY+ol1VGefuw87On5BpnsCA5Ck81vAcnoEtNCQyuea8E3j1yRUs+2wbScP7cOpRZQybPpCbT/kbOzbXYhnUhxFji/nLT89hZ1Mbf/nkfT5mEVKmcGNRMmlpv0dxHQ+Apvto9z/I0zUVrGx2ocli7FYzv/r5DCaN6YvLaT3geNpa/Hzw2kqeq99FQ6cfbVAQLVVyQk42zbYz8LgnYDIV/UfnJhKKsuDlJVTubOOzd9ZTW+QkkWKhc1ic1U4Lx/Q2UWe+lr6ONEyOMxDCQs9VcgyGnhlB3nBYxfU4d1WnoTAdEAgxhA1hC6W2TvJdk6kJLGRCkp+W4EJcQpJsLsRKOcOsKURFHQlLjB/nrEKzDmR+UzUWt+D5K0/lVy/Op6m1hUyriTMvncSQAblcPvImtLiGHo3xk6smMePcSbw6ZynPrd3AdkeAnPF2ilPSOLZwMSZFRUqJ9N9OPLqQjuh6jvU42BycysNnTmZISn+S7fZ9xxEJRqmpbODuyx+mwxemRbXTMTUDYRGclD+UsaX5zMr/4390TrbvbmL7jgZe/+MbRFs7aKqsw1KQjyYFaTEnEaedH40dx7DcPEZm/GdlEAyGgzGCvOGwEqiEKgbTEQrj9QhiSpCIN0SVfRiqvQVBf+r1XOKJtZyXUY8/+A6gU2Kbhjn6GsVmO622C9nZcR+zkvPJT/kzt+94DPpFiHZm8YtrT6F5bRPXXvscal4GtoZWHt/6d1rrOvi/Kx5lyeYmNF0n7bgMbi46jUl9exPV4jT45lLd8VdGWzowo+JSc0h2nMXjedcfsDB3a1uA9z7cyMe3v0VzTRt6KIQeS5AybiCXjR3JqKP7U5j55bl2TWps7lzBqpooD63ajOPDGEiwdQYRDT6EEEycUkyfcWUce9ZYnG7bYX5XDD8kRpA3HFbtoTB7GsMIAT6/RJd2TDVOFEVgt0kyC/xsogZVZPJaWz4nJb2OzZTDtsAcHIqLYscEUiMPYbbYSM7oQ3X4ITrj6ag2wQuXn87NbyykcUk9bkUwZMZAbrzxBN588EM+enYhrfUdJI0dQNnwPvzx5rMIRKN8UlnBrbufw6ZE+VmvAI2WQrLso8n0/A4hutIyUS1KbaCVG97+FH9jkPjHHbhbAyiKYMYFUxg2tYzp53z5pCeZqEbG19Hue4R1YRMf+6xE4xZawoMpSbGjdSY4/+qj6VucxZiZgw75eW+qbiEe01j49lrqHSortlRz6w0nUZRvlCL+oTGCvOGwMsUha6uO1CTWNg1nbzdbciMkma10BKLEd3ix+2MMyE1mVbCKjf7jOS41ykhHLQnhpTm6ijQhSLL0AxnEzxLOyywj2XMzt+18lNZkSbAknavPmkLflBRuu+lFNr22FC2hk1OYzi9vPY2SEUV8+PY6Hlq/hipLG54RGjpm8pN+SkrSbBRTNgAJrRFf8CX+sWcra+rMbGnuhY5kQKqD8/52PmOHFlDQr+dx7VJKPm+uxCR30Bz+B0fb6zHJIIoeIQkHUg6ij7sv14+ewFkXDiLd4fzKmjb/CV1KGkJ+muv8bN5Rz8bnV+FvaGPHgg1YXTZiNiehSUUkBCxbt9sI8j9ARpA3HFbhcAxbpR/NpKKrJgLbOsndKsEeg3wTHgs0dHj5vFZBUsCEkSpva1vZ7j6WYc5W+lqXE7eNJktvwaPX09valxTXMOoDN2KRxaTlpPG7gcexuHIPzzyzDL2ig4z8dEZO6sd1D17Gu49+wjMPfsL6HS1gU0mMd3Bx6gnM6FdCL2cGmh4iEtuKxfdbolojrfGdTHamszt5NOcML2ZERgkn3dDzuPaO1gBb1lfx4vZt7Gpvo6ZvHZjj3FjaiM+ikqJIbM4rGZBUzPBepx+QBvpfSBlB6hG06Gf4tRjvNs9nV0ceT28xkb7AhuqLkbSqERnqqvRpsZpxpLo4ddIA9DQXs2cc+m8Mhm8/I8gbDqtAQwfqlirQJVqqB6ci0RI6MbcTTygJRIyiJBuVIyQoCp+v1MlIK2F3/yoqQybOzDgBk5iHqkCGOYUUcwHVwbmYCHB+7hBamckrFZ+wZF0ULVMydWAuv/zVCXTsaeaq0b9l98Y9CJcDU2lvJk0u45IbjibD46Il6uOZXZ+SIu8k37SLgRawoWFSUuifeg1/yZ5Frr37VXv5ykoadzfz9M0vksjKoK0jTEeBjXCRE5mtUFiQRlnyRdjcs1At+ZjE//YrFghHiaPxXnUFBZ4qqsMfMMGykVTRgI5ERcMfK8ZuaUAR48gq9BBtinHatQNJS3YxaHgvMgrScBnlDH7wjCBvOKysDgtSSoTUURpaCQkBEkSLD3skSiw/g2BLkKyFJmQ/B7WZOq1tKs2L8+k3upY3WwJclwPNUoAoJSO2mEI1QZvtJJJ0P0/sfJ9mVad3dilTe5Vxcr9Sfnvdi0Q27CRc10Zqbip5fTL5w8vXoVrN1DZ28JPn3iZSUEurtZlCRwGX5u4hbD0Bh3UihY4TD+h/MBZjZW0tq97dxqalO2j9ZCNaQife0YlTWNBNZs44ZjjefumcPWUIVtX0X6dhQoEIbfXtbFxUztZtLdTWtPG5LUy8v6AtK8KlA1fgsvjYJnXG2RSEkoRQMilLmkm+czzTM7MZkpqD6b9YStDww2EEecNhtXP9HrRIBJnQUVQFqelYXTbiGsTr26CuDZMAR788OtdrFOY42D1QQ1EUwnW5qIW7eLDheE5I7UDqn+Kw5uGxlmHXt1Ee2c40TyaVjnOYMXAYT83bzpz3V5LZHoOUJKZNLuXMnx9PUpqbtx/5mLkfbaXNH6V5uB0tEiNnuJOT849lVNYNuCz7F+uOxrfSGm3ln7s/Yv2mLCrqw9iqEqQ1xnAg8Ka5mHjBBKaeNY7ioYVYbeb/6FxIKUnIOKsbGunoDDHv9U1Y/FHWP7UYmxnCze2InFwUVUEdmkqs1YI1x4RFzqZ/UjOjko/BroJq7kq7GMuHGP4TRpA3HFaZxVmYigvQqxvQw1EQEA1Guq7mTSommxUtoRHZVktSRhIBPY0MvxltYhI794QZYOpLZ34FLzYlcVlmP6xmCEaWk6nGybX1w+MaRFHYx93bXiCRZSbhzWHa+cOZ3r+Y9GQHd1/xCO317TTtaUb1ulH7FHDioFJGji3mhKGlAOgyTlt4KUmJ1RD9kPrIJqLodEQn4hc6CT2JY8eW0WeIi7NPGYXdYcFk/vJfHV1qIHWIfUxCjxMIPsuL7fnsCdeyYEsZwQoP3gqQusRrUnEmO4i1dTLz9BHY3A7GnjWC9BQ3OWlJR+JtMnyPGUHecFhtKa8nYbUiiwtA1yEUgVgMoarIqnrigRAmuxVNl4QbO7D6wugleYgVPnLHJ1OxK0hJigOHR7IjmkO2eSHNSDJt0/Ai2Bl4BScKvayjsbvG8ouzjqeyqYW//+092isbUHbWocUSuJNdnPu7Uxh+3HAKizOobfexqqaKpxreJ9Ncw8Sk15lg68p1OxULCQkT0qZyadFoiuz98NgOPnZd13V84Sirttew29bI9sAOxqQ8gwnJTHsDioCY1klLdAKKMJHlltQV2JiWUsCwfrnkXmFiwNg+ON32g+7DYPhfGUHecFgll6YRybNiCmjIhERLt2L2a6hxCfEEaksbiXAUAGlSSUQEli27MVn7EFzZgTbYTO2G3nRmtpIo9jHYNY40tZpwvAK7bMWteogJN78ovZa7dyzhkV2vsmGZmXxfDMXrZur5kxg1pYxpZ4yjYsUOytft4a6/zGVFsh+tMIqjrBMdnXEejUZlIrnWPFKdV5KqJNFHcfR4TNXb6mmua+ezOQuJC8GC5dVoM3JokXFiOWHSB7cy3BtGQ5KQYLUMxmKyclXRZbRpHkoGDkYRyiEZQmkwfBUjyBsOqw3NTbSW2kAXICXsDWy29gTeLQLcLkz1jWiBMDKhIcxm9LiGsnEntkFF5NVYqMuPEa71UNo3m3uqTZyfvgOzvZki2xD62QexIfAxDe0XEomPx+fwkuTsy/m/m8wQTwZWs8LLt7zG3Ic+YuuKHSguO/FeeTiL7HQk2TgqrYgRGYVMzvoVZiWlW+Dd5t+OP6jy9MotWHbFWffBdmyrd4KUJAJBtGgcc/9iaI+S8MDMvqVoyVFGZ5yGx+LGaS1FCJV/zYnNOELnXUqJr9VPIp5g99ZG7F4HS3fUMnlkH0p6H6leGL4NjCBvOKxcxXFs8Vbiu5wIk47WboGYQiTZROP4JDzbQjjNKmoggFbXghaJotgsyEgcU3ULMVM6vXqlsVsLsGqFk97DWwgwnYTyOXXxVnISL6NpoKBwdOYQdGUwaTkFPLZgDa+9sYBoMAbbqtHbfAgp6dMvh7xpgzj7skl4010k2bvSMLqM0R5ZSpLsQMY+oyaylJjWyf31I1i3tRd1DR6cUYV0AVa3jXgwyvDpA+lVlkvfaYMZOLwX3jQ3ZlPPC4gcKlLGkHoLUg8g9U62hBoJxT08U9FCfiyJ5fN2k7czwJ71NcjWVmRCQ032oklJx9gCPlmylef/fslh7aPh28UI8obDyqe1Myi1mq3WLOLShEmGQEJkQRoSQWc/B6aIjk1VUT1u9C07EBIkAqWlAyUjieCmDkSZCUvChVlzsT24nSG2GtrQyLFkMMh7Jnuie6gO1PJMdQ0yaqayOpNCNBAw4cThlBRnMuOc8aRkefF1hmls6OT9HZV0iE4+Ywmlrgiz099mgg2QMeJaGIGKWw3Rv5dOtpLDqX3K8I5SmTyhBJOiYPkPR9V8FSklbY2dmEwKlet2g81KQ007W2QYXPCJUsmwdEm251VGO1UGqOXoCCSCDf4C3q7uy4qG3lgTKu5mE1p5IwiQioLUYwCk56VgSnExa+rAQ9Jnw3eHEeQNh9XklAWU2tcQTqh0xB08tmcKugDLqDbia5KRCUFbfwdJ28M4G+LI3Gy0qjqsbjvRaAJrQxvYrBS5bFTmR9DKPTAoi6hyFB6xG12RmMJPIeJxQtEMkKNJd7opKivh8ktGonTGsVtMzHt8Pi//7R0+nrMI8jOJ2u00DbCiD47j6hdlix9OStfoUEaRpsbIsZ2FVJzcnD0Fs2JGFf/9FXpMC6AKM0piHZpIIhZdxuZoFlWhGt7bnEQ8DA1vNZAfSFD/+Q5cdhV/bRMiL49Eio3OIakE8uOE+2hUByRXDJHUx2IMsAsQToSMYTZnMiM/FZPsxeSUQiL2GJOuzSfY4KN0SD5S10nJTkFRBYoxjv4HyQjyhsMq2WTHbdKoRuIw+bmx5H0UofN5WzHzHf2JV7jRGmz4i+04GuIIswqKIOoPI2wW4pqOEBDdFsDcy0Gamkk80cj9NXB99lbiqhcbkGSbxlibneLU81nv282aqhDXPzMX82ftUNeCXt2EKkCLazg6A0irncFFuTiTnUwvzWRAUj69nb/CrCQjhOBg80TjcQ1dSuorG7Hazaz7ZBPe/DRWr9hNrJ+bjfVNtPRpJdXdyPHZ83CpDo621ZIQZjoT7bzSOg6BQmWgiKqWVLKEQm11GyZVwWSzoCV0iorSCUbi9CvNJyXdiamfmXFZmWS5hlHkHISVdoRaihAaZ+1d8OSKfns7OOJIvKuG7xIjyBsOqyJ9JdKkkaNoaEBAF2xOmJiSugMVybzYIPSQguaz0DbYQco6HZPNQiIUhYSGaA/gEBK/CjFdZ1ezn/wMG/aMODZTf9pMfcnWNuGStewOb+fReo2GmAmf5iYYSiULsGYmk+WyMPa4oXhSXUw+fSxmhxVvclcol1IS0xNAJ+FENXatEg0z7ZFPqUn0592mbTTu7svKPc14V8Vhtw/TpmoEEGvvxOS0oeXl0Dg9DYRAM4cx9WsBBBE9CmgItTeKHmFC8mDqYnEye0/GVuSmoK+D4vw0tNYgxYPySOwd7tmzf9We+VeN+UOTLjJ8vxlB3nBYhUUWZqrQieNRLHgUsCsJVsTMTEytZGswi53ZFhI+C5FUC3GPCZK9EOrKK6PpxNfvQgwqolhxU6uEcempICuJauXEQlvxmCw4FQFIJiYnWNKZzcXDZpDoY+eon/emvS2EVdNormmlrrKBz+euZtW2ZjxFXt7xV1M0PsGexG5+3+djvCLGECt06mE69Chvto5nd9TDqkorsbhAN+t4JSAlNqcVLaAyeHIZrcLK7PHDaNKjjBybhdmqMjw5gcOciUkomJRUMoXC7IOdqH9NuDVKzRgOscMe5IUQxwL3AirwmJTytsO9T8O3R3P0cyCGAMxSwSZMuPemhoWAs3JWckcglcRWNwjw5VtJC3iR7Z3IcBTFCnosjojFaajrIJKlUldnIifdRFQMxqO0Y7VPBBRS1QhjbTaW+WDBngrmL+9g7k4L7VWdKNVNqC2daNE4UpfI/sUoKy20THaihjoQVoGOICoVECYcajp+RePkrBEs9nk4Z9Y46tp1xp+cC3FJVooTm8OK7d+WBjQYvm0Oa5AXQqjAA8DRQA2wUggxV0q55XDu1/Dt8XjzBJp1BZBcnryITEsMDyZShUqrVHGZYnitAZo8SUifBS3dCuVhlFgcHQm6jq4ITDYz+XUqOzIgNVVDIAjG27GZ6mgJvkKSYqElHkcCscRUNtTqqEoSgWgMgcCb7iHY7ievLBd3mhv3kD6UjepNSypMGJCLX/UzKuU3IKMoagZ2IegN9AaGZX6TZ9Bg+HoO95X8aGCHlHIngBDiRWA2YAT5H4jGhIoQXVftj7VP5MbMT2kjRn+zlUWxrm0jvFV8mJaO5rN0BXYArxtaOrqGAZpMxHVJojOKOWSlIxIkC0GHnkwqVVjNI7HTTpqpDE04mJ41hUt796KxTmH81fm0VXdSWpZNoD2EM8lBIpYAVcFkUgkm4rhtVnxaCJOwoaEDUaTe9UdGCDOBRAKHaqc9HMVrtREMRLFbTV2vA5gsJsLhOC63lY5wlCSnjUAigtusossEZqGDsCD1IAgPQS2ATfHgj0VxKGYSCR0SGmaLiXAgjCvZia89hDvZSTAcw2o3Edc1rGoCVZhRZQApkkC2IUUKMT0IOIjrGiIBZpNKxB/FlWTH1+LDk+om6ItgdVnRNB2nw/j28UNyuIN8LlD9hZ9rgDGHeZ+Gb4nbPv2E9TUFDC2rQkqBEF0B3IyCUwWX0AlIhUyrH1NyHA2JroAUoGakoLd0YLWZiYbjmCMxYh4rCbcg1JyKVthCMGEFCzhpReqNdCbaiesRPmsM4IsnU7Eggz4NNkIb20k3QduKbdgdFmIJHcqKMFtN7BhlodcISae3kRlpfqYkf8oAi5MkEaJGC6Nh5466MbTVDmDjToWioJPE0g6SK2qJhWNo/iAWu5lodhbWibnstsRImy5oEW38pv/nKCLCUfZOnKqZ1kQzi8PjWBEUtLf35ZOtyeRtNWPeGcG5tgaL1Yx/ZzUZg/rQ6ovhHJrN7jRBdBrESHB+2TIy7RpnuTYglCykXsf2RD/m+03M2TydSEKStMxESoOGWF1PWpqThlUVpPfJoT2sEZ9WgqZLnrvrYnIyjMJnPxTf+MBZIcQVQohVQohVzc3N33R3DIfQzrY2AkE7cu/FuYJEAulqVyGuAeauK+GGiAcsOgBC3/tks7lrQo8uEYpA94XQbQpSCGIJHSEVTHQCJoQMdC2joUcAiUXEick4qioI+aIoikIoHEdVFWLhGFIoSF0SiyZQhSCkR1CFQkc8gUAhLsNIdEAHwpgUgS8SQ1UU/IkYihBEw7Gu3D4QC8VQFAV/rKtNQI9iUQSSCFLqJCQgI4BKQIugoJAQQVQhCKMhEzpSQjQcQ1EVQsEoiqoQ7gyjKIKInkBKSVxXiMsoEhWkH1BRpQ8pVSJa19BOqUA0EOk65kAUxaQQ7AwhVIXY3uGf4Uj8CH0CDN8Gh/tKvhbI/8LPeXsf20dK+QjwCMDIkSPlYe6P4Qh65LQz+NGKC/amayQaKgJQEOgSKhMmGiNuFrT2Q9h0sHSteYQAGYmB7BqXLqVElxLNBEiJNyMMJg2TqQBV1BO1TMClN5JlHY5E4RhlJAWObKo9OqOvzKV+Rxu9C1Jo2NlIanYyIV8Y4bBhd5ipT4TJT/VQFWuin8tDQt+DR81EECBf6gjh5oakKKkD0tnW7KPYlUxDXSfpLgthfxSpazg8dlrbw2Tmp7Cro5PeuUnUhDsocV+OJsMkKQmkcJGi1XFOZiHVkSY8Ip+qvgGyT3ISjsYR/ghOj52WqmayirOo3d1KTt9Matt8JGc5CCXipNlPw6K4cFGFUAvQE7voq/QhPd7EWQU5hLU4YhK47VbadrWSXZBCdXkNuX1zaK7rwJOfTDSWoLjAWOf1h+RwB/mVQIkQopCu4H42cO5h3qfhW8ShQmxvnv1U9zqsewN9REKLLnCZIgiAqAIJBUXruprX411X+Yoi0BUVU1YKuqIgAacnhipU0pT1aNKPL/QOqmKhLr4aCcyt20FrzMPOhXnkSwfax00McCgEGjspGpiHNyOJpP696Ts4l1abRkFqEhnWJJzmVCAVsXct1n9lrvvuHY4+rsALQEaKu9txZhd2/T893dPVxuE5YLsALKau650+rq4CYRnO7imTrL0BOC07uev1Ur+4r38VFsvqOjdqFibAYU7f36TraeSkd712alZXn9NzUzD8MB3WIC+lTAghrgU+pGsI5RNSys2Hc5+Gb5frMhYRk3Gsik6mYsci7OgIlkVNgMAkdDSpEFmSAggsLTFkLI7Y3fWFT0tokOokISWiNY7EhMsl0WQCp3U4NqWGdOtgTLTgFj7CuqQz4SCJZJAQDERxCEH54goUIaipqEXqEgYU0znCQyjTjCdDovRv5KzsXQx0bWOUPReTmk6LVImZZrAx5KbENpjGzgRD07KQmsTr7bkMscHwbXPYx8lLKd8D3jvc+zF8O7ksg1ET60hSHF1DbCQkgCgCKeHtxiEkaq2AQMR1vDvC4AsgdR2hdLWxRuOEJHjGpKHLABZnBLOSwKJ9SERTiMldmBWFQCxKM2cyLLmYmclTqPfGmJCTz9YtdSi+IDXb6qgur0WqKhsbQ/TqlcbiUBPOJIUwENHakTJGJLEDmdhIUI/xQms7ldEkAh2fsnlzHmnbJM7KKI6KGtKzktBCYUadPJb2qM6okwbTSpzBAzJQVEEvlxWzcKAqxmgWwzfHmPFqOKxSRTuoNnQJQoImYUVUBQTbA2ls9OWhVXalJLw7IygRHbXThyZBtZhIIFAKs8Ak2OwM4HDGSaghsixO7OZhmBUbDn0zCeFAEuPlug6a4hv5eNMefFtS6bU6QZLbQZkdxh4/jMIB+Qyd2h+LzQJALKGhCY36cBtp5hZiWgtefRtxaSYc+YAxqaNpbqpGjxWgSQ0lJJHhKPFogj2bq9EjURrlGhKKykfrt9MxwI2+JUJucSMX9V6GQ/VwjK2WqGU0kUQVterZ7IoILLGx2BQbGTE7ORlJqJrEk+I0FhIxHHJGkDccVnuUGWwNvoIZHZMQBKVASsGOYDrPVY8lvs2F1AAJalCDULhrLVhAQ6CkeQi77Cg6uM1m0lJBEYLhjhVE4lUIJRnFpOG3nkK6yc8lvWfyXtNGNm4zEQhHiIbjNATaaVi3ncWvLUfXdFL75RH0ehl5yVC82R4mjsgiz5GGx5q1t9dTsQJ57kvIA47JA32YJHpMAn9HhGgszp7Vu7A5LCx/ZzVp/XJZ9nkliYHJbA50EEyO4lQlAkFc9wMxwtEFaDJMnf8hlgb7sGLHDpo2p5FWrmBTFJT5WyksyaR+0y6Gnz6ZcCRBzvH9SE13Y+5tYlBqBm5LKxm2PqjEEcrB6tsYDAcygrzhsGqMVaMjiEiVzpiNR/ZMBgmBqI3IqmQIm0BKMpb7MAU0iHWVHbA4rMQSEqtZJSzBlG7FH4vSK78OTWqUJY1E1YOkKAqSBO3+x1kbTuapxjBlrj6c2Hc4J5zWj7qKZsKdId69+x0URbB+/iba/FGkLc5bn64nPkTjZfwkmVVu6P0O/T0nkaoINPtpSGHDYu4qKqMIgd1sxp7edRc2f++NzJFHdRUNO+vHR+875qjWNfM2FK/EpthRE5/jEV4ikU9RKSBfb2J1IousZAtx3Y9ZFaAq1O1sIuwPs+TjLSiqwiJ/K+2DTUQaNdxmyaWDPuOUpCBeWQOmEqSMsjg2Dp1C1jf1ZWxKPqHaGKNKcgl3hMkvzkBK+ZWLjhu+34x333BYVYRmsaOjmcaom4pAJhHNhgQiS1Mh0TWKxdaWQA1qiKpapC8IQpCQApNFJeh1E0sWNA2EdJcTk0WjxNaEJbEKHZ1k6yCwTiYU+JxO3QkINnfs4u2FMT54cCl6W4xzZg3m9J8dz5jjhhLsDNHY5Gfb1no+7KwhaOtkK5txqhE0GSEp+goSjY7gc3ToCea0HY2iD0BvHcysPiW4IiZK+2Z9aVrFqnb9IbCppV0PWHphBaz245mZDDOBa/t2beq8OIxFVahYvQun08KWz7ei2+3UVrWyyZ5ApgkWK1WUpQgkEjsBQEVPbEOi0hleypvV7ayob+dZbTVJC014OuNY1jVibm9D1zRSSgrIGpRPqCiFU44eytQxJT112/A9ZQR5w2HVGrXw7ubhSL8JPaigJGnorZZ9Ad5RF8NbEYLGlr0BHoRJ7ZpolGRH8TpxDU6hVQQJaCE0mWB8SiGK2IRNmJDxcjaFK4nJBMXe/+N8hxd/k50nHBuJtXSCLnn27+9Aiw9VwMTTx9J35nCOPWkox7mGAeCLhzATpCU8GEELIraAULSiK9gnwqzc0kpD4zreXLGJ1MVRencGkaEY448dRO/+uRSO7ENuQRo2h+W/Pj9J7q6JYcMmdf1B6Du8qMd2Ukr8ifNxCZDaNnQ9iqY1kkYzpxWl0RIM0TvqZaOsxa0JIgmdcCAMQGN1K7usCrFggPpmnxHkf2CElN+e+UcjR46Uq1at+qa7YTiEHvxoKQ/NW8a+T9nef5hjkqRNASytMdRgEK22CRIaqsWMLhQUs0p8SB9CeWY6+ptRVYWRE9pwW7dzaeZSBJL+7uNR9Bhrgp+jywQvNI1mezgd57aRXDt5PGlxM1WVTbz8h5eIBSK01LSiOmwk+vTCXObB19fGlacPYGB6LkOSCw/ot64H0WSMz1s30NZp5eHFFSRVS1qWNGFduQNFEWjBUNdC3gOKcY7OoS3bzBnHDUCk6pzVuw821YrNlHpEz7eUklg0TkdLAH9zJ+FghMryBqxpLuZvr+XkGYOYMKL4iPbJcPgJIVZLKUf2uM0I8obDae7yzfzm1XkICWoC3LtC2BriiISETj+mpha0SLwrd+ywoe8tFcCwPkTSLPhHO4mi4UoOkzewiivzFLKV+ZjRKVYT1JBFROmFxXYuN21ZTCxoouJzL73X6BBIcMmZoxgyspDCAfl89vISKmt9fPxJBXv6KsTTTLiGtDMsr5IzsjfR130m2bYisJ+KEN2vyhOaTmtrgKr1e6jeVs/8Zz8Ds5lKX4LgpAx8qo6eE4OyCCfnbmBicj3TXBaEZSJhJRmT7RTC0kmK1ShraTi0jCBv+Ma8/vxSHrrnA0TXmtr7KIk4WsUu0Ls+f6rVgo7AZDERKc5BZjoxTUplTyKA06EwbEIjhdbtnJi8CrtQKHafgRZdwdrILkDl9ZaJ5DiPY7xtAs+vXMf2x7aQiGuIHbWIzgB9BuVzwc1nMHBSKXa7hVW7atjW1sQL/vc4LWstBbYtTLAqmIVOOy7apYMa9ff0cZWS58jr8dj+pa66laCi8emmXWx311ARrmF2zlxGODoYaPUjUWjTfDzTMZG2hEJL8zh8/kxmq8X0L84iy2UnIy8FVf3GS0kZvqOMIG/4xmxatZObfvw0WnUDMhxBs1ohGIJYAqEqmMwqcV0gLCbsxdmEzCY0u43wVA8taoyidA/kb6ZPWguX5/hQ5S76mnRMxPCbJtAqMtgVaOHePXbq1+cRbLfy23ETGJSeSVtDB/f96CGELvG3+LANLyWhKJxz09EMGdqLwfldQybjWgeNwXfJ1JajxBZRG29jSTCXDzsHoGJl1Yoyrhk4kiLcTJtchqJ89Vj2cKIZoUcwR98gpsfwh+bwZPtw2uNBPt9aTPvmFJIrBEKCe3ElhUWpRDoDzL5+NjaPg5FHD8BuNWOzGkv8Gb6aEeQN35iP5yzib5c9iK5JhBBIITBZzChmE7qmo2k6pLpw9s3Dp4PZYiLogeYhZswmhYySOnJzJJdlriNJ2UKOpYRUSx/0+Bq2Rjspj3hoU36L1+LmsblVNFd1krEqiklVuOiEwcw4cxydzT7m/PUNVtaFSCR0WgbZiBXpjJ7i4LLiGYxM6YWq2Pf1ORD+kN2hFu7ftYSw38uSNak4GiWZ5ZKUVj+5bhszzx7LsOkDyeyV/iVHf6CIFqIz3srHla00NwdY+NIWXAmdtvc3ITs6iEXjmAvyUVSFjqFpmPq5sI2xcFZJCcPS2yj1TMGqqAjFKBNsOJAR5A3fmOrt9Vwz4WZkIkE0FEOYTftuviqqguq2Ey7JQ1EFkSwzTWUqqiJI69VG32IdX6KVa7IXkWpRcKvp5Ik6orpGu+MKmgPvcWf1INriUKSXMdE5jiTdxAO/ewc9nkBfs51eJdkMn9afy249h9aWAJu21vK7hZ/hHNhJxNNJoSPEZbnzGZ5yHR7bKIRlyAH9r/P5+GD7dla+Us7uiibE6p1orZ2QSJBUWoCSnMRZv5hJenEqE/sX9nAGvpym6exYX0Wgzceyd1azfY+PlmY/u0oc+Afo+LPjpNljXNB/MQOsMcZYaxGWwehKb3aJGeTaB6KKDLxW+1fvzPC9ZQR5wzdmw6IKbpp9J4lYAkVVEIpAsZhJeBzoWSkkzCbMXgv1g1UUh0o0oZGRbCZryA7iMs5pmS4GWl5CICm2DcSuCDaEdhLRI/jUK6hNDGBe3QoqVrjQ9ihckNWPM84ey4aPN/D4b14k3BlCsVvJmDyY408dydkXTwSg0l/Pkzs/oZ/tKfKsDfQ367iVBK1qKV73dVitE7AoB958lVLy0QtLqN/RwIu3voZjSF9C4TiBXg7Cfd14xuoM653FT0u9ZDnGYlW9//N521HTTETReKFmHSXeKsK8wzR7DXlqJzo6G6NJrIxkoekuHlg7gunWYsy7BGcM7kuy207p0AKsdguKYuT5fwiMIG/4xrS0+Lng2NvR6VrxSXicJHQJFoVwlopS7KRJjaIKAUhGDrDR7i4n222l1N7MBNciMuxjSNG34xadBNWRNJLGgubNvNU6GJfJya/zr+GvHy4g8FYNkY4ofTLdHDO1HydfPZP7f/ok6zbXUxvUUG0m6qe4uev8YxhTVIDTZCMcryEUW4vX/0ca9QhBvZ2nWo6iLmZjhvMiBqUUMSQ7u8dj2729kaULynm+upLmcIjwyA50q8bv+n/AWJeLXFMC3flTUAuwWHv8/fuv6FodutZEIvw+9XF4t2UZTcFevFCRi6VG4NpqxrW9HduudhKNTfQakI+ndw4zfzQVku1MH9sPk3Fz93vJCPKGb0xjQyfnXPMICQUiNklKuov6pDhet53GSAirSSWmaQwrctNq34YrNchQl58Tkz/FZirGodeSawJhGUM40cK28FZa9D5Ynbdxx9ZnifqsNK7N4YFTZuHf5eOFpxfTvGgT0h9mzDGDueK28/BkennusQW8XldJc0qYpNGtOE1WHh05jiznREyKE4BovJxW313csttCY7uFzZt6IXU4qjGD808dy4ghBVhs3W+Edq3apPHi7pXYla3o2oOc7AqhEiOgx6mJ23gnNJW+rjHY4+OZml+I3XxobqgG4zFWN9fQtivI2k3V7HhuFfHmTvy76xCqgvR4CU8qQjcp/OyiaZx2zNBDsl/Dt4sR5A3fmPZQmIn3PoIOsHeFp66VorpGqPQtkkRctbi8MTLNCc5KW0SWvRfR+GbMipN+zpnI6AdEsNNkPpYdnQu5v3Y4ijDzwPBfc9aDrxLbFsBTEeW4WUO56sfT+evFD1K+bBv+1gB5M4Yy6cQRXHzVNPa0djBv52Ze8L+PIM6NhR/QzzmQXu4TwX7WvsVCmqMtbGrZzfVvLEeJSFzzQ3h31JNoD3HJ705m4LgSSkf3OegxS6lDfA1adCFtgSdZFUphQSATTTPz5soRDKn14gypXH7scAryUulVmnNIz7mUkrWfbERD8MELS2nOdbNuRwP3/u4MhvX/8uGghu8mI8gbvjGReIIpDzxCMBoj2WUGUwx3ShjN3oYjOYxAUORwcZznfXIdhUTj6wGNXs7TsMfexSQc+KynUul7hp0RL3mpT3JHxTPEEjo1S3J58MxTWfFOOR++tQ41FCa1088/V9zK2vkbefaeD9gTFeiaJOuCEm46bQZlORlUBZtpCb5AIPQPJtgEoNKulGJxXoDHecq+vksp2bWnhSeeXUz5E58SDUbRQmFkIsHAMyZz5uVTGTq+DxbTwauDSKkT1cIsbHmXZVUJnlhdR+6nAlUI7NuasLQESXbA8T86mqKRJYyY1BfVpB7y90FKaZQx/h4zgrzhGxPX45y55OcoqOhCQ0HBplqI6VEmpPSiLfw5p6cHkHoloJFhPwZ7fAEeUzaasFEfraSNAoJiELftFAhU7ht2A+c/8iahugh96yxcdfl0Yr4w91z6IDKu4fbY+fXTVzNgQin3/PUdFlZVsSsnQcl4yYTCIn5ZdgpCCDQtiOj8CVp8C1XxamI4ebz1VK4p/jG9nAUoXwiKDVUtbFqyjX9c/ShSVYlkZhCalEHQJvjZ+eMYVpTD4OSvvkqOaglWrNnNuvV7+OSvb6NI8O+uxVaYj1RNpI/vhak0jQvOG0VRcip5LmO4pOGrGUHe8I2RUnL75t9QHW5lYnIyO/wVzMpIoTG8hl52G1JrwSHM2K3DscZXkGQbgYyvJ4SdNsuZ7Ol8lg/ahzA47VLeqPkUXyRG06oC7j1tNi89uJDylVVkpDi49keTsTms3PeTJ6jb1Uzq+AEcfcooLr1mBssqq3ho5QJ2pW5BR+fmvjsZnXkjXlvX70Q8UUNT+4281RxkYUs2G9b2I8Pp5qEpx1NSlHnAzUopJbt3NPLM/R/zsd1HKB5HKw0hs+LcOqSRYSnnkO0ahRBfvRpULBrH1+Lj1bvfYU9dkPXLd9HZP4l4lpPAsDgFvTs4r7SRsSmnUmRPQ7GMNq7GDT0ygrzhG7WhugQpY1hNhcjEbiyWkdgTa3CaS3EQRZH1CPMYZHwpYZFHszKEhuDr+GUZCfOPeHDnIjR0Hh/yJ469/2msLRoTLZlccu5EnnnkUza/sQzpD3PH+78mKdXN0/fNY+n6WjRNMvyGUfz6xGm4bGYe3P4e/sjbjPd8xnB7Gm7rcIT3HoToSrds82/nvco1PPxZAwlNJ2+hxuShhZwwsS+jjh7U7bhqWztZU13NLbXv4DRF+FHhexzlipOihNBcv0SxjMRsGfofnSMpJZFQjA9WbWVzYyNPJ9Zwet8tZLlqyTZpHO+oAlM/hJpHu+1qUq2F2E3GVb6hixHkDd+ocMuFmBMr0e1nooZfArUQoe0CFDCPRMaX0Wk6nobIMgJaE+muC3i5rp2F7QrTMkZSH+hg2eYWEo2ZPHreKfzhx8/j7wgzY3I/Lrl8Cjef9neqt9YhkPzptRsYOKmMR+/7iOcrthAsUJk+LY2rhk2jLCkfX3QDLZ0P0EtfCOjUSS8p3ltx2mfs6++Sqirem7ueJe9XoNa3Y61pYeJxQzju0mkMmdK/2/FJKemMVrKx7UHGqAsRMkBAj1ETt7A0cSYTU2fTxz0Ui/qf59qD8RhhrYENHW/Qj49J0jehI9kWS+LzcA4mkcr7ldP5eelE8k1e+vXKOATvlOG7ygjyhm+U3jwDqdUirMchox+gKznElSwisbWErJfREPgnGjqZ7qu4dfs2omQyPHkg8xqW4Y3kcnHBydzw6vuQkFyW1I+SkkyevP8jAmt3MPWE4fzysSu4uOw6GmMg01O58rqZnHbOWJ5YuIo3mhbRltRAls3JP0eMJ91xFFLqyODDdAZfoiW+jZp4EUsjJ/GLftdhUbqGNuq6ZNfuJm49+34ad9QR8wWxexyUnjKR6/50Cll5KT0eq0zUoMVW0NrxG+b5C9kYcRGPJfH2mv7cPGAKo7JyKeuT1eNzD0ZKDan7iYWeYU+4mfdbV9IeSeWZzQNxNplIKrcwNGGhf146U48bRNGQXtidtq/9vhm+O4wgb/hG7W66GC26GLPjAjqCc4hJicM6kobQWlLtE9kSVHi1wc5ZBSfw9O53EShcX3QR9368nK17/Jzcvz/Tswu4409zEZ1h7n/4Epa9vZoX7piL2axy/CVTufy28/jTr15i9fJdKIVOjrpoFNcdM5HNnVXcvOE5BjuXMjVlJyPTfonDeTZC2IjFt1PT8RD3VzXQrjmo3DSAX4w7ltllZfv6LqVk16Zqbjn7bppDGtEUD7HpOfQpSOfOK44n2ers8Zil1GmM1PJ+/XO8tF5nR5MdbwW4KmOMsdg45YrpjJzW/39ami+c6KS83cfz29ax/t1aAo0RPKsboaoJEQiS2y+H5OI8zv/dyaTmJpOfnfy/vnWG7wgjyBu+UevqLmNNx3bGpx/LkpbFVEWSOa3XNfx288vYVBtDvaUsbllLX2chI+zDeGDxYuKtSdxy0kzu/b930GrD3Pzn01g0bwOL//E+qlnh2fK7eeuBD5lz25s4+uTxs7suYPSEPvxjzqc8t6sCa16E62aN45zek4EEK+tOpVDsIVVJIK1HIzx/QFVTkVLyWfMCnl27noXrExRvNJHn9nD/XefhsB9Y1mDRvI28Nm8ti/R2NF0nPqmTawYM5rzCISRZD74QR7Wvk5VV1Tz8t08xb21C29WKOR4m6gtx1T+uoP/YEvoNKfifzm00nsDnC/PaA5/QvL2GRS8sxOpxEne4CE0qRFEVnrr9AnrnHtnFSwxHlhHkDd+o/9vyOEtbNjIhfQhLWzahSY1zCo7hpeqPQcI9Q67nkreexN9o58/HHM9Nb83Dpik8NvtE7vv7B9RWtzF2UA5XXn88V436DfFIjKFT+vObOT/hsdvmMm9BJZqu8+hb15KW7OJvH3/GR5ZPUIXCnweMZlLWCSjCjO6/Cxl8mHZNoxMzmRlLcJm70i61Ph/PLFrNRw+uQmn24axt47I/nsZJl08/4FiklLy5fDNzG9exUdnG9aUfY1YEM9LOItl5PMJ08ElSui6p3t7A4395gy0frSYYjKFmZyMUQf5Fwzj7+JGMH1yE6WvUm2muaaVySy0fv7GKBaEgCV3nub9dRG6m939+TcO3nxHkDd+ox7a9w2v1H3FC+nSagn6WNW/hml5n8dDSpdS2BblqzASeXbIWuT3AzRcfy5pFO/l03ib6FGVw213ncN6wX6O3B7jhwcvILcnihml/Qkr41Qs/Z/iUMm766Rw2+9vwD7Lz9nUXk53s5nfrn6M6sJrzsj+jX8pFFHqvQwhBNLqG6ubTiEq4u34q15T8jGHJQ/f19bNFW3nz9rlsXboNi1nBZTfx0Orb8aS4DjimcCLGypbttIZ+jqb7meHoxKW6CVmm4vbciKJ++ZVzw+4m1i8s57G/f0xcSGqGeEmMVQh4Ytw9YQyjMrLJspd+rfMeCEVJJDS8HsfXeh3Dt58R5A3fqN++NY/X1m9iQFYmHpuVpbuqmdGvGBcmFr2xkfNOGIVXsfLUIwvwJNn5651n89vT/o5/TxN/efV6Fry2gk9fXIzDbeeBZbfw/pMLeOGpxSjZqfzzuStJynIz4/bHiGoJ+k3RuHf8xeQ6Utnc/Esag3MpNUGWYypKysMAxBO1/F/53WxsirFlYxFH9+nDfSecsK+/Hc0+3n3iM579w0vgcaJkZ3DuVdM498rp3RYMSehhtNgK1M6fEtEjtCbCvBs6hnT7cE7Pv+orx7Vrms6ehnbueXkBS3Kr6UxEmJq/lYlZuzk9JQer42JU2zSEOPSzYA3fH18W5I2SdIbDbmxaDnlrEgyNJXFG736498TRl7czwZaJq1HjvWdWMnZMH5w2EzR3YNE0PGYFRQgWz13FNX+/AD2hEegIsuCdtZz5ixNJ6puHJuCnL7+LlDDvF5eSPK4VzbyLjS33Edfa6Z92BxNTf0GGqlIb/pSa5rORMobZlMv1pTcz1nE8uoT55ZVcctUTtLYFAPCmezjvxpO49Z0bGTZrJAh47tUlTPnNQ9S1dx5wbCbFjtU2BVPmeoTrOpoYQlXEx/NbNtHvsXt4fO1qOv3hg54bVVUoyk3lvutO5c3jL+LO8UcxLKOdQdYgxBYR7rgWf30fqjpfoCG87bC+T4bvp68V5IUQdwohKoQQG4QQbwghvF/YdpMQYocQYqsQ4piv3VPDd1ZLeQu0xdny2U7UoE5KRZjW8kbGTyjBY1GwtHbiNCnYtlUR2LCLxW+u5LfPXIPUND56egHV2+q4cc7PkPnZPPHsclqb/Tzw8lXUTnJS6e/glYqVJDvt3DH6fK4oqMCiv8TOtjsAidl1KQnPb4jICKHoYl7Z8xCBRACP2cPPRx/Nn6dNx7s8SlV1K784+36Wf7h+X7+HHzWY391/IVfcdAKtpS6CsRhHv3svt254m4Qe6XacTvdVDM97gykZs1GiQ0joOve8t4BTrnqE999YSXuz70vPU57Ly8m9R3BV31cZkv0cimUKCDsdmpU3657mpd0/56oFT/Nx9TZ0/dvzDdzw7fZ1r+Q/AgZKKQcD24CbAIQQ/YGzgQHAscCDwvi++YM1sE86po4AmYk4g8tyMJXvIbSiAj0aJ7S8gmhlPeUrdnDZX85C6DpzH/iQzF5ppBWkIwvz+OSTrYyeOZiUPtnoZsGtHy0gxeXg9nOOxdbHx3NtH7C6rZKxaf3on3wmJmEjJfY6svMmhFCxOs4jLekPfOIbytv1m7hv9Xu0hcKYVZWzhg7mthtOodhpoXbFDu6+6lGe+dMr/CuN6XTZOPmssTz5q3OYMjMfa5JGjvUu3tx1NP7oFv493akKE8dln8vDM8/j92OmkrZdJZHQuO/GF/j5cXfwyl1vEwlFv/R8KUJFNZdgT30GZ9pckpL/gklxkNCtzK+t4rr5bzP+8nt4de4Ktm2oPmzvm+H74WsFeSnlPCllYu+Py4B/VWiaDbwopYxKKXcBO4DRX2dfhu+utj0tKHvqqVm1A7vDismkIBAoiuD4S6eixeIsfHkpvfrnopoUAr4wwUCMi+++GFwO3nx1JVabmZ/fdzr1k1wsbtlBZXsjxw7qx6DSJC7KWUQweD6heBW9vFcwMfl8khRBbegd2nz3IYQg2X0Zed4f01pbzFNLavnxW28RjXV9dCeOK+G3fz6DkVPLaK9t5blbXuOhP71BR1tw3zEM7JXFbUefxG3DT8JpiiNlnEjLqWgdP0PX27sdc5rdySVDR/Di3y7hhtPGIQJRWmuaeezGZ/n1mf/gpYfm/0fnTjHlk+Q6g6v6vsLs3EcYm1lCanXXRKeH7nqP60/+O78+7v9YMncluq5//TfL8L1zKHPylwLv7/13LvDFS4yavY8ZfoBy+2YjEzpoOp40F+g6sXCU5e+tJSXDi3A6aGwP0Xd4EaWnTEDrU8CjD3zC+Mml9B6VS1s/K3966xNG9s7j9KOK8Y5o59oNDyGAx8ZcQ6GjFZf0kQg8ipRxhPvnhOznENE7afHdzVZ/Vy77xJxZXNLvBDRdsn1FHede8jDxuAZAr9Ic/vjSz5h06hicOWm8+doq/nzvXCpqmvYdh1U1MzN3BMfkz2FK8lF4FUlraC5N9cNpCS1B23e9s19mmofZZ47jte13ceyZo3Fmp7F9ayNP3fkeJ1z3MJ+t2Y7+Hwx+UIRKH286z8w4m+evOp+bzp1Oii+BCIdY/eE6br/6KU4s+BlvvPA55ZUNh+aNM3wvfGWQF0J8LITY1MN/s7/Q5rdAApjz33ZACHGFEGKVEGJVc3Pzf/t0w3eAkBLcdjSLCSlh8HEjMJX2xpKaxIxLpiJK8tkdEez+//bOOz6qYnvg37nbk01vpJBCQgKhVxGlKB19IKIgyrNgw/Zs71mfor5n7x1RURQbFhARFBEERMqjSS8BAoSS3svW+f2xS0LYXcAfGtp8P5/9sJlz7r3nDnfPzp45c2ZHAT0HtQezkRxZhWbQaDE4HUdrHZvdOdikg8s6dSDMUMuV8YvYXzkNTejp3OxjOpoEVtvXyNpZCKEnJPROhPFiZpS24ZnNL1Bc55kwvbxdW6YPHUX0DklZaTU3nfso+XuKATCaDPz787sY+8QVmDIjWFhRwNWvfMHKotxGYZlQYyoxkY+hRbwDwoDExUe7/svEbc+xr9J/3N0SbOb2167nky0vc+6ANoR1iudgRTX3f/U9Hb98ma3lm3C6jx7GOURCdBjD+3Xg8/89zhvzH6Fz/3YER1gRAt54ay7jH/2c/KKjx/8VZw/HdPJSyv5SyrZ+Xt8CCCGuBS4GrpINn4R9QPPDTpPkbfN3/klSyq5Syq4xMTEndDOKUxNDeAiiRTK2xHiqq2y4IsNxGIzMn7+F0LAgQqOsYBSUuOz0+ls78i60skorZX3eQe4adB6J59RyIGw3X+/5jeyw5rzYPovm5gPsLHsBKR2EmTsjzANxIdhTche1tv+h08KJiXiW3baWrFrZkj6TprCnrAyA9q2TeOOlqzCszeXgjoM8c/Xr7Fy3u97ekdecz0uvX4fJqMcRaufGpR/x0/75uKS9XkcIPTpzX6Jjf2G3/kEOOkJ581c9F3z6HrPXbKbO5vDbF5ZgE/9+6xqefXMco/p3pCzdRmroHn48cBez99yCs3Y2UrqOq191eh0prZN4du6jvDz7Pm57bgyGjBiCg4w+q3UVZy8nml0zGLgPGCalrDlMNBO4QghhEkKkAS2BFSdyLcXpS2S0Fc2gYQ4zYTLr6XNZR5xxRspaGLFYjOgvTiD3XAsfr1xLTEgwF/dJIaT3AeZULcGg0zEwoT3BOhcm92Sc7ipSQkcSY8yipVaJLPsHAFr4y+x167EjWVowjWpnDWGGMJ7v8BwOuxGH082Tb8yhsKgSgMyMZvz341uJaxbChsWbeeHmSeTm5Nfb3DIhmt+evY3U8y10Cd9Bae1DLDlwN1I2Hm3r9ImcEzueWzL+g1ELwrxP8vQzc7hjwhfs3rI/YJ+kNIvgvjEX8uUlV3N9624IBD2NS7CV/YO60luw18z6Q30c1zyKIWN6MuvdW5g5cTwhqkCZwsuJxuTfAEKAn4QQa4UQEwGklBuBacAm4AfgNnm8wxPFGUc5Dnafb2Z7Zz27S8upCpIUdTGxutbjVK/q1R5LhJvS6DwkkjYtI9BpGhvLtyOlZHxGD+5vMYto3UqqbGsw6WNpEzqUCB0U1K3EZt8EQFLMdOaUd+ej/SXM2fczAEEGAzPGXkXSJti2eDeTX55Tn93StV9bbn/1OuJbxpNbXMedf59ISVVNI9u/7Hszd2b3w4Ckm5iPq+AcpKtxWFEIQZq1JQvGXM+955yPAHJ+38PtA57m24k/UVlaFbBv2kfFMzzlKq5Km0SQuSfgwlH3E7uK/sm03LvZX7PxD/W1Xq9rtMmJQnGi2TUZUsrmUsqO3tf4w2RPSinTpZRZUso5RzuP4swmKSKMlG4u4nvUEBtuoXeb5kSeV0Rw93yKbBVEN9MR1qmAIsMm6lwOxqT0YlT8ZkbHfUt+9SxM+jhahY2jhc5NSMX9nv1Kg2+iWJdNpWsfBWWPAWA0tCA5bCw7tmbwwFfb+X7rVgCyoqO5d1Q/YosqWDRpHm/f/1m9bV0HdmDCjPvQwq3s6xrK4AnvkZtfUi/XazraRv6d/olvYhCCGlcF+Qe7UVP9pc99RpgtXHPROUx9+VoSCqpx1tTw9j/e587eE9i0KveofRRpSiEo8gPMMSvQ9K1Za89kb80mrv55OgO+m8T+8nKfdE2F4nhQX/mKv5w6aaMsuBCbpYrt1fvRNA1NAylcONwOukZm8EDGRu5J+4kq23wMmp5zIwx0sVRgdW0BID64L830UOwqwebYjBCC8NC7qJbxfHCgloWFiwEYkXQJEaI5mhBMnbWCg/meCdehA9sxeHgXXE43c6f8wpt3flBvX3qrBL5Y9BB6swGndDNm4XssKciplwshCLV0Qxc1A4e+NeBkTeErTM19ya/jTU6I5P1Fj/KP569CSklBreCBqyby0QcLKDzKqB5Ap4/BGjub3onPEm86l13lOvbtKOOSu9/nrhe/Ydu6vcrZK/4Qyskr/nJCDUGMjC/hvPAcsqwQZQrh7rTl3JE8D7fzZzShEW7QEIDT6ZkA7RRxHYl6jaBab1qksRslhnMpd1dQWHY/AMHmPsypGs364lSmrd1Ktd0zMfrhyJG02mNh/0/7mTxpfr1TvO7RkYy6rR/uOhs/T1vKvJlr6m0MNpv49uFrSOxrpNJUw+c7P2Rv5bxG9yEMmYRHTabadAs/VTRjXflSrpz1KXmVjUsdAJiDTQwZdyGf571DYnocLpebST+s4O8vfcKCfTnHdNTxltZcmf4Yb/cZycWxrdFpGqvX7OKeka/y9v2fsmHJlv/3/4fi7EI5eUUTIOlkXcaA6M3YvE48OSiBCEMlQd79VTuFjaCzEeLqpgAgTD0oI5pdLgfVtZ6FQ2HW66iV0Uwv1JFT6Rlp35FxK7u3teLH9ZVMXbsWgMggC7f/rRdRBeUsfmU2X7w8u96SKx+6lMG3DqYuPIIXHv6K3YeFZuLCQ3jtglFclRZOl/D57Cl5DLdtYaM70eniSI16gL7NrmbNjmyW7TvAvR/P5NeVO/zeeURcOG/Ouod/fXID9hAjO1uWMX7RN7y75RvK7H4TzhoxsHkmT19xES/eOZy2NRqumlpmvvod9/adwIt3TmHvdpUTrzg6yskr/nKE0OhkiaO1wUmU5pl/b2cKobfJTZh9OgB6Y0dc0kGhFLjdNQgtkhoRRplTsK/qRwCCzL2ZXDSQJYWJLNjrmZC0GqyMaN0Wk1vjm0nL2O3NeR/Yrw0dsxMRQjBn8gK2ep2wOcjEdY+MJKNzKrUpQVz+/FTyyyrrbU0LieaO1peTFZJJd1Mh7tKbcdp+bXQ/OqGjb+xw7uxwJe1MMez+NZ+nJ3zJzPcX+F11qjfo6Ns9k1/euI32cQm4pItd1Z/z456bcdbOQPpZRNXoeppGz3ZpvPbFP3hl5r1Yw4MxhwYx94vl3D3hC+59+htq6/ynbCoUyskrmgSzBhbhROJxRk7TAPLcLorcnj1VpSGbYllDpTOP6roFnmNCn2FiQT9e2F1Did0z4r4++RZ+X5vBS3NzySn2OPQH+/Qh6VcXzgM2fpjRUKr6gfduIjUjmv2b9zLp/k9wele3hkdZeeyda3Bkh2FrVcXY5e+xr6ahNIHVkEiP+NcRugRcCIqLxlBbM8Pnni5Oz+LNwcNonxiHe/UeJk34hvf+/QVlhb7hG4Ags5EvB47l52EXk2CtYEDQNmxl92IrfwCX49hZNAajnqwuLfgq/30e/PRuktokcMDlZMX63WzZmX/M4xVnJ8rJK5qEAy4HBW4bZQ5PiYFaWYvNbafUG4rRhAmb4Qp22mL4rcwTWzfpkwE9TrdkV0kZAGkhzQk2mHC73Cxdsr3+/M9MuBT9rny+e2oGG5Z62o1mA+OfG0tMejM27a3gtSdm1OtHWoOYPeF6ZKyDAlsF3++Zgs1VVi8XWgj6mAVUas3JsUXw1I4vmHtwms99NY+PYOKzV9GtX1tMJh1fv/At/7nydfJ2+l+9LYQgxdqO27PmEGTuDYC95huqCkfye8lMnG673+OOpMeg9rz/87+54+q+jLm4K+2yEo7rOMXZh3LyiibBqWXjlpJaPHuZGoyDeb1gCK8UDKHC4VmCv6KmAx8d7Mov+Z6891BDKHGVF7NseToT5i4BwGo0MiGjJ/G/OPngncX152/frjlJQSacFVVMfugT7HUeZ9m+dzYX3DwYR5yV2TX5/LK+IXYeHmzhnR5jGZqQh1X3KTtLXvNZbRoZPZ0Cw7XY3S7m5s3nueWLfSZNNU3jiam3cu0/hyAMerbmlnPrxS+yaXvgxVBCaJgj38Mc/R2IIPY5Tcw7+DbPrZ3KioLjryx5xUVduPXKXio3XhEQ9WQomoRPChN56sBAZhV6wiJ2Kah2g83lptLhiYlfGDmY1Stb8d2iEIqqPRUgh6S3w+Aw49xaTVGxR6/3OZmkRYUgcgv46KkZgGeJ/4Spt4LLycYlW1n3W8Mo//q7B9Hmyo4UOm28PHsRVY6GWvDnxqZzdYvz6WwWZLim4q74dyO7NS2YwQk30yZoGHM3JvPeL8v5/IdVOF2+sfe/3TKIj7a9jsFkoLRtBNc+9wWfz19z1AJkOkM2ofEb2Ge4ltyyJD7YXMDYnz7lg1krqK49vlG9QnE0lJNXNAkJrm6sW90ac3UmAOHGcAp2tGfdumSW7iwDwKILRl+nYdrrpKLK44h7Jjcn+mcbjpXlrFy1y3NseBAdQi2YDpSydOZKnA7PxGXzrARG/ms4Wlw0/7l/GjXVnpWtmqZx16W9Sc8IJzdhH7cv/7yRba0jr6Fl2HAEAlvtbCorXmkkt+iCGZV2BQOadyRurcbEKYv57IvfcDl9F3HHJkbw2YoJZHVKAeCJlfMY+eNHx+yfAfF3c0/bZ4mxWLEU63n7q8U8fv8nLP/5j614VSiORDl5RZOwamcdFdU65m1pKN1rdERQVm7BWetx0nFWK+cdjCRss4sZX64CPDHs64Z1wrgyh+mPfVV/7M1PjcZigF1rdzJr0rx63aE39kdLiKKotZXPljTs8pQWF8kVf2tHTGwxF8R8xtbSTxvZp4Xcj908hnJnEauKviCncn0juVmv58ULh3J+p3R0wKePfs0bDzT+sqjXDTLxxr0juemGnriSJDkVebyz/VJK7XlH7aO00Eh+u/R2borvTnSNZOPsjTx+4/tM/OeUgJO5CsWxUE5e0ST0sSRizXOTUWSpb+ucH0bCYifLvtxU39albRL6nIPYDisWlt48Cp1Oo3BvSX3dGYvVTIc+2RAbxW/Ld2P3bgCSmBLNtc9dQm2Ugde/X4LN1ZBaOCq1K091SsGsK2F72YdIV0PMXAgd5tC7KNRfyY9Vyby787+U1JX53MfT9w1ndGZzREUtP7z5Pf/q97jf+zUbDVzfvTvvXTCSMa1WECWK0EqG46ieesy+uu3yXkx59QaSWsRgkE6+fnkWj//9LeZNW37MYxWKI1FOXtEklO+tIvr3OvZvaMg66domieDNBwk/bKPr1jGhGEoqWThlIXZvud6eF3UiOiqI6oISPnt6er3uTS9dixYRxsZ1eWzf1LCwaFC3VrTLjMOdUcu4JVMa2dE+8moygzvRzZiHq2RsI5mmhZMa9RDBunDKqq2cP/VDv6tZb3zsUm6acAkCybrFm3hi/AfUVvvWghdC0Cs+nXEtn+X80FT0sgh75XPUlN59zNz4mPhw3pl7P2Nv7090ajO2bdjPs49O44nXZ6ta8Yo/hHLyiiYh1azHtG4Pug176tv05TWI4iqWT1tan7HSqU9rIsItGFx2dm9syDLpOrA9olkMu/Jr6hccxSVGcMHorlQkmnj4+wX1uqFBZi69qDWh6ZVkhSykuG5Dvcysj6RD5N+J1DmwO/dTXvpAIztDDRHckfEqv2xsiyHXxePPf09hcWUjHU3TGHbLQO5480ZETCwrft7MK2/9QNlhX1aH08zSitio59FZRuNyV+ConcHi/Q8f14rXy+8dxsQVT9O6SyqiS3N++HUzX8xefczjFIpDKCevaBIMBh1uux23vSF80qVfG8w6N1ajoLLUk00THBZEXWUN9jo76xZtrtftN64fushQ/rd8JwX7ywDPSLnbsHbUtgrhYEUl+2vK6vWHNe/Ao+0MZIVsYUX+E41s0Uy9sAffT5mrilWlC9lXs6uRPMxkZvbl1xCVq2fzloO89+7P1B0xUtc0jSHjLmTcIyMwpEfw9cbtPD79R8pt/h29povDFPYMxuCbyXGm8r/yNTy1ZioL9+88Zt+FRVl54dt7ufPG/rRqEceQ3tnHPEahOIRy8oqmwelE2O0c3NIw+ShdkurSaipLq9if01CD5fKHL4fYaBYuy61va5mdSMueaVQmmZi+vqE4V9+26XTqH01VlxIeWTOzvl0IQeeYywnRR5AhNuCqmtjInCDrVezWbuCnymTe3vGoj7np4ZH868b+RLth8cT5vP+f6T46AKPGX8jIuwega2HgO90WRs79OGDxMSE0zGEPEhL2OMXV7ZmeIxk3fxpzlm3CdRybcF/Uty2Tnx5Ly9TYY+oqFIdQTl7RJCRkxoMQxLaIq2+LbBZOap/2yNho8osbNuuISo3BlR7DQYOr3mHqDTrCzkuiJjOEJTm5jc49ol17BqbkMCBuGuX2hpFxtLkdg8KzSTO6cNbOxO1uKF0ghIXUiOvQCRP7SoIYM/MLH5uH9GnDsA5puMqqmPH817x552S/9zZ2UFf+O24oCKhz7eG9nFHUuQLHzTPDenN79qMkWcMJKtbz+Ls/MOndn6ksqz56JyoU/w+Uk1c0CWVVDrRWLdjr0FN3+CKfcCv2rGgKShvi3j0HtKGkUxg7Y2DF9oa4/J3Dz0Nm17EhYSerihv2ZB2a1I5eMQcRFHDAW8zsEFrof6gWMZTZf6ey4vlGsnhLCr1CHmHJliw2/C+PJat8K0mOe2QEl97YF51OY8GXy5k7zf8ulgOSWvLDxaO5LHMVda5ySgvH4nbm+NUFSAgOZcHw8fSX6Vjyqvn+hR+5f8xbFB8oDXiMQvH/QTl5RZOQ3jaRmp4xGAcnozfq69uTLm1FeZtQ5pY0pDOajHpSEyJA76Zc3zC6DbWYSUwTDE7+HdyN89h7xj1ElsFBiu1NpKthQlNoIegso5hflckreXvZU7290XEDUjMYn9CFiO0aDzz7LTW1vlky1z4xmsHjh1BjDOKlp74l90CJjw5ARmgal6c+xxBrBSHu36ktexiXY5Nf3UO8fNcIJtx+EW6XZPf63VydcTs7DttUXKE4UZSTVzQJB6urKTe62eOoobC8YXekrORYXFJiDGt4FHWaRuoFQdSeV8aUvCX17XpNx3Od4+kUsZs9lS83On+spSNtTU70woHNtqSRzBr6D3a6Mqlx2fgpr3HtGU0I/n5eF+IirejLari1z39x2BunN5osJq55ZCQte2dR2jWaKx//mOJy/6GVxKB2pEY/A/qWuOzLqCy++ZhZNH3/1pkPFj6EVlGO22ji9kHP8dkrPxz1GIXieFFOXtEktEiIxHBBHYYLazEF6+rbQ1N1cEElC0PX43Q3lAn4e4v23JP1GyOTfsTpbqg1kxxyId0tJoYEFSLta+vbhRaBPfgOSlw1lJXe73P969IeYOPeNF78tYQfdjUezcdEWvnvjQMI2VpA4b4SZr7l62AjYkL496tjMRp1lLa3cdG8yeyr9r8KVW/uiznsSaSIYVWNnY923EyF/egrVuOaRzFl22t0u6grwmLg3eWbuf7BqX5r5CgUfwTl5BVNQo3Lhg07DuGkxNYwCu4cmcyVaVu4O2sTkgZnnmbVEaKvxOneQ52zITxiNSTR3CARsgaXbUGjaxgtQ9hib8ubxd1ZWtQ4Np9gSUNna4f5d8G091dQdURKZFanVG585BJcpWVM+tfH7NnqW0EyJsLKdy/ciCPcTYm9mm9yp1DrCuDoTedA1Cw22WOZtrUDXb6cyJqio4/oI5tF8OA74xg7YQQuDbbmFlBbp4qUKU4M5eQVTUKU2cy1aau4MnkFkcYGpx1qdJEanEOIfi8ldQ3x63BTBt2tzelhrsLimNPoXO6QByh12ymunIh0N2Tl6PXN2SsGYJOSJQW+JYE/HjSSoAOwI6eQxX72SO0/pietumVgSEnm7lFvUV7iG5IJD7Iwtd8YBqXuxqV9x+9F7wVcvRpmbMZNLT+n2h4NwD/fn8mCVYEnYwEswWbGXN2bR24bwqsPX0ZIsPmo+grFsVBOXtFECNpZS+gdtr/RQ2fWRdAxuCVZhiqitMZph0kGK5FaHQ5HbuMz6VtS7rKwtDqOUkdxI9nwxHHsOpDJlOXBfLOt8aRnqNXCrVechzGvlLdvnkzh/saZLJZgMw99eheaXkddrZ2JXy32m7/eIy6FazL7EmkwkeB4F3vFhIB3bdIFM2PItZxTkUT5pmomPv0tS35Yd5R+8uT49+/Zii5tk4+qp1AcD8rJK5oEnTDQ21JKF3MtobLxaDZdX0y2yY44Ygs8h2U4VdJJWfXHSNngbA2GLBY5RvFbTRzf7f+s0TEhhnDctdloG42smJeD64iY9tDebQg5WInb7uLrV2b52BmbGMG/p1xPSedovlqzmd+27fLRAegaNZrRMZ2J1GzYaqZTV/FqwHtPCYngyRFD6RMXR9XaAzx564f8vujoWTcKxZ+FcvKKJkPq0gCJW4tp1F5nOI9Kt43yumWN2g2GNrgwUuJuRrWrcf2YThH9cbvM/LJDo8reOG79QreBhO4VLF28k5zdjbfhC48J4d4Xx+AsLubrl2dRtN83HbJrtwwuHNCG8p52blzzDTsqin10AIyhj6ELuhpkNTVVk9ldtdKvHkBKswge/udwUjObIWtqeXDwf/nf3N8D6isUfxbKySuajFLnLopdldTZj3CGWgxrayPIc5gaNesNGbxVfA5TSpJZV7a0kSzZ3JWvV3Tg1y2C9QUHGsviI+nZNhndwQre/1fjuvEA3QZ1oOPAThiSk7l/7CQ/2/kJHrp6AEajHjdOfjn4Nna3b00aITTMoXdTbRjBD1URfJ47gZK6wCtdI2NDeW3m3UQHa7icbh656i2+fW9BQH2F4s9AOXlFk7HJPYIPSntQINs0at8ru/FTdRafFtbgOGIj6+ygoeSXh/PT9sa7MMUGBXNNRDtiF8FXH61qJNPpNAZlJ2PdUcT2NbupKGn8K8BkMXHZvcPQzHpyLW5WbfHdUzXYYOTHi6/hquzfcMsFHKj4zu89CS0ca/jDlLrT+HD9efSaMYmDNZV+dcGzTeGHW1+jy4ieiPAgJi5cx9ufLg6or1CcKH+KkxdC3CuEkEKIaO/fQgjxmhAiRwixTgjR+c+4juL0ZlVlJaUujQ2VjePczSzJSLcZtyMWp0s0khWXpbF4XRY/b/JNP8y2xqATgj25BT5b8fUd0ZWWreKo3Z/PSze87XNs1z6tuODeC6mIN/PgO9/7tTcxOJohCZdzecheomsfxmVb6lcvxBDD6NQ3AAM2p4t73/iWwtIqv7rgcfQPv3cj/W7rT6XDxfSfVNhG8ddxwk5eCNEcGAjsOax5CNDS+7oJ8P2UKc46XFW92LKvGfnFLRq1azKEz5e15ZvVaSw70HhUPbZVe5KX6dHm1ZCb1zg2ftmQTkTuKKJm7mafXZM0TeP8v3VGmi3sLrBRsM+3JswlgzoRFRXMvuhK/rNynl+bu0WPxaiLwC0d1JY/jtt10K9etDmYHy++gYjlBnb+foDJb871u5HIIYJDLNxy8wDGDu/Gk3f/LaCeQnGi/Bkj+ZeB+4DDA5vDgY+kh2VAuBAi/k+4luI0Zmu+YNuGVLYUNM4/DzWauLAukcRfNSxljUfyFr0RvRC43W5Ki47cvEPQPjMBV1EJm5f4Zqtc+o+hWJPjyT9QwS+z1/rI0xOj6T06A3sLN4sPrqfa6TsJK4SGJWYBEh1u5xYKKj4KWEo4OSSC/1w5lKTcGhZ9sISPXpx91P4IthgZP6YX3dqnHFVPoTgRTsjJCyGGA/uklEf+3kwEDh+S5XnbFGcxbQrCiFklMK51NGoXQlCXW4e70s7KNY2Lc1nMBnoazQSt2M2MF3ydZr8RXcDu4Pu3f8Tp8F2UdP0jw3AkBPHminWUVNT4yO9u35ursmz0TZnH/IOv+LVbaEGYw18ixxHHN/k/s6Xi54D3OPjcVgy6uDMI+PrZ6bx9z4cBdRWKpuCYTl4IMU8IscHPazjwEOC748IfQAhxkxBipRBiZWFh4bEPUJy2WA0GpFuic/uOhIemJ2BdlkvJwm0+su69WkFRGXUlZT6j6G6DO5J8Tjb61BQWfLvG59iu/bOpahtBWZKD1QV5PnKL3sBl6V0JM7qId83DaVvk13Zj0HC2y54s2pfKTfM3srm0IOB93vDg3xg6NBvNYWf+F0uZM/XXgLoKxV/NMZ28lLK/lLLtkS9gJ5AG/C6EyAWSgNVCiGbAPqD5YadJ8rb5O/8kKWVXKWXXmJgYfyqKMwTD7hKsK/dQ+P16H5nO6UbTNAr3+uakp2TEgN3GmrlrKTwiLh8UYiGieQyaTmPFb75fELERIVx1fTeqWzq5Z7Xv4ieAduEXcV2kRivDPuxVk5HS5Vfv8pQX2FGazb7qGt5dthS7n18Oh7jh2bEMumkgVW4dbz4/ix171ABGcXL4f4drpJTrpZSxUspUKWUqnpBMZynlQWAmcLU3y6YHUC6lPHC08ynOfFq0ikcUlxHXLMRH1qZLCrKigh2/baCupvGEZWa3DJLbpWKICGfvLt8vgRueGEFV63C+ryggr7DMRz4gI5NQo560sHxyKvyP1M0RryFFOE7bIhw1n/jV0YSON3tfSnyRlV+/3cnHPwRe/GSymLjm0ZG0GdCW8uxYxj34CRVVdQH1FYq/ir8qT342npF+DvAucOtfdB3FaURhbgGu6lrWz1vrI4uMjwCDAXNcFJrWePLVaDIgoqJwxkWy0s9oPS4+HHdmKBXZLrZXF/nIs8JjmHBOKYNS/sfOct9t/gA0fQY6YyckLn4t+sHvJCxA99jmDArJxLKtnO8fnsmqhb6FzurvKTaMf700FpNRT3ioBdNhm6UoFE3Fn+bkvSP6Iu97KaW8TUqZLqVsJ6UMPORRnDVkn9+aoIwUUs9r7yOLToqCiAjsegtrlvhWahx23yBKe8TxXZFvCmNosJnzL0unOs7BMxv8ryDtE3cro8NK6an/AWfdT351LJEf8FF5FsvKK1mWv8SvDsCj1w+ijdlKXVUdn786x2ex1eHERYcy5/3b+PqNG5WTV5wU1IpXRZORf6ACp1uwbfNBnwlUk9lAyx5piFAjWpRved2oZmG4QyWlUXU4/VSGvKJlB5KsblpHr/a7E1O4MRGLLhKBG0fdPL9pkEIIzou9l4839uS2hZvZcpTJ1Ydev5roUCO/f7eMd++fetT7Nuh16HXqo6Y4OagnT9FkpHVNpiYtBHFugk91SCEE+9OCOdAhgp83+FZ+7NEmhepuLgpSapi12zcnvn1kPKOyFpMevpP8mrV+r28MfxGXlDhqpuF2bverkx12ISadGafbzac/rsbtJxMIICk9lqFX9kCn15g3fTXfT1GlCRSnJsrJK5qMyjo7Va2tFERI7E7fDJaBw1pReoGdgub+9089J64ZRp0Lq9F31yYhBMObXUkPcwGJdf/1e7zO0AqXvjMHnFbmFXztV8esN/BBt1FELDEyd85GtubmB7yfK+67hO6X9YbQIL6av459+WUBdRWKk4Vy8oomI7JZEGXnOKjo4aBa+m5rV212IDRYV+HrxAHGtanmpg7zyav72K880dKC1sZyoBrpLvORC2Fmr2Ec31Um8/O+bdhc/lMg2yXH0z8tlajfDvCfK97GbgucKnn3y2OJH9aRrXV1PPeu/1i/QnEyUU5e0WQYNB06Dc9L+D56l2fE0z9lC/1T5+Nw+6YbtgsfyKjQIkYEb0a6fWvR6EznI3WJuN3l2Crf8GtDdthANuRfxDfbs3h4ue+G3QB6nca4Id3QaRoVJdUsn7064D2FR4cwdnRPosKDGdQrO6CeQnGyUE5e0WRYjU6ua/sL17VdiF3u8ZGbdXr6xubSIdh3YhYgTG8lVFSgl6W4nLl+ryHMI5lT3YIfywpx+1nUpNeMtA5vjUtKtm0poKzKt048QMt2zRk97nyc+w7w5OiXAtarAbjw3Cy+e2c8Q/u0CaijUJwslJNXNBlmnZXeoW4GhRQSagj3kUcaE7nYupfelv1ojt985JouFmHshUu6cNZ+6/caVcbBHHSa2VWzlQq7/+yY+zr1JX5pEPm/ljN3WeA89/5XnEt0fDiYjDx/x5TjuUWF4pRDOXlFk6Hhop1hMy0MxRgdvnVmQI/QpeOSEjD6P4mIY4c9hDxbmV9xnDkT4e7Lgt3pvPS7/w2zhRBcP6A7pgo7X0+YSXWl/5WocSkxXPbgZegiw1mycQ8HiwLv+qRQnKooJ69oMoQwg74tEgPofIuSCiGQaIADR4CReonpKhbVJjGreAt1Lt9FSEJolNR0YmNxczbu9x/2ARjSMYOwdYVU7sonZ63/zboBLrqmF1ljz6U4zsrDL/nfHUqhOJVRTl7RpLicO3BLG27HBr/yWuNlFLlC2GqP9iuPMDUntzyVOTvPIb/GN0MH4J62vQldY2D/nFJWbPKN/QMkpMYw7PIuuItKeHL0SwHtNRj1DBvWBb1eU3XfFaclyskrmpS1zl6sqosgz5XkV77DYeLrimSWl230Kw/WR7Jsfxu2lZr5aof/LwqryUQrczTY3excHniUfu7QTgA4XbB+qf/FUQB9z8nkl6l3Mf6K8wPqKBSnKsrJK5qUrbUwpyiTYrtvITGAWFM/3l/Xh3fXdaLO6fCrMy65K5ZSPbt+861ICZ4do0ampBCxMI+vX5kb0Ja257Wiw7Ae1OiMfPaWynFXnJkoJ69oUn7Z05tvtndkUV6kX7nNpUdKjQq7I+BipdiaYELX6tmw3v+iKYALhncmXOekYlMOq+f5n4AFuP7fI6BPBoucdazZtDegnkJxuqKcvKJJCdGCcEuJWRr8yrPCYohcayJ8hZGN2/xvmj303NZE7a3Gsnwf65fv8KsTGRuKATeaJlj7i2+tm0NkdkzBEGpBp2mUB8iyUShOZ5STVzQp5nWCiF+N5P7qP9QiBMS6gxGVoDl8q00C6PU6QottkFdC8T7/dd8Bxr96PVpYGDOmLqW2OrAD//DZv/PGhFH06Z7xx25GoTgNUE5e0aR0iI0mak0p6SaLX7kQgha51YQvyuPXqcsD6vQ4JxlXSSlfPPVlwGulZCehxYZT1yqWPQfLAupFhQfTLjMBIURAHYXidEU5eUWTUrI6D11BDRtmBo6TdzuvJbrCIiwicGGw7kM6odPrwGDA6fC/J2tCagxpo7tSFWbm3a+WnrDtCsXpiHLyiialXZdU9NJFYjNrYKXaOhxVNfzyycKAKsltktGio9mbV8HOjXkB9cZc3JWMlBhGDel0ImYrFKctaj8yRZNyYOtebHv3s2m+//RIgHMv6c60dxdiibBir3NgNPtO0sanRpM+oiNrCsvJKaskM8C5enZuQc/OLf4k6xWK0w81klc0Ka3ObYUIDsaaFBdQx+WSuFyS4oIKKsv8byCiaRrEhiKBVRtV6qNCEQg1klc0KdVVNrSkaEprA4/kM9o1R+vSnMpaO7lFFUQ1C/er98htQ1i8Mof+PbP+ImsVitMf5eQVTUpoZhzVHRNxGHS43G50WoAfk81CkRU1uPxs2n2ImEgrlw7s+NcYqlCcISgnr2hSQoLNCCEIC7EgCJyy+PHz11BSXk1qYlQTWqdQnHkoJ69oUrJaxDFr0nhMRj2aFtjJh1rNhFrNTWiZQnFmopy8oskJCVbOW6FoKlR2jUKhUJzBKCevUCgUZzAn7OSFEHcIIbYIITYKIZ47rP1BIUSOEGKrEGLQiV5HoVAoFH+cE4rJCyEuAIYDHaSUNiFErLc9G7gCaAMkAPOEEJlSSv9FRhQKhULxl3CiI/lbgGeklDYAKWWBt3048LmU0ial3AXkAN1P8FoKhUKh+IOcqJPPBHoJIZYLIRYKIbp52xOBw9ea53nbFAqFQtGEHDNcI4SYBzTzI3rYe3wk0APoBkwTQvyhalBCiJuAmwCSk5P/yKEKhUKhOAbHdPJSyv6BZEKIW4BvpJQSWCGEcAPRwD6g+WGqSd42f+efBEzynq9QCLH7+M0/YaIB/ztKn7oom5sGZXPToGz+c0gJJDjRxVAzgAuABUKITMCI5+ZnAp8KIV7CM/HaElhxrJNJKWNO0J4/hBBipZSya1Ne80RRNjcNyuamQdn813OiTn4yMFkIsQGwA9d4R/UbhRDTgE2AE7hNZdYoFApF03NCTl5KaQfGBpA9CTx5IudXKBQKxYlxtq94nXSyDfh/oGxuGpTNTYOy+S9GeKIrCoVCoTgTOdtH8gqFQnFGc1Y6eSHEY0KIfUKItd7X0MNkp2TNHSHE894aQeuEENOFEOHe9lQhRO1h9zLxJJvaCCHEYG9f5gghHjjZ9hyJEKK5EGKBEGKTt/7Snd72gM/IqYIQIlcIsd5r30pvW6QQ4ichxHbvvxEn204AIUTWYX25VghRIYS461TsZyHEZCFEgTeh5FCb334VHl7zPt/rhBCdT57lAZBSnnUv4DHgn37as4HfAROQBuwAdCfbXq9tAwG99/2zwLPe96nAhpNtXwCbdd4+bIEnvfZ3IPtk23WEjfFAZ+/7EGCb9znw+4ycSi8gF4g+ou054AHv+wcOPSen0sv7XBzEk9t9yvUz0BvofPjnKlC/AkOBOYDAsyh0+cm2/8jXWTmSPwqnbM0dKeVcKaXT++cyPAvMTnW6AzlSyp3Sk4n1OZ4+PmWQUh6QUq72vq8ENnN6l+AYDkzxvp8CXHLyTAlIP2CHlLIpFz4eN1LKRUDJEc2B+nU48JH0sAwIF0LEN4mhx8nZ7ORv9/68mnzYT9rTpebOODyjh0OkCSHWeOsH9TpZRvnhdOlPwBP6AjoBy71N/p6RUwkJzBVCrPKWBwGIk1Ie8L4/CMSdHNOOyhXAZ4f9far3MwTu11P+GT9jnbwQYp4QYoOf13DgbSAd6AgcAF48mbYe4hg2H9J5GM8Cs0+8TQeAZCllJ+AePCuNQ5ve+tMbIYQV+Bq4S0pZwSn6jBzB+VLKzsAQ4DYhRO/DhdITTzil0ueEEEZgGPClt+l06OdGnIr9ejTO2D1e5VFq7hyOEOJdYJb3z+OuufNXcCybhRDXAhcD/bwPGtJT5vlQqedVQogdeKqDrvxrrT0uTmp/Hi9CCAMeB/+JlPIbACll/mHyw5+RUwYp5T7vvwVCiOl4wmP5Qoh4KeUBb9ig4KgnaXqGAKsP9e/p0M9eAvXrKf+Mn7Ej+aNxRMxsBHBoFn0mcIUQwiSESOM4a+40BUKIwcB9wDApZc1h7TFCCJ33fQs8Nu88OVb68D+gpRAizTuCuwJPH58yCCEE8D6wWUr50mHtgZ6RUwIhRLAQIuTQezwT8xvw9O81XrVrgG9PjoUBGcNhoZpTvZ8PI1C/zgSu9mbZ9ADKDwvrnBKclYuhhBAf4/l5KPFkKNx86D/GGw4ZhyckcpeUck6A0zQpQogcPFk/xd6mZVLK8UKIkcATgANwAxOklN+dJDN98KbEvYIno2Ky9JS7OGUQQpwPLAbW4+k/gIfwOKOO+HlGTgW8X+jTvX/qgU+llE8KIaKAaUAysBsYJaU8chLxpOD9MtoDtJBSlnvbAn4WTxZCiM+AvniqTeYDE/AUY/TpV+8g4Q1gMFADXCelPBV+RddzVjp5hUKhOFs4K8M1CoVCcbagnLxCoVCcwSgnr1AoFGcwyskrFArFGYxy8gqFQnEGo5y8QqFQnMEoJ69QKBRnMMrJKxQKxRnM/wGFDgXZE8rBEgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.scatter(*pol2cart(proj_r[src_flatten], proj_phi[src_flatten]), c=model.trec.pos_embedding_input_projections.pe[0,:,2],\n", - " marker='.', s=8)\n", - "plt.axis('equal');" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD7CAYAAACPDORaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAADmtklEQVR4nOz9aaykWZrY9/3P8u6xL3e/eXPP2qu7p7p7erpna3K4zJAmJdIkIIqmbMID+IMtwpsowAYE2zIkAbZEG4aMgWVhtAAUFxHDocXhLJzepteq7qqurMp9vfuNfX33c/zhJinBaBmiurJypit+iUTcyLgRJzLx5BPPPe95zhHWWlZWVlZWfjLJF/0GVlZWVlaen1WSX1lZWfkJtkryKysrKz/BVkl+ZWVl5SfYKsmvrKys/ARbJfmVlZWVn2AfSZIXQjSEEH9PCHFbCHFLCPEFIURLCPE7Qoh7z26bH8VYKysrKyv/3X1UlfzfAn7LWvsS8CZwC/ibwO9Za68Bv/fs/srKysrKx0j8uM1QQog68C5w2f43XkwIcQf4BWvtsRBiE/iKtfbG/7/X6nQ69uLFiz/W+1lZWVn5pHnnnXf61truj3pMfwSvfwnoAf+xEOJN4B3gXwfWrbXHz77nBFj/UU8WQvwq8KsAFy5c4O233/4I3tLKysrKJ4cQ4sl/22MfxXSNBj4D/IfW2k8DC/5/pmaeVfg/8kcGa+2vWWvfsta+1e3+yA+ilZWVlZX/nj6KJH8AHFhrv/Ps/t/jPOmfPpum4dnt2Ucw1srKysrKv4AfO8lba0+AfSHEP5tv/2PAh8A/BP7asz/7a8Bv/LhjraysrKz8i/ko5uQB/ufAfy6EcIGHwP+Y8w+QvyOE+OvAE+AvfURjraysrKz8d/SRJHlr7bvAWz/ioT/2Ubz+ysrKysp/P6uO15WVlZWfYKskv7KysvIT7KOak19Z+ZH+xr/997j98JTAc5BKMEtSdtYbPDgecuPyOreenrKz3eR0PMeJNI5WDPOYC5tN7g4HvLSzxs3hGdsbNc6WC5yqxfcVczXhaq1Fr3jC57tNjpPHvFTxgDMu+WNc6dPlHnXvMlXzA1rep5DFbVx1AWUnYCWFCFmWBxh1nYP0Fqn8LPeXxzzOP8OsWPLhaANXVPjgieBVZ517Dwa8Vumyf7vPbuGRnC3QpxOqtYCz9x9w6cYG995+wOVPXeTp7WPaV7dJSku21qTWingQpOy+scYPFz2uX6vzUB7zS5dHlDbhZ2vvs+tGXJB38JzXCYt7zNUeWX6f94tLZDbjHw9ukGa7fO2x4s1ymzu3+7wum/Q+7LHWTygWCfH+Ce2tBkf3T7j+pVd5cPeMrS+/zH5/SvHpGkIJ/ou/8VeoBt6LDo2Vj8kqya88N8ZYvv/+EygMc8BKgXAldx+fYdOCWw+PyZc59+gjpaAs0vNmCmu5Zc8oNHx4cEpeFtxx+ygpsdMCkRc42nAzPaXmWh6Hj0FkPJxN6TgxiTMiLg0aQ2lvU0hBU97EklMU9yhx0VgKewIUUHyAtjmL/AdIahwnJwgkgh6nyQxkjVsHgqKwfHB2ipMZHo2WBLMMb7xkMlhg45y77zwkTzLuf/8RxgoO7x4h23WMdpgMF2R7Pjd7Z6Su4cPDPrKb0s9OkQhOk5ItcQfcmDx7j0II8ux9ciyL4gCLxBctbo5cknKND5+cURSGD6Y9wiTD7g8hTrDTJdPBFKzl/geH5AbuPe5TuILhZIYUgt50vkrynyCrJL/y3AgBW3cGTAdzpJKAIOmGVDNLOoqptiOm4xi5UyexBuFppAU5yXG7If0adIzLbJpTXvSIdYmzUFjfIXEtlchjqFKeNDcx62dMyjqpMdzYOMJxINGWrqfp+Id8sTqhq07IEVTklE2V4QlJVUi0qHLDXVIQ8qZ3xgUnp59DXpdYHL65tkt6ZY1v3ekShh79Owp/12dautQ/ULgo1C1LxXOYPT0jqIfMjwaoJMYcLJGDMZ7noMZN1sc1DnZd3HWf2VPBrfwyqhZz3Krx++oN/icbX2PTVUQcU5Et6sS84aYsDTSa7/Knmnf59+9/kXm0xeGhQkwj+m2BDTr4Jyn6IQQYkt4QJ49JZjnVk5CFhWbQRkhBTbkvOjRWPkarJL/yXJVpgQBskmKFwH0SYyoBNokpEhchQA0TfGOx+RyEwEjAd6jOBdIzqOkSpSxOWlBEkrzmIFsOZWYQgSBfQvx+neIGgODxvIPShoZJmFQt6aLNsZswcWqE5JwZF+lP8IFUGbrakJoSXxSA4LIzpq0EH2YNLAUSiPwFb16bczTbprguWH7YAQF5y4ccwk6dcpmiqhFGgJACCwgpoSwoU2C5RAxdanFOGjn4c8P4MEIvNUpZcrfkn44u8+fbTwi1pLQFGZKWzPGEoG80ioyf27jPN08qHKxVKaYWISFpO1gB9V6EWSyQWlOmJSQJZp6gDdipQQgojXlh8bDy8Vsl+ZXnxlrLcv8IU1psUWKtRUhBNplgSkMWLyhLiykNQktsbrDWIrWiPO4hPBeUxM0KeKxQroNxHHAd8m6EW1i8lkdoNEsH0kNBWVMUVZ/MkQyDKhMtWTTa3D66xFr3hDDKkEJwOepR0QlvhE+5bOZUZEogoK0sdanoKIeOXCAo2VI/ZGpDZlXBsH3I+4sN7taX9BY1ZusBWaaoVwLyaQSnAaWUSNeDOIHpArtckJsEEScUizl+VMXTDqUBZ+4QbwccJQEGy+iaw/vTa/yZzbf5fPQUTc6GlDSl5DXHMjYJUe0On6uc8J+dforvyCvYhWauAxZbHsK28A58HO1glnOEVqQnfZASLQVSSYp5CmsvOjpWPi6r1TUrz40QgvbFDQhDVKuO02kgKhWqm21Maah2alipiVo1jFQoLXF9lxJBVA+w0wVRLcAUhsBXFPMFxDEqTxH3j4nKEufmMRVhMaWlMTNUbk2p3stpnllKY6lrj/C+pZn5HMUVskGH/n4DaaE0EV/rX+X789f5yuwKJ+Uu7yVVhibkrMhxyXGFy3U3oasjoMSRNSwlvq9xwpy1nTEXLsQsrud4Wx5F4BC0AqzrojtVbKeOBcJaSFkYonqIKQ210sDRkEpcEp3kWGOpOg6L/RAVN/mt4+s8zS7zvcUOIxNxWko8UVJTFaDEVzW+3PqAV1oJNsxxXYnSkvmGhlfqWO1QWWucv249oExSXAGOtVQa4QuOjJWP04+91fBH6a233rKrXSh/chhj+DNX/zcICdjzyl48e6zMClwtyZMMSoOUYIoSayyUBcIaTF6ilCBPc7AWKc+fbY0FKZFSYqXCCVxyrRBKo8IAG/pYrUibAUXbJdegAsW0YYi7AiUEZSvHbcRUagmuFLzcOqCpc14JH/Omv49AsS4hlIZI+CAcErMksYrTMuFpXueDZJd353sYDD842EEYl+yeR5BKvIMSf1ASHi9RJ2NMaTD9Po7WZMsYt9PCGItt1BCNCvO9iMmOIu0IXE+QX53ypy/dRYiSTwWPeSvocdEBQYlC8KSUJDZhP+vwe5Mb/JOnL2MmLuyHlNbSfreg9WRGMUng8AhrLLYskVLy//ju/5krb158UWGx8hwIId6x1v6ohtTVdM3K8yOlZO2XX+LJcIorBSozxAI6nsvZMqEdhRyPl3SkZJLkeKVASUgWOR1XMpykrMmSszuH1He7LFOLzFO0Eix7Y1qbTQZHIzpbDXpPzqh26yynY1TqokMPPZ7QVGs8bflsWofhe2OyX2gzI8d7JHHbPtn1IRt+RJEPyM02f7u3g3vhFlvuMU+yCg1HsqX2qaguVXGIr7a5KHtUVZUd3eck28IVPg/dkh3H5XYk2I5CRpOYRulSGoGb5fgVj9lywdrFLqe39+mu1xj2Zvjako9GaA/aQZ3HTclmGHF0x5KtXUL4xxzm1xgWu/zV5i2QVQI7oKO3OCuesuW2+IutW/TmFzhyJcOhoO77jF9N8fe2SH7/kNZLu4yenuEqgZSC9YuruZpPklUlv/LcGGP5/F//95EChBXn8+32WTVeGDwUeVagcotCIHOLtRaVGlRWYvMSR0nKyRKxzJBKQJphiwIbJ5DnlFmBdhR5nACcr+IRErRCuh5SS0wYoQOXLAwoIk3R8Uk6mjSw5DVB0YXULWnuLCko2axM2K4seDU65OXggAvOCInmojZIXDwhSU3O2FgOjMRS8o35dVIb8tunV8jigMPjOm5PUj2UVI5KjLFE90Y4UpA/OUJiKJYx0vcRUiK6bax2mN9osbzhEbsG6gZ5ccFPX36EBH6p/gGf8vts6RKBhy/gfh5jsXw/3uGroxt8++wS6YGH6fv4paT6fk7tZg+ynPL4FCkF//c/+D9x9dMXX1xgrHzkVpX8ygshpaD5yxWexCMc4SARqNuG2lrAfmXBBVvhJJ+zZiJ6ZULnrkA6kl7TsGF8TtOECyribDJnrXAZZzn+3OAKSTFM6GjFuL+kU3EZHI6puBBPlpAkOI5iOUtoNEL6T46pX96kf+eY1t46yf4ZjVYDVfWZO5LKlToncULj5TUO14c4tDmJfW71drhYeZ1adMZnaznvigf8VCjRdp+2alARCV0pkaLOX67fZmwv85L/Fb4//yKna8c8OLtI/4pD9jUPP3TJxwn1nQaT0KOpLKP7x3hlSp7mmLM+lXYV8UHGVrjD/aalGVbovyPpVbbRfsJv2Te55xv+cuPrBHqDinnKmtpiafp8KpjyevAdFllAFnS5WSq6Tp1DaWl0t8l/0CekRGBZu7Q6t+GTZHXhdeW5MdbyOB9hlCUWOXORUb6+5KQ1oRrE9OSMKIjp2ZhSQf9Gwdl2jgwLzkhAwCkxZWgYZhlGQuxbppTkgWS8zLBCMI4LCl8xXeSUWlFYwXyRYsqS4ckYpGR0PMRay6w3weQlxSJhMVoi4ozxKAYD08cp8n2POw9CHj3usCwF/TynsJK4HGIQWHuKxZKZKVbAprQ0xAiFoSYOkMIyK6dIYbDOlFyXjK8ajhs588sVjh3zz9+zdRSL6ZKiMNiyYHI8xGYF8c0zGncTRoMYGcPtWw2e9CMyo7i1lHw3bmJNHwCXIS2pkExxWPDza3fR7jFyN6a/jEHAkV+SbEdkyiVzAsb9+YsNjJWP1aqSX3luBPCvvnyXo2WOK0EKy1ZtCDYisSnQYmnm9CZrDJeaSj2lMIpZoXGKkP2nPn49YEkCPZ9sLil8hUAgRpK6DRG3l1TrAZMkpD6TFEWJO87QRmB7MyJpWPZnBNoyH87RWUo+nSKGY5SSGO3QGDSYtCKq9TrBPKPejyiNYfZSQL8esNwMOazuslV7zLvOa7xUvcuOP0VQ8pIzxRdQES6FqPKys6TZvMVRBjtym6NahZvmAss4YpZ52KoiX3p0sgppK8Jv12CWUJ718XxBenJGaBp4kyXb/gWWSYEXu2SHTe4ZaNQz/kH5Ge7GKb/S+CaXHY1mzpYKSa3hZ8N7fOHSIf+u/iJn+hKPTzRKV+nXBYgO/sQQrFbXfKKskvzKc3WtesprlTEpmtKCJ0pmpSGUCwalZlcPCerwanPBqAjJjMIYy7hss35jzuPZJTZ1j33Rpd4pOD7tYIFqZ4lIQ5JPWdy+IKtbEmsplMCiKXKLsB5unFN2Iso4hUaVcrFEBgE2P298EkLAMsOdxHDZRU5jbBGAAO+pJNkUnDpNrM4ZssOmZzhcSv6VC2+jheEkj6ipAlcVuMKwqzOUmLOrY0Jt2St8chRHgw53ppvkwrJ8SdP6oUUIMIjzH6fF+TUMhMDkBdaU2MIgALW0OJSM92t4ekqtLhnkPt+c73CxeYRF4HLeYSwQSAp+vn2f30tb7LfqlGfnY6VNDZ44H2flE2OV5FeeI8uvhHewGM6P+DUYxLN7htIeY0go7T1KJImFzAoSHEAxLh2G3adktmBWeixNxOOtFqMiYGE9BIon0wqjuSTOS5YbHlJI9FghM/D7HuXMwqJEWIE4XSB7U4QpsdP5+bLCOCYtMkyaY8oClZcE4xmiW8PWKtg7ltHLAXk7IG0qnkiHRbfB4bzBS91TXqudsqP75N4Z2yIjEpKLWgIeNdXjqFBoVWI6d/g7wWc5Gq0zrWieNjXuIw9vrUkwqOFFHjbOUSdnlEWJmS0p376D06ojys55B630me03GH7WI9sZc5zdYFLU+cXaXV735ghgV4WMTM7nwie8fHnCf3r6Kb6WXccsFMvMJxGCWJQvMihWPmarOfmV50gg1QaSAik0UnhowBGN8/Xe6vzWl03q0qEpfRoqRGAIVJ1rOuOi6/Epd8JlV/CWf8LPNR/xhcYRX25+wGdqU35p7X0u1s47ZeuhBmGItpdU9zIWFzOCLQ9jLJWaT2ktQSMAJRFK4lV9qNWobXexrkulHlIkGYG0cDJEno0IkoTKh1PWFg7Be5Z25uM9lLjWp5fUeLt3gYeLi1hrWNoWlpJS1Dj/QPPxhUViCWTIz3U/4Go9o7SWRuCT+RC4LiJ0yLoR7sU2NOrUNlpYIanVfMrTIf4iQQ/neL2Mdqoo7nk4SQODpaTJ16Z7lPgYNFAQqhpQ4skGP9/4kFfaCSYocF2FdiSN0H+xYbHysVotoVx5bqw1LE8uc15LnMeZfFZXWFsihQ82xZEOAvXse86XUQqhgJLcKiAlt4YCWJiSqYW5dbBIDvIqmQ15nNboZRUO4i6HizrGWnqDGhiFOdF4RqNOS5yZJRpZ/EGOmCToeYpcLCgWCTKJybMcrEE5DjIIzrdc6LawOy0yraCqma4r4pal3DGorZjSWr6485CfbzyiqYd81p+jyWmIgNJCYgssJe9kEV+fvcZp7vH1Jy+RFQJx4qCHDvVHFjk3VG4NcKUgfbCPFGDyHNVsIKSk3O1Sug79N0J0pOjdSPncK08RwvD52l1+tnrIy26KoMRB8aBQxDblfrLBb/Vf56sPryKQ/MNf+dd4pbn+QmJi5flYLaFceSGEkHyv+FlO0xPe8qe4wuKSMGedH8YJG26bSXHMmhuRllOuuxYtFKfFmJbTpUafUmwi7CFW1hB2Skv7RFZzUCwI9DpX9Blj1njLe8JJuUFce8qvH/8MSjiYRc6VmiDZOsQs9tjfWxKMmszigvLUI7B10sOETaGYf+U+nUsdeg9OqLarpEkOxuAGLovhkHY35EQFdEIP//YY+3KTZFoyaxsC4fKDB9cx61cpgkPUxhnTcsDPhDOkXVITDsgKvkj4TCT59rzgZ9Zz3h9KpF8lr4HrWaJGCPszmtsNBsLSdi3Dxz2Cmk9ZWorJjKhbQz7Oqb1cwdwHvbdN5vfoFZf43ek6F9vvgqhTYci63uSoOGDDa/Evr9+kN9lmmle4UKm96NBY+RitKvmV58Zaw//tzp88Xw2DQWHQwqJEicAQSQukVFWCQOGTEYiUQJaAoC5TIhkgydAIPOHjCIV49lNBYS2WghJNbJcsjWVpJSdlhSd5g5O8CSjemWzzaLROUlqSqYsdhngDSWks0bHFMZLgcULUm59vs9AbIpXELJeUaX6+U6arsWGE3l2nNJa05VO2AuZbktl2Sdo1+I7g4t4hf3b9Fr6I+bnoAQLJhvLwMFjgUSFZ2ozjvM0/nVzndw5eQiDIH1UoForWTYNnBcHNATJJMKcDbJoitEJWKpjSUF7fRUYOpzc8ipaluBbzU9efIIE/23qXn/IHbGkDuEhyvpdqLPD16XXuxFv8H17737EXXXhRYbHyHKwq+ZUXRHC3/0Uyu88Pzi4DiqUp2YwcjpKU63WXR4uYL3VHbHhPeHdxGYHiT7XeZmgvsZ9lvBy5jPM+FzyBYMwX/AkIyOyIilqjQR8rOmiOCGUDz87ZcxQ/5cfE5pglW/xS9EPONl7hOJvyweJ1Epvy7geXoQiYlIJaI+B413Jl3mQ0WLB2WMccTnCKBhVHMntwQGvzfOuExladwTSnhSE7mhKOmmwOfB68AdtulYd9xe+9scZ+GuNfiWg5Q6bOiIaqsiWn7Lgb9PJDFqrFa8Ex87UOo0Rxp+LRbigWx4J1FTI7ntOuNVgkGZ6sUixiyjyj1qwyf3hM+6VNzE2D+0aD4x8IBvVN3DDmK/pV9jPDX6p/A9Qaaxxz0W0yL4dseyWuGrLhrSr5T5JVkl95bizwu/shxl4HYbAYlJIcxQUWwcGywFrBN88ahLZOUIsBy2+efopWsMCWioGeIqTkKEnxhc93TEpHz9lxYVb0iYWmLvoo4VERc5AaTUFpYySWkFPGAqpinxNRJ2WOEpLOxTPGqYfwa/RPQYWW4WkCUjCuuHgbdfz9KcukRFRDxr0pAhg+OAIUSwRSSkgL0uOEunJY1BLUJuwvCopC8496F/hMQxJU5tTFFCsFygzZVhrDQ7oh9G2FU7fO0+06iV2w2GvTe5JhL1Tpzwq87Q7xYR9hwcYJk7xERyHT/SFit8vycI7acHh8t0rjomWjIbkbG973A9acIS1H0KBPU8PCf0y/9MjMCI/GC42NlY/PKsmvPDcC2LwZMSZGGg0WSs8SGJellxIKn1wv0fOARWZIuhm4cLh08SqKORm3q5J664CeaZEZQzOK8bThF9sfYGQNIebcCBKwI9ZVQk3N2FECVwg8JIoK22qB1QFNMeKSs2BRSkzdcFR0uLvW5XBvh8cLjb5WY/Shi5+6TIxDvanwY5DDGp6nKN97gO9KFuM5ejyiMAAFXuCjJz5BK0QONIVosyxybu4G3G+v82h7jUAa/kft79BxPGos2dMthF7y58RjHrse0hqGSZ3v7zh4Fzx677n4I59JTVMLFPJ0DoenOK4im83xXZDHIyrhOvp2iipd0rMWH6iS7caC39Wvc8GzeJVv0pFVmmRcdBL2nIxQrY7++yRZJfmV58o9LqgOc3AkVgCFRdYlalogdwUSFwLOy/59hZDgCwOOAleQJZr9DzdwrudYKzAWjBX8wcENXlkfUfcXFBYUgtO8ykkWkroLahJCWVCTEi0snsgJnZiKTZBY3k+riPONChCiRKAIw4T2jTmLD7pYC8ttDzsxRKMcoyVmp4MdTRBCYLMMW5TIAdASCM8H82wr5WfL0E0pwJ6PklnNH8w3+ZlKTNWBf7baqKNSlJszqz3hntrkVquNLBVp28OOBQgofIWpuzjjAGsNFAtMksNsABfP96GRCShpGBzVaXo5NAXFs8ttpTVkwjxbtfSH5xrcysdjleRXnhtrLf63jnGNgWdNUFIKUBILOE8SXE8grABfIwtBqQTW14g7hrAtcByDX2ryfYVTEcR+wCSwFJ7i8YMdos0hxvp0mj1qUYYSgothnwtuj11vjBaSKzpjU8coIdiSLiCpehmx94h97wC/+Q5/MN/mUb7LsgsPm3MOzrpMhxFjI2iGIdWJhKBDvNlEPR5gZgvkYgFJQr5/jJjMKdoNooGHfOrgbldIDgXZeoPvjDyq3Qm9ls+7C8Nf6nyTN/0ZLiV15eFJw+fUEZ8ND0ClvD28zvJaQk+0YWbB+og1nzoSsywQs5iyNNj5gvKdu+hOE9/rEghBGbk8Ptnk7HMuVcfi7/X409X7DE1JS7iEwkXa5MUGxsrHatUMtfLcCCHortewpUVriecqrLHUKh6mtFR9hbh7RG2ZoO6foLD4SmKNoe47qJml5XpYY6krD7GA6iNL56HCGOiWPskPajTHDU5udvFMFWMEGshsg/Pu/TbWGmI6WCwlFSyghCEQEVfcgqZu0/UmbLkageF6bcmXLt7FVSX1QDO/URDu+udNVZ0Q6zj4Wy3kegukJGpE2DilVnGRi4ymownuD2nEitoTgzn04WCdx4ctTNLhHw+vcye7xM2sQkqIRiMAKRp8qfKIX+oM+PzmPbotTRaC3dJk64K06eHu1KBRo7bZxgpBreZjTof4WqKVwCiohz6TJ1UqeZ2v9q+wsOtYLAiXFIUVrRcaFysfr1Ulv/LcWGvZ//q7CCkoOD/RSQjoP/t64LvYtGA6mZ+fPdofg1I4WrEUgshxKGsRjbwER9OpBdjQw1rL1qFH0VwSaMlylGOjgHdGPrYGP6jv4jWX1KrXcaTglVaHtyrHSLHFphpz2V2yoQQuBZF0qDHlTwUxR+7vk4Ql3033ECjsW/B+f4PppM6D9Qk2dJlkhkC0qD5YIrseooTlIsEUSwa3n1AWJdM8RwlBdpDgK0HmuMxOBZOX6nxzBhevbvHp/AQlIoJ0zBUnZUOGLMyMy27OlvMtSr3LD7YPabUUg1sd/AmkTY9TY6nXKkwtCKkYH4+wRUn5rXuoWkQz6zK+WsK6y+ME3Ffb/HtPXufPrAv+eHSEsALPHCJV48UGx8rH5iNL8uK8RfFt4NBa+2eEEJeAvw20gXeAv2qtzT6q8Vb+8JNScvVLr3L4qIfjKKQQLPsjmut1BgdD1i91OXvcp7HeYDZaoFyN1pI0MzS7VXpPTuns1OmPSiqqZL5/jLyyjXYU2b0TKq9ssl8RrHs++3lM5PhMshxjJMHcQzljNryILB1yJl8jdB/QkVWO8j6+KEG4dO2CUnaR4oCm3mRSHHLBDVmWOR1t+Hx3wTeykMuR4uaRYK0ecthe0vbrcJqi5x7+WpVlJaDdCji7tU+3EzIYLIi0IAcyR9HwXbIyYc+G2NznZPk6de8Bp6rCaZLz88EYrZpoc4Yv9qhKw5/bHJGUPX6Xz5PNIfEj2plDkVrWtGacFzQ8GD05xfMVNk3Qw4T2yOdBV7HZCHj62OK87PFbA5e3gvPdQOtqtUb+k+SjrOT/deAW8M8W4f67wL9vrf3bQoj/J/DXgf/wIxxv5Q85YwyP752dV/JxgbVgg4jBOKMMQvpnC3Kp6Z9OkUqSzRNMXoAxnIymmLLk5MMn5GlBLCRSS8QPHyAcB+F5TL/9iEoUkgYuDd+lCBVR2yNtK3JjmaxVGbuK2fpVvhmA267x5voxwl7gteohr/gH7DpTtlRMIApCcUxdSTrqNhbFRecpN5MO1csbGOvw8LUrPH60Tu5a7u1CWHGouh28pxO0hf4oIc8KTm49pUwz0sEYHUUEww7z3Yhg4jLwEnqLNY7rdXYvSv6HWz9AIHiSLdh1JnSkS8kxvxCO+P8YSW48pnpKiUfiuJTHCZGAg7LANdAfxpRpTno6QkiJdH3ySYpv2uz7ltiF955KNi+6/P3hGq9EJ9TzQ+reSy86PFY+Jh9JkhdC7AC/AvzbwP9SCCGALwP/yrNv+XXg32KV5D9RhBC0fv46Z/dPUb5GKMWyFdIMfUbThEYlYD5c0MhzlvtDnG4TpSXJnQOaazVGT3u097r0z2ZE2rIYL1BKorQgSxKqa1VG0xn1apPeYER74bC8HyNbdVTdZ/5IU9+qcni/oPZylcNbklvX15jnOfIVwZG/xWfqH3JPd8k45q1Aou1TmrKFS8orrst1t+Q3Z6dUdItrl77K96Mv8o2DiLxdZ1HkmJZL5bUNgt8+od6qkI1nNJs+g/0+YeSS5ykiTugOND0F7Y0a5ocltZda3Jn6/MBNqQZTBIK7pc8v+Q9Qao0tVfInooz35YifbvcZhC63I4jWKiTftnSciHFiWE8L5vc0ejGjTBLMYESlW8fcnrFRX+POekmzEzGexBxWdjia7vCLcudFh8bKx+ijuvD6HwD/W8A8u98Gxtba4tn9A2D7Rz1RCPGrQoi3hRBv93q9j+jtrPxhYC0cCEt6tctis86sWwGlmMQZQor/+lY5sNOlRJDmBntlg5l00OsdZoscISXLeYZyXUohSOIMG8dMDvrY4YjJ/QPk6YDFYI6wljLJiJc5ElicLZEIRrMUKQSjOMcYwdtP93hv0OSrs5c4zjNAYm0PEOR2hkEiMDjM+dnwCEUPKQR7zTvsbQ+YljlGWArHMDE56W6DfuTAxQ0m0wRZiViOFxTzBfKoT3wwoHqQMp0mSATTsxSVCL6xv82DaQOLZFouOSnBmDEg6KpTXvXGXKzssxENEdIyylMWl2EyizGBYJSV4DqkeUmRFWAN07MxoijJbk2oP4HeHZie1YhNSWIM83L2QuNi5eP1Y1fyQog/A5xZa98RQvzCv+jzrbW/BvwanO9d8+O+n5U/PISA5Rc0y1GKfRZpIrU4oaYcFQQ1l3RgoaoQY4OTWayWFFIQao26PSGqhKTHUxwtKScZSmq0gHK/h1/xWJ4OcEKXbLxAxgsKYyGOkSOJGUV4niKYhLQmNSbaUD/WxHVFEYWMVcQHr/o8qe2y03zKfu0ibX1MoAx7bp/X3QSLpCMDPuflHBZzpJvhM6emcuJC8kCtE+c+08QjrHgIr8F6NSCdJDi9PuV4RrlcorKUsjQ0lnPYrIOuooawSBq8fVrDEYa9yhhHGJqFxxe9JwSywSU35lcqj7nnnDErPAZBgw+HbRJZZzEQ7OaSzHVwTA5jBxMv0YGPOe4RmAZVIQhtwCDz+SDaRVQN9uXoxQbGysfqo5iu+SLwPxBC/DLgcz4n/7eAhhBCP6vmd4DDj2CslT9iovUlwcaEo2HrfJuyAqQSLAOBKyVLR1KPcsRGRnoQIUoQCRgXZm96eENNXlaQJQjhoGYpCIGMQggdyu0O5DkgYTrD5iXkBcJ1kIVB1ULcFNwoIkhKSjTGQhEKhIHpvQbqUs6HapNIj/n+ss7nuvtkheCG8wSAuTUI6XJRp0xw+EJ0zKN8k9wKluuaWVrh5GoNGzvnf2khzm99H6IS0gwE2MEYqcB7bCi2Q5CgUzBTuH26RUUV2CrkVpFS4nPeNVxVCS1l2QqnJFkIwmJdQ94oQT4bK/QRRkAcA+etVgIL9vw1sDAZVSAzrHyy/NhJ3lr7bwL/JsCzSv5/ba39K0KIvwv8Rc5X2Pw14Dd+3LFW/mixWH76pR9grSUpHlOUkqx0ENKySD2kVswSRaEFQkimF2fMc0029xgLhzQX5DbDnJxP/XhTD3fmYawlGIZ4mYDYsLQge0vKWQ21iLGzBba02CRlkaVYC9l8ikTAU5dau0Z4UsUWluV2gDjwWV5V/NPNJoXMibWLEoKxDXnZP+KSO0TbJXta07YFLdfwP219l9NS84G/zdAE/KZ4A1NmDOMaIvKRU0XloUK2z/eCN3EK8zn5LEaWC/yv5nChgxUVPCmZenV+6+RVBp92caXGXe/zWX+OQ0lTgOcVIG7yvuqj3YTb4iLpwuXJz0iiWw7NeYSIImSSkE9miLIkKTN0aiiSgErRYthwkCPBclnA6pjXT4zn2Qz1b3B+EfY+53P0/9FzHGvlDyGBYNtroIWh5Za0A0stSLgcQSWMeasR8xc232bLV2hRUvEL1qMSGZXcaOX8/IU7vNLJKSJYa2lsBURF4bUdJq9Z9KsB1loq69H5ua+tCsJz0Z5L0Iiw1tBcq2OznHozwiYZVUchToe4GVQcByssLc+jXCrW5xW8hw6uqWCN4t3hDh8urmOAlE0sFiObgMWRITVVkKOpKp/Pth/yej2lem1E9LLL6LrE6fpIRyKFoNKuYq2l1gwp44Ra1cd53Kdiz5u3vKFgLfW5s7+Fyrr8/vgaB8UFSiyICqF0qKiM3UBRcRMuN88PWKlXQ2YXBWYvolj3EWFAfXcNY6HRqWH7I5qBR7g/IxAaT2paQfBC42Ll47XaT37lubHWcHq0yz87Ger8l6CwFoMhsT6lzVg+O9N1aRwmpcfchgyLCkujKa3PfhoxyXx6cZ3TeZU0VmRL77wyP9N4RiLPDHpuCWNwBzlOL0bPUsR8TrlM0BLS0QSsRbnnpz5Z30dUI6SjWGw3WF7zSUXJ9AooIQi25lxeP+Z6o48nLH+i9gPe9EBRoFFo4XJWLvkwrXA/71AYn793/BpHd7bJC0twLGg8NlSfxJjTMXI4RWYJ+TLBbdYxxmI7TbJLLeaXQ6brBckmRJ7llRsPueIP+OXm+7zlp8/25Bc8ygUHpWZpqvwnp2/xw3evQCxovQ/eMKP6aE5+0oPJDMfT5GmBrFWQ6x3mFyvkawG//m/9Fa7vrb3g6Fj5KK32k195IYSQBM7r5MVDQhEihGRmpriyS2pOCNQe83KfUK4TmwkuIaF06BeCvdDjdpyz6bhkZcafqI1wucnfPvppiprPwx5sBwEPlyV7TYf9xNDs+qTHBW4BXt3DPB7Tutxg+OEh3fUap3cKavWA5TRG+xodSJa9Hp2rm+SlYa1w2Tcx1SxkSY56WmORBPz+YJNPdyyT6BEf5usszClvepoaCUIY9twq/RKQbf7y1g/5QEV8/UGV6LLHckNQW1hq7U2SXp2OLDh79wHdjRrDsxle3SdLSmwhaaYVnhYJF4OAIg+Iquv81sTlqncXT6SElHSdGkMzp+Ks8cudO+Q713h8ZlAvBeSJS6EdWpcaLN8/oNMOOPngCe3NGtPRhJapIyaCrfZqP/lPklWSX3lurDWE5QMQAiGWgKUlBYIhQjlAn65WWPoIqYAZpS0xjiWzR7xaLShxeNmJOTM+oPgL21/lIG9xtVXDojGNNcrSJwmrPJ052EqA15IYYwkrdZb9Aq5t0T+bY9a6jHpDhBWk/THGWISQnN58gogqzCebVLHMJoZQCmY7ksfaUkrNN45h7n6av9B9Hy1KDrIJOzqjIVw6akA1XPJ2uiRDcqH9DlviGqfHNaZ5DXNNUbmXElnoWU3pBpzcP8KUhmSZIDtN3FIw23Tw5g6nYULfrNMN7yKE5renDq+Gfa5rTcgRr7uG2KY8knWm4QnRuqLf6xAswMXSOxzhFpZ+PyZPc87uHaF8n/LJENGuc3I05ur1jRcbHCsfm1WSX3mOBF/JXmWSH3PRKfEFuGLJ0rZpyDMSWkT2GFQFx84RCLRQuKQI0cZlgJCbNGSPyFRJyhlVbbnmjGiou8ztNn+nXHLBD/ldUaXaCbhTqzKN6jiOZCoU7FVY3JlRvbhBcm9I/eoa8TzBP52hTcF8/5jGWo3+fp9Wy2eQCTaxZHFO6TapFz7jp5r2ZsA3J9fZ+nREw7vPvnaoOyO+6D+loUM6SvLlyGNRPuZD3eA4OaKy5ZBsLrir19G7EfJ3FjQ9n3G+S5Ocwc1HBI4gHwyRecm66TAd+tQv10k/MByvX6Fwz3jDa3E31ayJY+q6gWunSNXgS8FTqpd/yHsLzd8vvkhZQDLWNGtdzNsl1WZIctKjvl5n2p/heRqxTFjrVF50YKx8jFZJfuU5soyLHhbFoxykKHFEiGbOqXBx7IxhXmPbnZIYnx13QiAsQxvRlVNcqcBMQEjacgFSk5slqc2JEVTFKX++3WNsKvzxjSonWQ3fb/Ad/xLGWhLb4KyfYq+6DE4NxaUKzpMUZcFYiBcp2nOZjhYoz2FyMkIiiaVCCIgOChZlhtzQzIYZriP4cOqRla/w6c5jdq3HyPWplkty5aDsBIFiXe/zc40R/+94E4QgCDOmJdhrPtM7GVIK5olBVyOS0QThusiyZDlNkGHA8myJE0juDxXWbvBVJ+VCbcyuGnBFzKlqj5kZ4aJpiCM8drAyQbkQX6rCnZzKTpNxWqCbdWaTJdiS4myCkpLpaEmttUr0nxSrJL/yHAn+s8e/iCuGzAoPVxfUdMKoaLETHNMvtpgWGd2goLQl1/1TfF1gBWy6KVecM5a2ygV9QiRyHGFwhcVHUZUSLSLWVEaKpiOGRMExcT3n9fCApfH4pn+ZeKfBk+MQccNj8sihaAbIRUlUVeiijn46xpeQjOZ4rmR+PESfnFIag6akMY5w5jUipWGoOdG7TE3ObDsiqMcs1lxej854zTvAkTVawmFXa9rqFL3xXb6/XMPsCibDKkdFA7kVEnxbEMoIiULnBaYoKEZjlCkQQBh51E0V1Y1YUHBf7vCw0aWrp9wtMv5CdJ+6auAgEV6JI+7wcGcda+Hrk2uk1se6UNm35GstnMOUNBEwnmCkwHXViw6MlY/RKsmvPFeDtMY0d1HifJthZEmE5p0nV9ncK7EiYzENWS7heCuhYjNGM5+gNeSJCNAE3Jrv8plowKRUXHYX1JVkS2Ug1PlqGWDXWbK0LsoatvwRqfX5Y+u3+db4DU66gtBC25mwSDfJHUD7BMOSTDcIeksYgVTqvKkoz867ieYp0vPwH45wNxvYrkTHAm9mMS2H2FoOq3V2nDnWg9IqMlIcIfGQbLoLPiVOOE7rWO1yhIVQkDY0YSbI6ppAiPMzooRAWQvTBOU7qHGMJADL+YlanJ8SZVFkFPjPViwJJAKLwlIiCKIE63pkNUFZVeRzB8d1gASsxdpnB7esfGKskvzKc2MtJF/x0NLBWksJCAemxfmReAeHkkJXyHCQQnBw0Kb0LMaF750WtKIJmQ2pBDM+SIdIIdj1hlR0zBv+CR01pykTpChpS0FLSiCg5mXEdsbCLdjzxjys17iTXmLWFnxLedhYM+5HzEaKoB+SXomI3vfR/QUaTXFyhnIczHRCMZ+jggAzmtFcrpOlNRSCeeaTdwO+I64y2/CIBUjh8OXoA0Ixoy09Ljpj9pwpUhi+KmNmSuBKxf6sjXMX2KtCsYN/OMH2B2TzBBYJqadxZxmN3zGoS3XmhYe9Ivhu/TK5hd3tQz7tJdRlQUVYLjmCX6jfxCAZJh7354rY1FgMHWwnYik2cK2k6A+QUrCcxS84MlY+Tqskv/LcSCm4EFR5Op7QPMwRQpInOcFelfnTOa0rDc4OY8RnfcZFijAuXgLiUUn9Usjwvmb7mkfiz3FMg0LMudPfwVOCR16bX2pPCL33sGKLR8mcN32PSEzPu2NFFU/EKK/GBdWj6myizWNq2x7TtOBeuAO1kPHAp94K6L9S0D2NOBsvaIWaNMkRgyF+4BFnlnorInt8SvulNid5RtO6pMcFWTVk6W0ybx7RcRp8P97h06FPh1N82QSbUVjFxdCgN+4zS67SvzSnojqcniU0FlWMlqgyJ/IdJk9PadQ8+rOcRqOCOVjCRo38ieZJpctW3fC9+SVCCW95H2BoEdCnph0Ka9gJx4j1Lu+ahMqiyXQ8o96uMJ+k+MkCATTWVksoP0lWSX7luTHGEP+DB6wJAc+mJZSU2JOcAMimY6LCYP7RgI3QoQgVhYbSl8zHOUI7nI1gEW5x4FtoGmwtx2JZb4fcnO/wSrPBW5UjlPCJlxM2nQVrEhoix5MOEX0yJ6UU3yOzOSM8hlmNvggpOwOeOltMywxdOhxNobQe816CrLqwTJgNJ9g8oz+fYbVL+l/dpLrRYZo30FKw9B3eHbS5b9/il3fu0vHr5MslTjBjWxsQip8NjvmhnKNVm8xf8N3Jpxlc6JMuKkwFOK4m8APmpcEaw+D+EWVeMqsGaCtQdxbMX3GZTwOa4TH7WZPfHJXU2xl1ccaW1rzhPMEiOYkCHroNTHWLxy+PYO7hf2cBjkNaCqQU9A6G1FrVFx0eKx+TVZJfeW6klOxVFQd3DnF9F6EV2SKhsdlieDBg7ZVdeveOqF1cY7F/iq6GELlkcUH4cpenVdhWAdN3RjhXaswfp5QdH+1Kpoc+zXWfb+y36LyyTiO4wwGvMi1yPlU5ZsvJWVcHVPUaDY7YdHZx7AkNXRAXh9wIZmQm4v9yusaaE3HwqTlRZ4PDxYJ10SQfJahgk8reGoubD+jstOk9OaO7UWdQlqxZRWwsTk/hJw6H95v0K6/htd/FsXv8vnX587UlHgmR1Lzk1zk1lkBX+LPbd3hP/jT3Xk2Rok668Alcl6qWxHlGp+lzev+ItUgxXJS0lUflkWV/z0FMdklbCR1XsTBVfGcLwzGuaFNguO4P+Zc2exwsNth0Q+5eMgS2y/R0SdsaJLB+cdXt+kmySvIrz40xhoffvYsQgnyywHI+hdObLTEGejfPT30a3HyK8j3yZY5VCuG5zL9zQC30WXYTTGFY3B5TNl0Scb5BQtKBx8uURVfxdz/YxGmFvLlxjMTlUeLgc0pDpuT5U2raEIlToKDKAUI6NFWKUaf88asB3zm7QmEDnpg5ubbcvQR17VJ5mrIoJTKMONsfUCQ5p7f3MUIhBjPYbVPuVZmOMrK64AdDyzvxDfbCGT+/LvjBcs41d0JL+nRFwhf8BYk95G56jQfJgsJIenlCsLQk1rJMClxjOXtyRp7mnHz/HlQrlFUPIQT++z5HkeCps8Fdv8S9ssNePqMWTKhKB2M1njC8FL7NS2s1bt7ySYXipL9AZQWLeYYUgrPDEZXaav+aT4pVkl95boQQbL16kdP9AY6rEVjyOKPWrjA8HFDrVBkcDIlqActZgkqWKK3IE5d6M2J0+wEN5yK9ZUHH1Sw/XOC9volWivKuobZZ4fiOoXEp4mkmOfl8QK5mfOBsE6jP8Vd2f4+63+D97ISrXsR19RBXtGiIBbsKCnz+1eZ3eSMoOC6X3K6+xbeehFBtMNgqybsuvlS4gaKVZYwfntGoewweHBHIKtnxmPqyxK24oAMCvc4TvaB9ucXfzUOyzfvslwN+MdinrkN2tODYtPlT1Ztsv+Tz7XnIV+ynWeQGd6qoobHTderOOr3v3j7/NzgdUenVKQuDvrDGmuNzMHHYqwseLVpcbEnezed8xoUKGS1RomSDP966hb6yxXszcOMthpOMKG7gTQytzfqLDo2Vj9Hz3IVy5RPOWstgMEdUfMqiJM8KhJLMJzGyUWU+XSIin8VkgZCCMi/JlinES2bHfaSSzB+doA/7LM+myKLEvzdEHM6fHQoe4yxzlicp/sLy+InL2X6b3AgmueV3+q9zkpaAopcveZC5GBtjhWZbG5pyiofCEUMEkvX2Y65cPCFRCc6z9fqLssBUFItZjFSSxTxFeg7x2QjmS4S1pNMUaQXjLMFNoDc0FKnLUewwzl2mxiErl1grKOwQD01NHWGtZlmWlBIWlxWTMsMGihkCp15lNpwhtSKLM0xRUjktKB4n6EOfQZxzZ76NYgAoYptSUrCmJE05JRIFUxNTczImyxwpBYu6Q1J1mc2SFx0aKx+jVSW/8twIIeCnr5EuM8QiRZQlIi1wowCDQGkF8wS3MJjCYKdzRJaDsbiOJBlMUI4iXS5RZUZRGBiOQErkWgsv8lFpid+qEngOzQOPNNLMxgFlJHk3qvB0f49XLt/mYjVHihnL6l18cm64BYFwaDqSLWfBe8mIA6fgcrCPcBxKCw/UFmbiMnZ8iks7BN/q4c1jSiGx8wVmOsXK84uZ/oFDqGrMtCCuh/QfOrxjrjFeO2bPH/ColPycN6CrIpQscUTOqHKf/Z0Ws4XPk7U1JC5COwgkzrCNNjnpPMGMxgjPw+vFBFoSr9dJkjWmnx7yd8wX+MzGXa44tzmzhh0ZoIXP694Jj9uHPM0cHr6pufuoQxhqFpHECZ0XHRorH6NVJb/yXClXYQUkWwHxpQqzl2uk2wGzLYWpaeabDsKVWKDsVsm36mTdCjRCzFoLFflQr6LUefMPPDt4qT/GyQussSgpzm+TAt1fEDwShAfgnYKdurz/YI/erMmdYYf9pM3teB1j4Z9tgSyF5Ia7oKkKdtUcR4IQlsrWDL+ZkbRLbEMyv1xF+vq8ocjRCNfBzheINEUfjHByizUWbQXWgpJQWIlFAAp7vr4IgcWX8Io34FJlyEutYxAgtcBikY4kr7pI38VaiygKyPPzr5XEmZToAhbHIeO0zgfTTSwCi8DYEmMFFSGoqpwtd0ilmuGsxZShoAjOVzitfHKsKvmV58YCdz6VQ6ExznlzlDSKSQm2dMkKRZZLppd8/IVFFgKRGtwERkKg+xlZnKGSgny+RKc5ZrnExCk2z1kcnGGMYT7oIxwPWasR+g5epjDWoi/4JCnEQY2vD2qkmwvwJEoIltbl9eCYq+6cioSK9PiMe4wl43+x8bu8G6/zB/o6h17GMOzQMyne0uG43iX8IMB5fIryPMrxhGy2QJYW8dWY2uUtzCDFXvI5XdY43KhQ5Iq3mvfoiAFX3YyakDTFAu0UfK5+F4vk8EaNx4/XmeYR3qMc0YnA2UTnlmIwQmQZ6qhHvN4gHHjINMX1Fb2rguWswzvxGgpBFIyoqzlNpbnm7zM2JWlL82T5OpN2hBQwLVK6rPau+aRYfaSvPDdSCN56Fa68dsz16wOuXx2jtWW95SGkpdPxEBKalzTZpzKyl8G8prEa6p2Q0asOlb06SEF0pUN6Yw15aZ3gyiZSSZpbTYTv095owjKmWvVQxuBIiAIHKWEdH2GhGwVQShzTwBqHm7M9vjL5NN+Ot3iYXwAESq4BkjU34PPRmEBadmsWLS0bvk9yoaS6HTG/FhF1queHj0hJtV2FPKPRjlCHA9qOQ/1pTi3zCU48no7WeHfwGb6zvMTD4gKnZU5KG42gogJcodmrTXnz0oxyN6e2FyEkNDoV2OwQtWu4voNIEhrF+f429W6ItIK6qZOWLpltkRExNyVT20Sj6ToNJKBVl6vNAVGoCXxNp7I6yPuTZFXJrzw3xhpk5yZtKynPj5Pm1fUzktLBt4I4iwivG3qxD0aRLMX5lETV4XQWQyq52QHRrROdWaR0KZVGJSX6smIynoHSDA6HlFnB8OYDlKuRZ0MKY6iudSl3G6x5mtkNgS88vjrpEkU56zsjEk6I/CqHJXhyykUtCYTGET3WXcWvrn2Nr892sNf3uLV/gbTh8diZ448Vhy+1qPRKlID56QCT5QwenmD9kNl7++jtLvY2sOXSO444nPt0ak0+HXzAQmRQnrCpXb7oPeTDtErXb/F4ElFUazx4aYwzc/HeXmADj6UfIuYZNk8Z39lHpRD3plRea/NgEzw/4qvtTSSw0T5jQ5yxpgOu6wMiRnxjdo1uRbB/Y5+ngy77ywn1wH+hsbHy8Vkl+ZXnRgrJl5s+jxZDtFQ40vIz0U1SNpEcMTEvYc1Tvjd+i5uTgMyNcBWsX3mCztf57rsVNjZ99s2E8FGN9DAnueziIEkPA9b1Nst/epf13T36Z3MiWRCPFpAmOIEm7vdYq0mG45QL9UucDTI2nQbzImO6DLkXbLP9qW/Q9ev85tTnV+pLsE/YUF00MZdcSVhLOc5SWtsJX32q2JY1jisplZ0q6VpJ3VqCjSbzH96ju7dG/3RGe69LP7fUmxGOMRjXYV26ZCbiw/jzhNE3CJwNpvaISK3zU0HOnTTnC52Eg7lhs4y4f7nA122yH06I1hqYyCc7PKXSqjJfzOlcbFAcZ1TjJkelJM86OCojkJIlV1jaI4RYZ0OV/GwtJTEDDmt7aD9nr7paQvlJskryK8+NtYafCX6DL/jnFxRLoESS2wklgLhNKXN+uvV1Xq5XOS3qTAqPQV4B7zHdN+scTrqkheXR1hgZebh9i7WWyIEDk+Ff3aR3tqCwMJ5kiKzExBnL8RyUonf7AFutMdifUmIZ95aYimA+F0xmlv/y0Sv83PZj2oFkUT7FESmx6dMUmkAY9pwpv9I84x+PC17eqzJfDBgvN7A/tCghUJ4giQXScemfTElHE/r3PUohSCsOtqkwVU3PGr4WbPOebzAXN/mX9VMsBdpOAMnnwrv8kzzj2prm7h1NKlzuV2PqNQkPYoSA0sDwZIxwHPq3DikvbZP+wRj5qubdfoQUEVf9XdaCCdejBM0BSpRY+xRHQMM75CCTnCQjqu7miw2OlY/NKsmvPEeCi+41pDnC4gCSfrlAyxbLcsCurjMpzlj3NR6n3EwSFlbzJHPYcB389gHH2cv85lGH5p5PYRf88MMrYB2mStOshBxfgEujCssfDqmZkLy3QAwlgbDEgynVdpXxaElzOac/z1mLJHNHIrSP9hTjDxr88PTz9NZ72N1NXqu9DcGSnk3Y0xIlQt7y53Q6p/z94Ywj8QrytX166UVmY0lxrPF8hT2pUKu4DJYpFVEyOh7RCD3KfQdZtGHP5+BRk6svJ/xXvdexZpNfqHyH0HGQFFzQJX+6PqHlfchnP5Pxa+9eo5k3Gd5IidIW+nCJHHuEbY/ZyZBqpUY6i6m91KS8lxJ3K+iNBQ+yDWquz1PzmIZssStGvOo5HGYTqr7ic/4pm8FqTv6TZHXhdeU5skgzADSCEkFOVThU7IKW1HTklCuOIGCGRHLDG/CKd8wfqzxlXR8gUHTdQ/6l7dtYOUMpqF0YIzZn+K8umOgUJQX9miW9VGXaDGCjid1ok7kuuhIxn8aIPGN+OET1hpR3TgmOF4THUE5LJILprEAi+PawyR9MrlPaGIMltwJrYwSSbXXML9Qek9glSgiK9RlJF+aXHGaOwW63mc+T84ap8QKpJOl0iTUGWRhmNkMJQWyXSCSPY8W9rEVhY1KTIxAsygSBxHf6VDop83mOkpJFTZN78tk2wQmYgllvjB7PmC/PT5rKBwIyiAuPspgBisRMMFbQlQNaqqSgwFKwLJcvOjBWPkarSn7lORL8IHPRLLH2fH17ZgtcqVCkuEZTFzGu0EgMntB44vyc101cBmVKpDKsN+RT/oBHmc9jr8GwrDDciCguR3zt3gU86TKIPConingp8cctnFkV73iJ6yjSBwfIMscslmgLdjglzAq8TgWdhNgNSf4kYLjr8TuLEGng9fohMnqCQHBNaUqheMOb8T9b/z7fWNR5N7/IPQWTRYNkI4R3PMR2Bfntx8jlHJvmyDSlnAjcYZU6FuN4TCdrLF/TXLs0453lHq/5PQSGdeFz0YkpRIphyY36GR/s1kkmEJ5o5i/X0ZMYOZ7DTKKVopjMqNw6I+nW8ToO8XHA7foaD0dddoMBnw0NKSMc4XPVzflS5TGD0idU9kUHxsrHaFXJrzxXcxswMDCxipmRGCwGF4thYUO+sVhnaTxK7Hkzz7MGJYNDW1kkGoEhUiUXvQFvVfp8pjI4byhywGkl1BsFa9d7sGtI9koQAuGo89YjR543Jrn6vGHqWVOVHM1wBjPCB3MqQ4MZabTRGAtPl2u8P93Ccn4S08KW2GdNTE2nYNsfsVGdc6HZB/Fs+2Rr0Z4DnocT+uC6iLLALheo3gx/kqJmFlVqxgsfgUNpLRYJCATgSk1bzQmk4M36E5rVlCKwSClBSnBdlO+e/z0cjTUGpzTIZYmzFHgDibHgKbiTrNMrKsxNibUahWBDz9l2Jkix6nj9JFlV8ivPjcXyf7z/BTyZPzvizhDpHIug4SwJtKIk47uLmB1/RlfPiMSSdb2gZMauXtBUIJG0hKWlQlAploRdfcpBXuHqhSofJFdYlPC4HnM4a9OvBJQLRb1TJz/JkVe3ibGoQpKMJwglkaMJNsnxY4Psx7RfaTMTGuGF3HrJcnfSQkvD5+uP8IMjlJlxQfo4cor0UnpRlQvRGeM84CSJmAxrxNbQOG6jHuboqqCYzRFZiuyNsMMpNc9lFoL31OP3ZpfovhTyRnTIukpZ82c4xGwph3cyy7XglPLqt/gN51OMN5oIK/Av1ijvZMhahdRKTJyQHJwhty0y9vEOBPP7EcG1E56kXf7BuMFfbT3AiDlr2mfXmVI1FmmHQOcFR8fKx2VVya88N1JImsOL9G5uMLu3Sfxgm1laQafrTPIKyqxhjWIwu8I/fvAG/+T40/zj059mbjzOymv85vQVbufXKNEMbZOTEkpcEBVCWXDBq/ML0ZAvVDIcYamqCoGyeI6mXnPAV1Qv1hGBS7tbQfou9fUGjqtxXIcoOj92sNmKqDycsDfzUImiPqqjTiIQHsNymxKNEFsIIZGyy5Zy2HQcXKEwyqXj+mQ7Je1OyHLPo3Gxg9SKSs3H8Ry0q6k2I4Legoszl+oRdN0K8ywksR1Gpo5BU4o2nvC46NaRCBy9zqvrpzTbCs/XmKrGf2MD5Wham02khNZWGzVeUHEcAkcjtEQVXZ7M2ni0sShctYG1AkcGtHWElqv95D9JVpX8ynNjjOXDH6RI4RKL82WUdn+TJw6Ussr7VUFqW1AtcZTlaV7BYrmT/EkuVYfU3CXHE8M1v82b3gGgcEmJpGVL+ZScYCj4snqH617M43qbR/k6b3cucJxUeRSsEz+xiM8EmPsF5bVNzL1TRCTJByOSeYxQIwZpF6Edit8/pH65QV8rlFT8zt1rnF54RMxVPCH485UpHSURUvDz/ocMTUmybfidw+tklS36hwtsJHiwF1Cd1MnuPUUgsP0Ry9MB6uIu/cESGSj6H+YsRIWvdNa55kkuO09YVxkV5bAljjHeiO8srtIOBMHlAwYfruN4iqVjaTcbDBNLWcLocHg+rfS9A2S3gV/3OYoy3MDjWwPJq5U22+WMN9yE8PyUXTAHoBovNjhWPjY/dpIXQuwC/wmwzvl2Jb9mrf1bQogW8F8AF4HHwF+y1o5+3PFW/uiQUvAp3eDRZIyrJNIK3Psx1a0K97sZ27rC03JGS0aMbEyARluJkAWL7Dqi/pDSrnNiE3zbpaJ6lNpSsQYrRkRqjTY9rNwiNIfU1BrrtqSpBNXQMA5KOq9oHsYJ7nad+NtTws9fIk5y/HctrhTEoznthstgXtJuBaSpZTsLmIscZVxG08v8XtHky505306m/HRYoyWOsCLCFQmvhCMuXr7LrwcKJ9jj/ncFmypg2Uip7a6RzZaUszlBIyLWkjWjOTtKUVfbHD9VLHa3edQImdX2kSKirUYUrOOKJW9GgodJwVpVkV9NWSxrNKSLftelW3U469VodSoMjwaEtRCjJWNH0pi0mayfcbHm8kF8mZ3anCn3CUUDIRRSXXjRobHyMfooKvkC+F9Za78vhKgC7wghfgf414Dfs9b+O0KIvwn8TeDf+AjGW/kjwhjL8HcPqAMIgRFgtWR6Z0zrPiRNQ70oSWoxoSNIa5oUy7DW5GnbkvvXCFyBU/8Ur28dI9nk5fCQV8NDLrspRXFIWwtCe0JDS9bVfU61JGyPuLPsML8859bxDmkW8KA+RV8SlDczlBKYZoP4qA9xxtn9Y8rC0JtM0Z02s0DiKcHIOCRXUhoXBNbuk1rDh8mQt7w5NREjhcYXU1w9xlMXyNaeMN7e5d4kodZy4SlgFSZOSdIS5SUM6gGl43C6WFAI+PBhwKVrY241GrzmDojVAjigKyUh93jZt+y7HveTaySUHBZLNhoBZw+PKPKS3tEIE2cUj89QjRpOp81oYOg1AlT3NsvScieO2YpShIRQOIjyCOTqMO9Pih87yVtrj4HjZ1/PhBC3gG3gzwG/8Ozbfh34Cqsk/4kiBKzlMSenMxxHoYBcCOqBw+xJj9bVdU6EoF0PmRYlYctHWYlZWiqdkPuXEza8Kqczxf61GrRHJDWXh9E2n2/eImOTMvohvmyzIQ8IVYs9lqwFM34uSHi38oTD+g3+X4+uQrnFk0pKEtVI5wUd2jiXO5Rfu0WtETDc71Gr+Yz2j2g3XBaNkGoU4IybjHzDTed1Zo0PmLkBO2rInlulLlM2VYEUHnv+AF1qPqgntBZNpp2Sxk6DYpogZlMC3yGexdRnM4baZ2PS4EykpCbi7t3L/L5fkjVP2HLepqE7OAz4Qig4zXv8QeDyhZce808HLxOIiOWWYU1uMHn/gGqoGO/HuJ4DaYqMC6INn/Gp4I7+FM7FB+w58LQ8oqp8QGFl99lOQiufBB/pnLwQ4iLwaeA7wPqzDwCAE86nc37Uc34V+FWACxdWP0b+JLHWMn5wjM5LrD1fIqmlJNYKqSTLkzFebihqGRVHYRZQugqqHskkofFUsdg6byLq9xRF3mGwiOg0Zkj3Gp6ENbdKS2VEjiGyMQaQGAQJGo91/4Bf2Jb8o4cdNIK4KHAMWAFpYQhaNZbTGVIK4mmMUpLieIKDIN4JyJKC+aBGrx2TLHcozZi+73KJBIRgXRlKFrxS6bEoE8JOl9lBTtlUpFojPY3j+yRxgigLFicDdLVGOs4IhWViz7duywuNtVMOioCGWmCFwmFBiUNhc0CiGyXTRUbblyySDFWNWCZLpJYUownCc/HnlnGWoYRiNDdsIOmlliTwyE2GkRpl50D7xQbHysfmI0vyQogK8PeBv2GtnQrxX9cK1lorhPiRHRjW2l8Dfg3grbfeWnVp/ITRnkuePztuzlqsMVBYTFGCKDCzBBYLSqUQjoMAdD3CtWC6VYKzKlMPhJYsNh3SWsRYRLz7qo8RPotLhqpyOGt8wKeDEyIBa0oBcEWXjG3Gn268z9WX5vzm2VXeyy+S5RKrFX4P9KRBUHGRFjAFZZahxhNUWVCpBQgLy67Hgb+G6rrM/QZtdwC2x1VnQl25CCTX3BMsc240T8k+k/L+3S6LHRc9FehBDakVZZqiXZdiPCM6SdBYwpMIK+Fws8H77i6Rm7GlF7hqgcZhQ8Gr4SGFlbzb2ISZIml5TD7XofIVi/YVcrLAFiW2iJHjmM77hrQaobZzTqZV1tZjToomn/OPSbEEyFUl/wnykSyhFEI4nCf4/9xa+18+++NTIcTms8c3gbOPYqyVPzqEELiRjxUg2w1Ep4FtVHFqIbYo0c8ae7QjMUmKSFNkWcB4gYNFD2L8OMe73cMtQI/MszOWBP1ZhMl93nu4x+miw2/3rnM/XeMHcQuQCOHQVCWB1ICh6ZV8sX0XNwITlcQblmxbMt8JkI0Q02ni+A62KM8bjUqL05vjzTPkAtzUYXxYpSh8vj/dZWw8DkoPhUQKh6Za4kiHdjDH9QVFaBCBpvQluA468MBx0e6zJiYlMKXBKSQqFUymPnEaYbEUuJSUCDxCIdnUc3acMZUoIYpKjLU4SpI1fLSnMeb8xCiEQC4z3NLijiwq9hiPA+IsorD888YrhPdiA2PlY/VRrK4RwH8E3LLW/l//Gw/9Q+CvAf/Os9vf+HHHWvmjxVoY7axhNzpYqaA0CGNJsgJRa5BJUH6VojQ4fkK5jDFZgTAZ8zjGWEs8HiPyEjueU19rEp3WMBb0qYd0DMO9Orf9mFLt0a7EKARC3GXDGfGyI1gXS1pacJ8jOtUc+9Jv8/XBS3y/2GPQLaimHkHio0pJMpsja1WyOEUkGUorSmNptDxmvkRVHI5MhaXbZtwRTPMWHTWkraZsK4fCTvli9S7/8WiL7uaY4XqbwJOE2zU4KtCBz3K8wCQJyZMeytW4ByFCCkYdj+OWz7vzXa44HyBsTihmtJXDrnOGRXC93ufIzzjrX6P4IEPUHOaFg1OrUM7mCCHQaU5+NMTdC5gsJIVx+Y171/mpSw7rcsFLfp9NM8JVq7XynxQfRSX/ReCvAl8WQrz77Pcvc57cf0kIcQ/448/ur3yCSCnYvLGGqLg4dRenGzB5PcR/s830rRa1a11k4FLbayErPt6NC0TXdlCOpn2hi8TS2qgjpaRZ81C9IeHpmPpkgVMK1r2Q1gPL2qSJeFAhmW1RGo/b8R7vxa9jraaU67hCUdfrKBRbvsOXWw+IXMF66KAEVPaqCC1pXd9Cb3aprTVwHInKUiJf4aDYJkAhWA8DcuOSmjUMPrEVjEwDX3gotc6r7oCfby0IPUOj4SGbGuU71HZaKK1o77aRUtKuecjpnE6mqM3BTRXOssv96SZn+XWeFi2M3EZYRVNXaSmf1PhUqEOrpHEhQipJqxmhXYeo4uG5CiUljbUq/sxwaRLizTRtr8ph0ibSioltoeSPvDy28hPqo1hd8w34b53i+2M/7uuv/NFlrOXbW3PktgtGQGlRpeBhVkKheRBIiuYag8QSNELccQZI1M42Y4CoSn+/T5HkDB4tUI7GZCWZheqyJHcd9JU6vfsZhVD89vc2sJtd3tw8oFuZsuso3vROaaqSbXHKhi6ZmUdkbps39u5jsHxvcpmntwXyWoD64RTjOEwzi8hKSBbEoxlaeUwDSyXSDAYZ/bTJf5re4Bcv3uVV9yFJOWddBoScUVdLfq7xdU7LN/hHjSa+kag1RfwoI6zX6R+fUZaWwZMzjJLkp0uEFOiex/F6htd0GZUjXK04yCe0nYSIHCskn6895B888cjdOvcuTgiPNHk/p1aJSBcxYpkh7ZhhbwiVa8Q/mGLfUjw+NLzUSDFMmZaCuDiksmqG+sRYdbyuPDdSCL70i3CcnjB7tIbQlngsaK65nAYTassOT4oZ6/MKgzSjOvRxE0s5Kug6HrPHTTbjhLMPn1JrV5ifTXACjXI0CYZmTZOmJRuLCk9UgudHzOIEB59lHPFPxE8xryVcct9jy9miJU54zavykjPnVhyTmYj+xTGOU+XhcUHNdpneGRK5DXJbYOMYL/BYTibsZuv0xhn+ZpNFvkToNr979Bk+G55QcV0MAwq6OGKJq7b42foj7u28RLJpWMQN/EoLcFnr+vRvHdBarzE4nVJxNYWxxInCmzWZFyX99BVqzjtIVafkPo6sYWyBEJqf21xwf2rZMVVO1lPWnBrZCMJ0jnGgLKGy1WAgBPWdCmcmpd2tcm+0y+H6ZVxpcPTuiw6NlY/RKsmvPDfGGk54jPIN4bV9cqMIdyW9LABjeJpNSTE89WZ4hWaiDAqLLwWHZYonoT8vMetrjKZzpHbIR3NsWSLUmN6Bwmm1SA6nRFs1+spCRfA93cVg+dKVAWXlHrEpGRbHtHWBzylWKv5k/V1+d3wRqXyOshmZdDlKU8yGT7Kf4SsHs5ywnMXIKGJwPKX0PaZ3JkgpOd1LUELwjck2O9GA65UFnsjoSMl7WQ9jFRMzRwlJGqQMR4a6MfQPhhR5ydnDE4wF83SAkBLTbXC4gKTnc9adUCRtjJlyScc0sCAkV91j2vqYZm2N/mOP1AoOipxGacgLkIsMk2csR1Ok8pn+MEd8JuLAzKmzJLNz8lKwLHp4atUM9UmxSvIrz41A8L+/9C7GHFLiUlpFagxjs01uJzxYvMF7fc1uo6RfwKPxBqKQjL5foeEFnF6AcFRjMI7pTDqUgxT58BAnz8lGM2qtiNHBMY1gi+QEtqM6k1DiJAGiAd/UV5Blh07tMT8V5jTC79NWDayNueHOcJvHNPyE7+PxvVGA8lss3jM05jVyqdFZTuAq5sc9GlnKKCtp1GukDwXJdhXbWnJYdhgt1vhc8Jg9r41mxOcDyak+5gvrZ2TG8JVWDXs9JB3GNC+vMVtmVKsOk5MxXhJTFgZvWKPbizjyCx48epXs6nt8qTJiv5QE0sWhpK0m1FSdy40BJzubDB1YswFJ21IduIjExwwTKvWAeDyn1gkYDiGfNzieBLzfucxWfYwjV2vkP0lWu1CuPEcWz/apCEkkCkKR0ZCCQEyQQtLwe3xua5+KO6Srl7TcCdVwQvTKjHmQ4tVzFmWBkoKFNJQVBc0ahVLI0Ge5SJGOYtmf4R6PEPfHRL0cayAlRwpJwRKBpFcYhgY0GY7QOEhKm9GQCbFNaPkJ88aSoiVJygKjLShFmhuUUqTTGGcRkw2X6MxSHIBYSowVLMuSmQkxJgYUjl2i0UiWhDLF8QrSMiPvusRJjmzViGcx0tHkaXG+P3xWEucZTiE47js8XXTRdkxifOIyIzMlAoliRk1lzPMcJQRzMqSU5FpjHRepFfEsQWKJJ0ucEhZFjkRwnIT0sojUJC86MFY+RqtKfuW5et3zztdS/nOGwsYcFwXKX9ArSly5pEDwsHleYX6/s8f99W324wgu5IzvBQR9B4ugUm3jn0Z4xzO0lpSPD5BYyuEIVRR4y4xaqOG+ZVg63Ml2OFr3eeRYGtsD2pUDPAR15XPVSYjUhFG3zZ2kzsTL+V5/i8XQR80U3qCBsGAm0/PfysHZbhP0UvKay5IK99prXO8e86RoM7IOfzJ4isJlTUnejA45XDYwFYPsliRTjelG2EKihj7GJJjlAnwfJ7GE/ZK8qnFKydGsxtO8iyuXrMsZkU6pSYFFsBeMuF1fYguBSTVZVaBrHiIFOxwiBNg4QcUuzrSkcVMxvWawnuAgaVDa1X/7T5JVJb/yHAmW1mNYZs/yvAQMSrq01YKaUlxx5tSVT0MKFCBR3PCO2Q2WfKb+iPVGQudaD9kR5N2crCYpm/q8IcjT2CjCjTysBa0EZjLHP14SjXO8p+CkLsfLCsaGfGe6S7+MeFpoSmtQQlEXcNHNsM/el7e+hIokr54vGNOOxCqNG/iU8wUewGyJg0AvDJNZSPasiUkLh5IShIfAUFcFu96Qmrek1szIAovtumS+xgk9jLEoAZQFJDluKRBLiycUy6XG4mMxIAQFhkAIXBFQU1OaQYlxSjypyR2BYyR4GlsanMDFpBlO4CLiAk9p5FwghUQgceXqZKhPktVH+spzZHmYnQCWkzLHESW+AE8scYUlJEFKTUUYwKUrJ8QmY+4V7LhT+sZj1jzja5U9vpFXUEIyVS7TqUdbdjGHc2SzTmINUk9Jh9PzhqDHGnyPqLLO9KGkHFV4VDVMb2xwq3WXjnQomOELg680X44eEtPn1ycbVOox42YF2dR4L9fx7o7QgU9aAnlBejREGot84uLvVlkcu3xrsUuj1ucvtj/ktMzZUSkKh019wqZWfKZ9wDuji+S1CoehpHXsMN3uIGcp2WSCikJknJJNFE5Dk54UpDseD5IAR66zLg9oqZJQuFhSunrOL+/+AXeSL5GlFut72EJQ+i4yDEgXCUjJUrvopCR/EiMDj3v3O/gbKcMspuHWX3BsrHxcVkl+5bkRQrIUbyDL+3x3fo0MF0HCjueSmBE3gpCkPOKS62LsiLZ0cJRHh5yMFpMspqmb/ErjQ87qVzmJLWLd4HYEi0Sz1uyQffuYVqtCP88JTUY8mqMocZTB9BM6owpPlxmdT4ccnXS5036D+3LKRedDXOnSYkkq1onkgp9qFfSyIbea28wXBln38K93oDel2Yk4G09otgIGo5hau0ayMMyMpoliP17jh8sQJb/JptPFtaesKZ/cZkQarnQMgyPJpgzJVUa3HjKpV/FkSW4sssjZiA37QtJaixjMSyazq7TqDwiVy8z6hEKTiCodNWFWbLJZjRHzNodtQdDwsXFOqSWVnTaTswntiktvnFLbaROnOdoNMYVPx1sl+E+SVZJfeW6MNfx7T3eQ7OLIElcUBDrkrFwQqgitRigEjfL81CcHS0NKfOlxRZ/y/2Xvz2IlW7PDzu//DXuMOc6JM+d853vr1lwkixQHkYRES3LLbcPu1pPdBgTDNuw3w41+8Us/2bBf2oYhwH4wIKO71W50S6YsiS2RaFJVpWIVa7pz3rw5nilOnJj3/A1+iCRNwEYLRilvUrrxAxJ5TsRB7B2RK1d8Z8e31jpWBR83cxrV8Lfu/Jd8Z/E6f3Rxj8p77LDLx23LYDqET6dYFbBY5Yja0MxWlNMVyIjJZI3oah6WBcYIHjeOm6Fh7TOEXTHSMdY94d2o5E/yZ/QjaL9yn6uPTgiFIutKdnZ6XD27xBrH+P1H+DimuN5BKoG6EExLB3dC/rHt8VpLIP0FYOmLnBzHreiSn5kBxbDHI9vQG0rm37vCWc9qukZGESooqe7n6EHKkztgK/jOgxbfeCum1Ttl7QQ7ImFhx8TScSP8GYHaYR2NqcM9zg4FvfcKtPHMJmtsXnJ9vsBJxdiUYAWLscMFlmfZnLf6ycsOj63PyTbJb70wUkjUo6/x2XhJFEmQUEjD/lBzWud8+7jh9cG/AHdMIsd8RJtAKH4jeYKWOwSMuRcdE/lzukrxWvQnTPI9apvw5LWCHdPj0giOhkdkPxrTSyC/cEhnCdKIcrHg9kXM5SLmZHfIw6hgcXCXz3bGzLpPaamAyk1oqxv0/AV/vVfyewuFDHcZ3S0oFwMSoeBxj71BxPUHz9jZ73D1eMJAQSUlCQEDqzlfDLi757hf3eCNyHIknuDFAOkrSlK+ulfx6Qxu1G0muxWDNw9YnK9oiYZmuUZoQXI4gNxzeBbz07slRzstPlnd4GH/VW5FV0RCsqM7zOsLpvYt7rRWXCxucD4QdJMYeVcRXMxo91JmDwpGg5irZcMNGzLWFjUIQcBJMnjZobH1Odp+8Lr1wjjvee/hknIN05VnsrasK8Gn85qskfzhacz/7bOv8V9c7/EPrt9kbg0TU/Jh3ZCbM6w3pP4CjWEozuioFX/t8HsMkmc00jAOZlTScn/YsDpuMwlDTBBSrnKWkxWmrJneP8dWltX9OaZ2fPAo4GwZ8n7ZZ1HXOBqEO0diOFKf8Ur8lJlZU1eGwm/OpxZ+U8RkLJPzBU1Vs3r/GWVZUteW2aSkqhzvXTtK5/lhXpK7nJgVlRPsB5dcV0uCVs71s5zGOaaXKxrrWNWOqrJUyzWTZYFtDIvPFoiZ51pPKIzjp+sY4xxCNCRc0ZMF9wuDp8EEp1TeMAlqMu+p0pjpNKepDVfPZthlxurHF/ilYf3UMV04zvLVyw6Nrc/RdiW/9cII4MsfhEyvVpSHAS4WFImnE8dM4pJR1OZqrvno7oi1MVy90mXUyXg/OebLrTU3wk+4FfQ5kecM1YBdVRKkZ7wTX/O/MwF5ech7bxSk6y4zC0fpDq7VQgmBMoZqmdHuJdTzjPDeAeGsobmZcvpkn3/Rf5VpMmU3mJDKNrfVCidC3okv+dbehHLH8J2LFuEiptoJ6QxvYX//Pq3I0yw9sRaYRxOi4xa6HbAoFe+crPkoO2Rfzpi4B9xVfY4Dw+vumptHBe+tTghO+pzmoG90KZ6tSLzDhgE2L0jnS4p+F/16l3BpMfkOU5/T7HT4WT3iFX2BkhF9WfBXelP+s/mAH6xvQMcQJCG2L0AHpLsRy8sxnUgyn5d0W7uYpSfwGnLJTpi+7NDY+hxtV/JbL4z3kM0LJIL4SUF8P2PwQYF4WDL8maW+qkkWjrwyCAT3x/t8Nh8wzTus6wZQzG3BldVIKkCQCEFbFPzK6CFeZCghyGS9KZgSDhsrfKBprAdnKKYL9GxFvWxoTxxVbQkajwNCkQGK2hcIFNZnhEJjfYUSoHYqGtMglSAXAtlrU65LpBI0eYXwEM1q3LRBLwNqVyORzKxHoBA0AGghEBQctdZUpsJ1oawNrhXQ1PbPygiqrESXNWsM2grypkEJyaJRlFax8gLjMySavpixH6xZNwYlBI1yOO8RgaQqG6SSlHmFAMp5gZQCX3qscxSmeTkBsfVSbFfyWy+QR7/3EOtB5zVIgQhDVCvBCEkw85SNo3OhWR8H1IOE807E46NdfhTc43de/yHf6p4zllC5kuOgYU8H7KH5Bf+QN+5N+I+e/QqySHlvtk8602SJprPso888ZGukVNjFivQnTxFHI1rnbbxM+GTnAHdkeSUZ83ZkaFixq0K8N/y3+/f5g/kN6kTiv1RSXKe0H1bQSRF6BA9PcaYBInQt0KYhWMZMVx2ywHAoCiatmDsahPC0RcODco+dJOe8bbGlx3QDrBbom7vosxkU+aaVa1ETrh2BFcifxdRvZ/TTkivTJfdntBFEQtFWgqHO+LUbH/PPzu/hgwiTKHyosNcLEBKMg8YgS4MqHLIWqELBdv7aF8p2Jb/1wgghSEOFny4RAqSSOOcIQ4mzjkht/k4rT/ujNcmVpXMJzkMsNN97dpvL4hCHoyTi0gIIPBqPQ8uErw0+o596goOMIFJ4PNJ6VBzirCdKQ5x1hK0YZxyhlHjvycqI6WrIg3qHC7OLxwIJAkciPa+mFwjhCKWiaHt0b1O8FCUB3kOgJb6qAI+KNJTAKmW8TtEq5MqmNGiMcyTCshd4Oipjr9NgQ4PqKZz3m1WWFOA9QRzgnCNWanOsIKBeBTgXbPb/U9IQABZDgsfSiA5RXKGUwkfgpCJsJ5vnHAeb1zkNEUWDVIrACNJgWwz1RbJdyW+9MN57ps8mCAHNer3J3sByco1HsJ5eI6zHD/skcYiWId6DaULWtx3XvR3+r1mPd++k/K397yFdTCIqhsrxeuD5aZ3zRlozUI4Pi6+w/Ao0Zx3UukM4SwkXK3IDvizIswaVLxFPU4KBYF0HNMZxXg/4J8ZzO3ifQ1XgCbHMuRMrfvngU3786W3KVsSTVwWjs4RlXkAcUa9LpJLI8xnLV/voSjN/PyT7hZifTPu80U7wXGIQxFJSOssgKBg3BmLH2d2SzhTcyoDSeM9mkHhUkc8rwlgz7jf4KuCHp0f85q2P8MKyckt6skWHJXvK83GekoaGYlBiyhTbDylFFxFo1tMVNI48iHDaU0sQpWe6LthttV5ucGx9brYr+a0XRkrJra/cQScR6d0T2q/fJjzaZ/TGLYJOm9HxECVg0E8IvCPRkk6sGTxpeO0sQXvJvu7y3ultnhVv0fiUQKYY0SWRCYfBEC0EjhNiBWnchwPQvZDopIXu99g9GSIDzW43QuPZJ2R4AanVuHKEJ2Co+4xti0IcoEXAQPXxRIgg4e3bBVpJjsI2dhgyGrYI2ind3Q5BEhAFmj0rCYRiby9FoXi9q6iJqBmCiBFEHIcpgZC8vSPQUnKo27idgPSoS9xNCeOA4fEO2jsOAS0lR0GbQAiG/YD7xR2sj5ByHyEC1mKfrjK82tIEUpI2LZIwILaC4SAlCDWjG0OUlux2IiIr6OqAThhy0G2/7NDY+hxtk/zWC+Oc41GjMXdvUUYJuZNYHXI9ybAIJpdLmnXO+Cf3qR6fYn/yiOLTC+TUUP1gRutnks9WBZN1xN99eIt/NH+df55r5naOxHJLnfPV8Bm/mH6Hrww/49QUFFHDYmC5Fg1NqBk/HGMbx/jjpzSTGauLDLds0B87VuuC9+c77Ir3Kb0n5gJoOJYXOGuRIidMzmkGJfPHSxoBZ95iPSyWJbXxNHlF8cEYNa6Zf5yxXmq+exoxrlOMv6T0azSGzM7YD654WGQErZzpo5JaOMYdQVnV1JVlNlljqobZjx/DsuFilqFrw5qccS35qOwwMxM8DdfmGVpUfLv/B7TDNXVvwVI3rDuKcdnQOLg6ndOUNZMfPcAvK/h4TTGvOJ0uX3ZobH2Otkl+64WRUrL3l04wBxHyVhv1Sh+/n9L/2k3EsM3uO7eIXrnN6JVjwlZCqKBlG8KmYacXsXe/4a0HXeJCoeQ+f3z5CqfNMd8pX6fyipod9lWHdnCTb3cf86X9hk7iSdC0+xFBoBl9+Q46Cjar2qZmNwqIhCDRAcn1DlfLIb8/+S1Kn7LgCIcGOeQoaOhrCF0f35Gkv9BCRpKDdoyKAnqdkEB4Qi3pjdoEWjO41SJwijcGmqVrkfsdLBGahN2gRyQEv7BriRXs3YjRgWRXxYQHQ6JOwnC/i1KCndeOiWrHvWWMqAMC30WR0FWWljxGiJBdfYRGsXCvkihBUHdpo4i9ZribEqYxezd3URJGN0doPOFhm56MOB5sB4Z8kWyvyW+9MM55fhqv4Z0I0Qhk7dF7PbKpRd87YDpeY51nejZDKkG1noEK0FnD1DtcJ2H10RLlJWeHa5QQPMkitFwyNSUDdYESniFPkYS8uvtjJvJ18gNYXAccDmKuGnBScn06xTaW5dkCOwwoTUgjKqz1vD/3nB20+aY7xYiK0Gd432IYXPPoOqbxlmdqSTdWPKsNidIsxkukErjpkmqRIw47PMFj14L3TiVxW2PcFUZotJY0zYSelNxfVyRRwcW0xDtHfpUjVhmyMszzJQ64ympsGJI/WMK7knHVIAWcNwm3wikCQV9cMRclJ/pDYv1lXHtK9aiHMZ5JZYiM5fpisSngeniJu3PIqq4RjWQ8X9NN45cdHlufk+1KfuuFEQKOf6sm/NUp4tfW2F8vmXzbsvrrEcubCve1PYqTNsmrJ/h+DxXHhHGAWa1pr9bI6zW9vCGaeILrHtU04rrosW66XHvDhW8hEThajNSaRIcctBYgQfYkJlSk0iLCkNaoj7eGxBrUpCTMPckioikVqU2ZmZQlHWpvCUSbO6HhRrDkVjcjiAy7LYUNYZSBaCdE+0OQEg+EoUTWnp0qQmWSro65rDssfIeVU4CgpyJ6quTNbkk/Ljh6u8AkoNoRvhXjpSBqR+Ac7fkSYSziXhtWivqqQ2MCFJaCDuDxtAiER4geyhkW6yHViaQJPXGqQEjSTgLe0T7eQ+UNoZWETjBob/vWfJFsk/zWC+Px5L5ACXB4jHdICaVsqN9xLLuO7PU2dRAge5sPA01jEU1NvcgJViVmXtIZW/KVx60jxlWH0nlAUboSJQI6smBHlZzEY3biAvoNZWJohgFFXaPaLcraIYSgLiqQDlWBMRZXh2SVY9L0aVyJAXhexNTTBZHIiCJHTYVrSaqiQUqJcYBUYC11VhI0jvJ5YVJWeAIhENRIASBoXAVIlgYkkkaX+EhQ4/FaIJSiLg1SSup1gfJQOIMUkqISlI2iJKJyDR4FviQUEshpaUPjLE6ASyWV98hAUzd2MzWqsaAFznq89ZS1eQnRsPWybC/XbL0wAvif3v5nTBtF7QJWNuJRtsek7nK+12Id7bLOBDbt0rtfkxY7+LxANA1+neNqC0cDkknD7g8Ey7sBF7s97se7PGkNESLkVX2NRDKQMNIlbQrWWkPfYjoBPgkRSYR0ajMxaTpHiB46c8jFZoTfvaMLpk2L313c5W/2fkhPSVZOoKn49vAz/tnkderHe1QRzN9q0f4Thw81QggwFgBZOQYf1Cy/rkkPl0yqFn+8usHbrXOO1GZjZoyhF2SkQcqzsz5eCXyksGGKShP8YgXO4Y0FYxGNR4aOpgfGBCxNwv3a8rqeklGhEXSVoReVnOxf83Syg5cCo0EoiclyAFxjUA1ElwVmlODdthrqi2S7kt96gQT7UciN+JqDJOcoyRm1l+ylDoujnUqs9ySxpo4lMorQaYJzjqgd44qKOFCbgp5QIUpPZkPOlnvkXoFo4TAgEkLh0EqzH84RQhDITaFV2Ik3RVGRxlpHGGnIS6T1xEicAeUTHI7dwJF7hxPhn61+BCFeOtJEbc5VBzgBoZabdzEPYRzinCeJ9OZYIqFxEEiNQ24KwWSCEpaODpDCkAYBVji0lggh8M4StSKsscT9Nr4ytK3EGU8g1OY5iQYtY8AgRAJYnGjhcTgfbIrN8MRxgHWepB3jrCOONa6xKK1QSNI4fHkhsfW5267kt14gzy8Hz7AaLBdkznCd3Oejao832n3+UfB1BkPNehwj6hbxvIu4WhB0OuQ1uLIgP52iPNQPHEG7zdxo7k+G/PjgJv2o5peiBuGnRD4k9zm3WhVv7T/h0/UuTb/LWarZeRCyfPIMIRXFIkPHEfpsyXrQQa0V86ahrtq8svsDGiQzuyIWIT2Z41gzijOeNRUmDplWDYNQUwiJQuCNIV80iKqmuMyQd1Ke/TQmeificRHzTqKIhKV0SxIcy6akrQKmpgYFpbMIJdBpRH5+DXhyGSCcR7w3Q3y1xbpxKCGY1B2Unm0uKbklGklHXJOINlG8ppFtbEuyWjT0tCJ7vmDPl+Xmt5hFiW0FTBcZw+62SdkXxXYlv/XCCCEx+h5CBEjZIlE9Eqm5FXXpase7fUEr9AzTLs0rgmAnonXYJ4gCdk920IFmtNMiUJLBQYe00aQyZBDExFrS1Tt4NKG8QSRj+rqPFgG5GzJUKRrFYdRCh5q9e4cEUcDgYEAQBcSthKMsJJKKthuxaRpwCwgJxYhIxCgZI+UIJyKORzFaS47SFiqQDLQg7iSEccBgv0cQBgxu9Qil5PA4QQnNvZagJMETkuoDpAh4vRURSMXNQYyKBJ1+ShIoYge7t/YJAsXubgsdKAYnPUKj6amURIX0Q8th0EcKTaiOESKgFsdoqcD1aYchsVXshyFBHDLa66ADzc6ojQ406ahDL444GG63UH6RbJP81gvjveOi+hMu7YzSzRF+yYkKOZIP+I30Q4bJx/zC/ic8LCrKyHBxwzI3FSZJuV4bTG24enxFM12y/GiMKQzFzDG/MjxY9nh/7Vi6kpArpDC8rh4ykNfcbD8hH5eU2rH68JpaKa4ejjHGMTufUyKorCc7W+PnlrGZMa813j0ld47MXVP7goA1EWd09ZJns5xaOZ6YjNoYludz6tJQ1w2z8ylmXTK/P8VWjovWNbiStj5F0+CpUP6aUDQ8KnMCWfB4WdA0lnlWUl2vaSrD/E/7wF8sMUXN7LMZDZZpVbKqLBdlxK54iqBB+gsUhg5P0KIgDCdkviKPLPNPxpjGMrnOMY3h8qMnVMKxwLFel5xezV92aGx9jl54khdC/FUhxMdCiE+FEP/rF328rb84hJB80PxlPq4OeWZHnLodjJek6ohIRLydBPRVw90dRRxDW2uikw46DhgMInQcsjOIUUowOOiR5JCKgEEQEQSCr7QsuY+Y+V0EAUbsEghFbvvsnYAOJK13hqhAsfvKISpQ9EcdAmeJAkW3l6BCQd/tIlAU/i6OkF09oiUTIhExNncRMuTLrxu0EhzFKToO6O71CJOQQGt6z387GB530VIyagZULgaxw9onQIgXO3gCbsQttJDc7IeoWNDpxgT9hCDS9EcddKDY3W2jtGRwo0doBD0Zk0jNIDQUHGwatMl9QFOKE/ABl+ubtLQmNpruG3ub57zfQQWK0e19QuPpSkU7iTgcbWe8fpG80CQvhFDA/xH4HeAt4N8VQrz1Io+59ReH847/51Tzj5av8MMy5rQxFD5H+jG7UiE45WY05sqvUGnBulWzzkpMoJk+neCMY/J0gs0r5k+mGGupc8tq2TAvIrryMzyWtT3HY4gZE4qCYXhNEy4wkeFpUGIlXD+6wlrP4mqJAUzekF1n+MIzsQsqK4AzrIeAGVATU/OsdFhvKYNLDI6LOttMdJpm1LWlaQyL8xmmrJmdLfDGcSkXCG+o3BxNBWw+N5AYLqsVQhierkus9azWJfWqxDSWxfUaax3T6zXOWObPFhjpmTc1RWOZ1QHSjfE0eHeJxBFzRtYIrquG3DZUgeXSNVjrub7KcMZx/WSMbSzVswVZVjOZrl9uYGx9rl70Sv5bwKfe+8+89zXwHwP/1gs+5tZfEALBw8++xE8e3uRBfsAn5R65szSkSARDpUlEySjxBMognICOxkmI+y289ySdBOcs8a09ooUjWnpCIXHCUbghzoMSHQQeS4zAk7mQGIm1gtG1wAPJYPNBY5SG+NqAAHsY4bRAPN3FOkHj+hg8jk01qPWegfYIHBEJXsDheQCBQh32EQJwnrAVgxDEnQjvISWhshpIubIxuYPab9r7jkKJxPG1W1OcgiDUEGs8EKUR3nviKMA7T9yLod7srtlNMnbSjA/NMd57hGgDntp3iVVDqCRKgCghVRK8J20Fm9ew38Y7j+jFKCnodbbFUF8kLzrJHwNP/9z3z57f9meEEH9bCPEDIcQPrq6uXvDpbH2ePDBdQ1VHZE7jvMOxKRISKBwlSghqZ1DCI7THNW5TwFNtphs11ab4qDEWIQSi8RjnwSukzwGJe15oJH2NACJpsMKiFNjcIKSgqQxCCZrabPa3e08lPEIIytIihQCRI5DPJzptviqtRwmBpUIKQfP8Z41//gQlm3MUgro2SCGovCGQ4DGAx3iF85tzzK3fPLLcTMyy1oHdnEdTb4qhmtoipcAUNVJJrHeEsgEkjTd4JPgSkChKnFc47/ACUFA5h5CCujJIJanzCiEFPm9w3lNti6G+UF76B6/e+7/jvf+G9/4bo9HoZZ/O1r9Snl/4ykd847UHvNs+49V4RlsqFB6LY+0iMheTNSGVCfBWIBuPcB6G/c1DaI2QEiYLmpak2lEgQUuPlhYpQEgHCLwAh8R5wfK8DUYiKo/w4A52EM8Ts9ByMzlJbP7ygBQehQcEV8ZRO0uJw3qB9RLrBcLD/BZgLeJqudknj0DgN1+75w8rHJt7DH1l6CpLJNTzl8ThEfzsyTHCb3ruiz+d/+f8ZqujYNMywW8eD+As67OuQl4Ppps3pOdHAEcSGE461+iJRNdyc7sQfzYASrZamzfI59+7bTHUF8qLTvKnwI0/9/3J89u2vgAEgi+lFV9OH3NHZwyUI0TiabF0JdZ3uKhbJD6kyjUqA601rqhJQo1tDEknwQtB0I4wEnzg0JEkUhWlHwCWULQBS+NbNE6wbhLCVOAbTzAIcLUhEeCMJUxCbGPxEhI2E5jaLY0QBmihaJAifn75B7qBx+HQLsUaTysIcGZTXOWdB7+5XOOAuBXSeE8qQowHQcxmmqxHiASHJVAxtYN2EGC9J9QKryTeOqIkwBpHkjyf6NSJsNYTKomUoEWNEgmbd5NNIdjCDbHeIwghAuc9aaBx1pFEwf+nGMo5RCdCSkGabCdDfZG86CT/x8CrQog7QogQ+HeAv/+Cj7n1F4bnt1u/z2+0H/NuNOGNYEEkA3I3Y+UN7xcRl6bH+bWiKQOslTAukLUhu1oBnixvINCUWYXpSGzgKWSDwvGjrEeKZSRzNhdBcmo0iaxYXSuEg/ppjnCwriwIKNYVIg5xUuDGFR4PNy7Q0pPKMYFwGL+mASyCm9FTpPd88FEHgWDRNEjrKFc5PL8sUq5y8J58UYGATOa0gppQrugIu3kebg4IJk2DRzDNLMoI6tIgigYE5KtN0dI6q0EI8lmBD6CiwQlPaWNSsUAiEX7TE74vLwFJrDOq1GNTz6psAM/80RkAy7MJLg0pYonxnukifynRsPVyvNAk7703wP8c+MfAh8B/6r1//0Uec+svDiEkO+GX2FUdQtHDiQ6X1jLnFt8v7lGZW/x0codbrZjIa0ZXil4UoeqKnV6IDjS7N3bQvQ69u7sEoSLpSvoDzY1WxmutgI6KacQeoHnibrJ0A55mx7R2I2Ir6b3aJ/SOUSjQWjI47BMDUSDpjFrIjmIU9OmFDuQNYilJ1A6BSDC0qDkgM22O+y1CJzkJWpttk3s9oiR4XmA1RKUxg1t9VCTZrwYIGSAZUhIBCZE8oPEBd+MI42LuDQO0lvTaMdGgRRgFDHbbqFCzu/98G+mtIYGQDKOYTqjZjWqWHAEBTh5g0RTiJtbHmHqHloxIasl+KyGQkv17B5tCsNeOibygpzSdVsT+TuflBsbW5+qFtzXw3v9D4B++6ONs/cXjvaPlHuARGGpK11B6w4dlxtR1+MOrkHmjqNcLgo/a2POK8nKOzksmj8tNMdR1gXGwulqRnXRZY/DWU1vLyl6haKjtE8Bz0SwBRVdf87FXKDRPjWdUGcaPnmDKhvlkvflAd5Exv6movWatxqQ0tPgUSUnjxpQixHqDIwcqnoxLjAl5lq8Z1papA7UswFrKdQW7u1w/W9LcSDl72LDz1ZxQXNATIHEUdoan4b3M0njHp2ODLTzL+eYDWCdh/fAcKsPVVYZVmuunM6q9DoXNkUIwrRVP9IxfDGsa+wxoCNwTan8boWas600lcL3I6deGydRiasPkKtv8ZnC+oDnqcHa15PXWtp/8F8W2d83WCyOE5Af2Teb1M3LfoXQhH5c9yuaQ/3rcpr88ZHVqOFlH1Jcl3esM6aCsCgb7faZNi+GdXa6yhuStHqvE0w0tw3bF17pndPUOLZFgxAGFfcba32JlKi4WB4R1l3DhOckkZd2w88ZNxj/7jO5+l7I02JsDumnIotswCju0okvOzVu8Gv6YrhrhfcnKtXCkXJd99jsp9ZnlVhNRuZw0VNSRBCeJdjqsuwm9ez1EUnPvXc9SK1bNMTvRBaDQ6oCiGXMjSvioSLjdjXhcGqJ9iRpXhHlJstdneTFlp62ZGEnrSyPm1AyjECcsx0nGKGijCfDqgNI+5lPzNrV3NOWQlo9IM0cvDrF4dnfbnJ8pdva7LGY50X4L3Yk4HG1X8l8kL313zda/ubx3nJdPmTaaaWM5q2BeBby/9NRO8HhsMMYznpeIZU21LMnGc2xjuT6b4oDpqsY6WEwzGuGQTcmd4acEoqJ0lwgcwo+pvWXaZDTeEaiMWV1hhGf1cIqznukkw9YNy1VDnUaUzjHzJQZHKcdIDB8VnkQ0BH5O7hqsr7F+hvQ140mJc55zU+AayyqraEpDYxwLJ7HWMztdYfDM5TXeWx4XnkhsiqFKe4X1lk9zg/OeZ9c11nnmtsRcLjGVYXY5x1rH5MEZVkhOZYXVlpUtKW3DstbkdorHodwY4xvulw3WO5xYk5uGSluulznOWiYXc6y1XF+vMR6KWUFWVlzNs5cdGlufo+1KfusFEvydJ/82V2VBYyJsI1ktQ/pBgFkX7I0114uaGz8pMJMCMb5CCWispb2/SylDolCwTDTZLyYU2vLOyYQb7YxXwjGB6KOFpqLD3GdEKJ5UbSbXfeIyJFg4ojSgqSpiX1MhiAYdKgWmqwha4Fs1g1CyH624Gzs6UmLRtISh8TEfr48YZx0GJ4LqFA4eN1RFjTYWYy0yDIjrmlyD+WobF9XI6yGdm085iSpC0QARQrQpWPPr/VPeO92hHwoma8/wdLPZ3htLnEZUa0c67LIKFWkaMrc1aSmh03AQLbgTekKpMKKLcUvejNb84WKH8/E+2oLKLG2hwFjSXkIFpJ2UvDTQjRGRoredDPWFsl3Jb70wHk/WOEBiPRgnkEiKxqM/jPGnjt6nFW5aIMoSZx3eOmQYYoTAt2MaYykPQ+rYoBJLQk1H5Wz2iG8KjGpvWLmYsvGcF33CUuBziDKHW5SIsqTOy80gDevwWmE1VNqhA48XNQKB8w3y+S5+IaD2Mc+KDs4oSmEIKoFfNwgpsM+3TyIlrrb4SFKJzfSpqvabkirv2eyOFxi3KWby1OQmpsgEugZf2+eDRzymMQgpaWoDSlJbhxQCUXlCbbBe0hEFAoH1NcZLWmJFbmKc83jvkR5MbRBsirSElNSNRSiJw+Hw1M22GOqLZLuS33pxvGD9nR5WNchKEtWetBakE4++tnSul9TLEn9xuSnraRq8Uuh+F7s/xHRS7E5IfigIjtZIAff6Y7pBzlAoWspiveBHZcLaaS7KDk9WQ1ymCOaCIDOQpPiywisQWuHbKa6raboS32uIWg0fLEZ8Y/Qhv5FOiIWm9g3XJuLTaoerskNThhRW0y4961FIfLHCTeebmiOt8FpjE0XVsrjE8+qrjwnDgl9qPSJ6nuYbB2sb8Z9fvEvWhIgCdAGytojaIp3b7GWXAns0wgeK+KyieE3RPlkhBcTCEovNm4XEUXtB4QROavqtNeX9NlEO3oF3DrPOQUjsbIE9HlGOQqQE47fFUF8k25X81gsjBBwuI+KfNnQ/NfQeW1o/WzNYGsTjCalwmMmUuLVZico4RLdjTLdN8vy2aDeiHDZ0dIDH0wlqQhnQlRDKLgubI0Ubj6V0A5yDYKJo5QIxLWg5gykr0l4LLyRBKwQkAk/kQpx37MSKA32NUh0U0BDSYJibhCTYTITq+giRWdpKY/OCMA03FaRhSNBLqQNBz0U0cUMkUloqQ8oWgfRYb4h0ytyG9APNulK0U705VymQUmx6zLQTnJC0ok2RVtyPaJSjrSHRho7MsCR4LJZNAVjudsiNxOUJQguc86Thphiq1Utx1pEO2vjGESiJUpL2djLUF8p2Jb/1wnjvaf7wgp4HYR2+Nsiqoc4v0WXN8lkFZc3aeUSo0a0eppPid7usLFy/E3H69RKjPLGf8NXjK96IT/lKMqOtIjw5Eywtf8HvrV/j2UIxu9+jPxGEz1bovGb1+AysI8tqZBCQTWb4GyOst/hRxlF/wd/c/yEDldPyFiUUuIJT02XapBBl6DX4n9ToGrJ1QWgspQEZhhCGVIXBaaieVXDD8/5lzF++1/CwbvH1eFNwddbUFLT56TyhNprVZUOQO5pFgRQSqxTZskBEIeuHl5i3bnJ5ZFGJQ+v8+ZtPwNpd432CEguWPuDvT25ivECGBU3QxWpPNi/RpmG52FxOWk1XiOMEf1VQHUZcrTKGne1kqC+K7Up+64WRUnKro9Bn58SzKa1yjZKwe9RHB5K923sEYcDotROSwz3iYYt2L0Gmmu4bfao34VaakobwV46n/FrvMV+KBT01wBMw9kd82Bzxk/Jb/Gx2h2p8l7QIaSlN56BDoASj23sEoWZ0vIOOQ3qvHhCmAf52QCdp8Xp3wZw30EJTikMgYOoPiJRCE6DMiGgZs3fQJZCS49qivaHXT4giTZSGtO7t4HcDhq+1aHUsv3VzyVGY8WoUokip0PRUn2sz5NV2jC0Sdm+m6EjTHabEkSYUnsFeZzMV681jRDfksNfGBSGJ7dLWASNt6OtDhAipOCJzHUZBj6JpES77dG1AJ3fsJ5pQCfaO+4RpxO4bJ6hOjL7bptWPORxst1B+kWxX8lsvjHOOz/7ofaQUNM8/p/TeceE93nkuqxrjBdPcIZWk6LTITlKyo5DiZkEZOS7dnHfvPOSr/e8hUASiJsZSeceDSrJ2GuOfMq1HFGaJuOognlQU1hNezxmvVpiq5mrd0LRaXHUEZuhZpTWj9jmhyhkbz6FakCIx3nBmakBRm4offtzBVJ6HZOxNKibvP8NWDWXdIL1DVDXLpE2J4/wiw94x7Kfvo0XNtVkxDAqsd3xWFRSuww8uFJXxPHULuhNYPZtBUeCyknKZo3Z3eBYoGue4sEuc9MyWJXcOr2m8o8slgojAn9N4y0erzQewRbjGVCmpdNTTGsqGqycTTO24+vSc5s0j5tSIRvBsvuStZFsM9UWxTfJbL4yUkltv3+T0wQVhFCKUpFEB/f0+s3XD7r0R40VJuxeyXuYsfnkIXUl2UnIQJ+Rywn/33hVv9v+EXTUkYM6+jnFoPqpWeLHHZe15sPwqTRYz+nBEsWpoLZZEFtarFTvHQ64vlgz2O4yFJr6VsnYNraBC0WOoP+OrqWJPtajFEPwFkTjgrHH8YPwauhsTNIJXx4pyUTK8ucv0/jmtQUplPf7miFEUkUWC3TsRPrAs6zvcTN/nThCj8RSU7AYxRZ7weldxNlPcvu6SV2vakcT4gCoK6A065FFKb9TiqTSc+ISzMOMbxzPioOZYG6TYpfErphwyNhmvpZL3lgHxso3zgnht6biGhfcMjwZcX67p3N1jZiVtHeBjyVF/u5L/Itlertl6YZxznD6+xkcRtYXKeLyH+aJ43mu+xgnBxDtmb/TItWMeVFjpuDQZX7n1iHu9H6GEQfkJt3UFVEjWCDzSPeM7s7uc5hWzZx2WkwLXOEo82aLAe5hdLvHebyZNCbhuSgwerUr2h4+4F53zhv4EgQM3BiyVzfnh4oisEUxthVo71o8WeOeZZwZblqznBSYMMdaTXeU0kWe8LBm2VnyWWw7VnI5cEkhHaS0fFZZx0+KDc43PFNmDHFcbsllGXRqc8yzWNc55rooS5z3L85ygnaP0HOsrCq+Q/hpwpP4Ch2c3fMC60mSupMkMxjXMHo9xzjE9neG8Z345x4SKclGxpOYq2zYo+yLZruS3XhghBOmvv8tiWSDyEiE8Bk+41ybPa4JXO6wWBeXXY3JlidOKw/6Kbm/JNwfXfGv4IwaqS5uMV8MUQc3YNpQOfpwf8gfjb/L9ix128zatx4609oh5hT6foxqDbRqidkwhA+TXb1HVFvYkVtW88+opr6ZL3o7OMbKPRnFFhLUlv7t4h5UXqAKCcULr3KN3WvjP5oS+oXKO5GCAsY4yBNGNaTqOL311StKZ86X2kl21JvNdpIdzp7kVr/n71zGxSVAFpEJS1h7lLa5swDpCZ2gCTdAPMdKh37XkMeRlws32hIE0OCJqXzG1LZY24Sw7pl5pdp9GeOdRy5p42CebzEh3uqxWFeGoy7orKe8ohIReEr3s0Nj6HG2T/NYLVVuLkILqsIUNBaYtKJUk6ynSUJG3Q4z2COBwf0Kvk3PcWXLUukIiCKm5qS2wKeApvWXtPX+8vMOkjBAIGuxm57ixJGuLzwtsVSO0xjoHez3yVFMOFHXsiFODFJ5A1IDA+xqBpHENmRcUXiIEyJXCzwVCbI4e1A3WbwqNnPObGVctCaHAdS2oGgnUflPF6rxl88uyAAyTokPVOIJ1gF8Zgszg6gZvLCAwxkIrxliH6QpsYDYjBr0llRWhUEgcFrAYJk0XYxyuCP6stz1SYs3mNbceZKgxxiEkbMaVCGrrPv9A2Hpptkl+64XxwJNvKHwpqLsCpzw+AhKHDS0uKNBkvHkyJsHy7b1PEHju6gn3QkNbWvpKAQHXtmTlHN8rjvnu7A7fuXwFaRX6UYyaKVqPG8KHc9TVCjtf4JxHtdv4KMLudhG1pbipCWRJf2/J1zpPuBvMOFKCWGwmVWkSHtQJP5vu4VYh7iLFe080r9CNx2cZpq4QctOX3d4cUu3HOOER7ZqHix5/ff8TboQzhlIR45i5gKemxw+mNxjnXcJrTZiBnhe40mKjEFGukVGI2xvg2xFFX2JTTzIRtO4VDMMVb4UzukoBgjNj+d3FLaZNSmUVWI0JHMk1yKrC5BUA9WoN3R5NKHChRJcWswsN24rXL5LtNfmtF0YAu6OUug1aCyIt8TgG8WYq0q2e4VfvvM8vDq749vATAiGIpOaNKKenW3SlwYgOYCloUXjHH05e47rYwXpPhxifC0YrSfh4SbuocKsVQgiiNNpMSdrpbAqLdhOs8xzsNgy7GfeiMcPAEAmHkl3AsnBDPi13CElolER4SKVGlJaOczSrnFavhbOeuJMirQABcaJxwrGXShJVMgwSAuGoCZCi5rzuonVCnmnSQYB1nqQX45wjwG9KVANNEiic9fRkiPWeXjtASMNxVBLIGu8tNSkLB6NQ4HBgepvn5yTaedwqJw3lZuLVbg8bhIQnPaoYgqEjSh29YLuz5otku5LfemE8ns47P+FNIJSWQBhiZRiGGbGseD2doch5PbxEoNiRnp6QpCoCMkpv+aS6ovGOT8qE7y3e5buTWzjvsR+3ua4kO+9Z5P0JQVFTzJdQlCAkVWURtw85e3VI0dU8e7fCqJrb9x5wI1xwK5wgcETEzO0VhS/5e/MRmRPIesHss2N6pw7rLOpqzep8DMawmq6RacLaO6qTlGzkWHrH/s4CE1neiE75ZmiQPmTml3gkGvjpuE9TBlyoks5Ukt2fQFFRXVwj4xAZhJSTNdXdXcbdkqrlWfk1X+md85XWfQSSysdc2xkFiuPgPo+yv8SqqAgWXZq8IX60QFQNy/kKhGB5OYcbx1wMBV4IXGFxA8u4WjJMtsVQXxTbJL/1wkgh+feOlij3Md9ZvYVFI0TDjbhF5QpGeo/KnZKqE7ybkSqNQ2FxXPkRH5RL4BjNQ37v4rd5vFYkTUzgNatccXsZYR6dsztqcf2sodWLyE2FTCLCJCLrJhz02zyNDLfTmCdYRqpFgyEUbUIR4ihQ8oTGPsKam7w3l5TPbpIaSLSnnXvkcsXwxg7jvGDvzZtM5wXi3WNcKogSTbsliSP4G/tzbgcFpbhB219hRQvjG67siL24RYjmhu9il0t27wyZfXpFPOrSWIdMI8LjHqv9mJu6zf1wza+8mpPGhtIfMVArtNB01C7nbsrEvIUgpOf2mCE5nFl8K8FHmsHODrOza/ZeO+bKaQ5bLa5MRbwTICPFcav3skNj63O0TfJbL4z3jpv69wHFf3/nnEA4IuFJhCAUkIoWkgYtNEIpjK9Zu4ozb3jQeOYuYm2X/MH86/zRRYISAvVMw0Iy+NhSPrxAriomy5z66Tmldcg4RCVtSu/J9hOe7jXkXU90+JhDXfDV7vcYScdNVSHYdLOMOOVnVZ/vzhTLUrE4NyghMLOG6oMJOiuZlDVNVTOZFTjnKS7m1Dd7FFRMtee32xe8lfyYSBTk9jGpDDhrcj4tDvjJcsjpaYAdS85szm5pOVsW6Os51XyJ7LRQQcAkFFTecXW6pvxWRbv1CUpYFqbhrs6BkJSMs6ZL6U55snwFsjXyPKG4zBBC4CtDcb0EKbl6eEX16k3OVQZakNQZSVhyXkzpBMcvOTq2Pi/bJL/1wgghOQ7foDCP2VMpQggkFU4MyO0pRuyCO2dBF+/W/LDeATTKZXyQv0vuJpxn7zJZlRzOuixcRfuZojV3xD+9or/TYloWDHoRYwHd4yFZ3iBGbaI0ZD7SjG4FnO9POQxayOiafdkilgsUESUBpVvx/fId/umizc0g4ccLwchEVKuKnU9WRGnKym2ONVkGDG7tMh2vCO8NqFKBOqj5hcMZvzx4iJfHxMxoqwNqN2bpjkiVJatS+sOQxQPBvUVEXhccLNdM64p0p03jBex06Y1SilgwuJUyj3JuRwGJuuBWKBHENHhqhqxsxHfHv8p63uLWvEtWV8SphtxQ1xXdvQ6rdc3gjSMuAsWhjLlISt56bY6UcJT0X3ZobH2Otkl+64Xx3jHglIHWbHq/b3rLSzfD+hBnr3A0TOwlpQuo3CaN/Ti7w3uLDhfFIVQR4892SJ8atAhQ5w08y/HWs7ha4yZTZkuNN5bVokQeDMn22jjnWR0L8nhJqiuWpuCvHdzn1fAzQgK0iKntirEzfFwYnIfczpif3kSdlkQrg60N66LGFSXTswYRRUwri+21WNY1+X5IHOe02mdIHBOz5hdChffXVMBpA4/X+5yt2ljv0EtP9cEcvaiYP53gnSdf14hOG+E9C1tTt2MmeUHSLgnEGQKHcSWBNJTe4hlzZd7mg6nEWbhwOW2jWLqGZFngBczOp+jhgMXFgua1I4qrDP8lR0OB9IKFWdIOWi83OLY+N9skv/UCCe6bFtrPaZA4L/AIzu2AibUEoo9yc94rboErub/ew3rN+axLMd6jsBU79/vsXJe0So8tS+LHS+Qyw83WRJGiNpZw0KZRAerOPmUnZPZGiB84ytslv3h8zUHvGf+d/kM68pxYdOlJT2ZrzmybT+qQjxe3eJgHNFcHJE8l/YnDZBV+sUILMMaS3tgnNxCGME0DylsB8rjg7TtnKBlxqGa8EbWIREjmEwp/TW5bLExKOQtJZwFq7klqQ7XO0ZGiyUqi0Q7OeaoQGIZUHU9nJOina4bKEss5OwockpWraXzCadkjKNqImaY31wTTmmhZIcsK2xjiVkwThgR7PZqWIP9mQCY2XTT3Ois6elsM9UWyTfJbL9TSbVbJDo/xksor1g48gssq5sfTN/BhSOV6PFjv4bxg+WmXyGrqQuEqh0AgCkMys4jpGrHKcFmO9SEiSXBSwNEOVT+k3EsxbYuPHUKAEBYJaJrnE5UM1gsmTrJ2gnMzYNmEXGRd2itJuAaRW8LCQVXhhEAGCovAtyKMA9sJcF2L6DoEHg8MVEFbBoDA48g9jMs2j7JdbBng54KwBF9t2i372gCbaU4ALtpMq3IpyLjmVmdGW+W0ZIUmRCGp/Oaa/dNiSO09QmwmVIUCvLV4Y57f5pDtBOc8LlFY4RBAKiqGwfp5kdbWF8U2yW+9MB7P/+HZrxCLgswGNFYhgbO8T1flnM4OKRqHqgRJ5WEaIFfQnUoU0Jk1dJ7MCb1FjpdI0+CmC5x3SK2wXqBGA2wvpT7ocP12iJQCs1+zfzzh5nDGMKr5jfaHvB5YFAGChmsX8n7Tw+H5/vQOjx7t0qw1yQ8Cwtxg84zwfIFdr/HOodKUpt/GJTHlbsj6hsC9maGE4DiYcpTMOVYgfY4Fvl+GrO0B/2T8BnhBK/eETx3J2OLOF/jlGlNbhFLYdhshBfVQs96zuKHnq299zG4y46zu86utOS0FIJg2Pf7B5FXO8z66UxJ+EiEmlnDewKrErnOQAj8YINopJomouwLVXbOrK37p4FMkEkHxUuNi6/O1LYbaemEEgpB9LsoOy7pLVnW5KDukts2zvMvAJ5uiJpNQlAGq0oRO4a2jpzVq6WgHAh5ekiqPXayQYUDYSnAO2rtdnPWkB22s9UQHkuqg4Xg0YydxdKKCo1gy1Eu07BEIhxMdtHA4JMa3mdQJvSDGFoqe1uhxQauxkOUI70nSCGc9rd7zSVX7CfmO5Ua75qiz4M3knNtRRU8KlBwytzmh7OGwxDLAO4k+U6RJCJWjM0xxtaGz0wUpCXbb0E8pBpJOGpL0czo65jC4Zj8IaQmovKLyjsd1h1C0sN6R+hY0nh0CaDwhHi3FZhJUe3POyW5K0fEMZIKRAkmIEopQdl92aGx9jrYr+a0XxgPf/69SJC28AywoB+sKlA2xhWW3CdBFzVHmCWdrRF4h15uy/HB8zcJU+LJmNV8gtcKHIY0Fbp6wjAJWd7usuwHXJ5bycI0SgsHuglFryd/o/wlfiQwDCcJfb+bB1gWg+BfLG3zn6V0en48YPIDuFJr3JkSlobqaw3rTxTJbl6hbN7jsBRSHEhc2+KFhv3uGQtIPck70hEAkwJIJFuyEP5i/w4OnKdFM0p9B5izD8YrFxRib5ay0hCQmDxRCbdoOlP0lrVbFjfQTRsGKRC4IUOR+hUdSuoifXHe4uOoybzzJGJaTNZ3pmmpdwjpHJjELqXDDhGltsIkinxS88dYFN/VTJALrzoH+S4qKrc/bNslvvTBSCL4U7/JwMWX00OO1YLovOHAhF03FSZxwXqw5WBvKh9fonR4qlJRXVwxPdphqyd7JHuOn13SGLdaLnGDYRUcB4y/tsttrcXpQc3wjZplO+dWbC4ReMggKBiF8I3KE+gDhL8nEEdqfYTli0TT84eOvIm1M/2nATZFQPJkx2mszfbYgbQWUVQRSELVj5vd22bnZ5dNuydF+Sh40HIURja95J3a01T6enEoc0viSJ82X+HR5xGHeoaksifC0lYTVmp2TIeOiZO/WHpOLOeluuimGGmr2kha1zmmpA0IxZT8YAg1GtHHeMDV9XumHfDgOeGXcY71Yc9QosqpEJxorUnyvz2DUZZIEdF/tcRHm3D6MMCJFiQGJssRqu0f+i2Sb5LdeGOc8s999ykAIrANvHINPPFVtGBhLoSXtRc46yxF4zONLXGPwxnD5YY4zhnFT09SW6aJGjUZU+z2895Ra8NSW5CE8602wqqbdeoRE8s3WfY6CKbGE0J8Dhsf1UwwNnxYNvz95h7NVgPWGTiVZfjhDrRvG0wz36IyyKJESVL9PlTtq73moC0rlOTdz9k4ueKv1IyQSqEiYY5A4+4yf1T2u6mtm+S0WVxXJzKOeNpRPJqisZDyb0VQ1V4sK021xHW06Rq6ThkH3jFf6Y24FP2ZPXxO4KUIFXDQzPJKzMuZpU2LGksX7aygtl4ucMK8olhlCSpT1zD6bsPr2Cdk8Y33PMK5mfC0dM2sMJ3qMtU/Q6p2XHR5bn5OfK8kLIf63wN8AauAB8D/y3s+f3/fvA/9jwAL/C+/9P/75TnXrXzdSCm4WOeefnhMEGqEk9bqgd9Bn9uSK/s1dxk8u6R0OWa9rAumR7YjGxfRHPWa1Z3BzyNVnl0Rfv80sERS3ArSUTE4KDtOItJ7zdt+TiSnvxjnW5/x2q0KLPsKvqMSIT+pz5v4Vrqopf/fTv8Z16UmWmjTXdH9WMZKCaVYwLDOu1iu6e0NKB9w7JIkDLt8K6N+KycyaN1+reeXgMX2R0FELjpUGucen9SUVh/yzxQmfPfsqV2PPzVmIXVSk5ysirViu1+zc3uPqfE7vlX0meYO4HVN7h94t2E81I53R1oekYkFH72PdjE+bezTe8cdXt9F00blgL45ZXV0zVJKlMSRJiDUWHwe0D7pMU0n3yzE6XvA7dy85bJ3xq+0KJXoE6uRlh8bW5+jn/eD194B3vPfvAp8A/z6AEOIt4N8B3gb+KvB/EkKon/NYW/+acc5x/skZWEedlZTzDO8cs9NrQDA7m4KH+dk1riiojaMsG1wYMJ+ucYlm7gTc2GdRNVSpoAoMK7G5Zj+2OXdeO4X4gv/W0ft8Lf0Jv95+SEiN8itKD8Jd44F1PeOfTt/ifOkwpUBcAu83m4Zejyaoswnz02vwsJqucUpRC1gVNU56rsIVwUnGlV3TEiXKL3ldzwCDcEsqp2nsJVkT8mhqEaUgW1T4ZYOrDauLOd57ZldLAOZ5g9eCpauphCVuFbTSM+4mE4binB2lUP6azDmWtiGznljVXDcl4VKwOl0hgMV0jS9KiqyiqQxOa5bLhnIgGPcXhN2andYjYmFQ5AhfgJ+8pIjYehl+rpW89/6f/Llvvwf8955//W8B/7H3vgIeCiE+Bb4FfPfnOd7Wv16EELQ7McvpCiUlXgm8g6STUpYNSS/FLHKS/R0aB3Rb+FBStyLiNGDR9UR7McUko3gjohgY0qOMQAhuhFNu9Cy/vfd9RjrkVf2YfTXA+4aaBo/kZ7Wkoc9Psw7/xcPf4NkKOp+0McYx+MQQVgL92YTIVaxnCzo7XZrGERzsUPcSlq+kKCVZ3jG8e2tJ2hvzVprxl9of8804RBCRuwqL5kfVEaUb8aPxCd3LlPXSkJaG6KLETaZoZ6m9I4o0Ng5wxy3KqqY+ETjheePgije6c27qCR3VIhI1Sx8xdgvey+5iPVxe9zFlQjzzpEVDuciIioq8rlHtFBGG1P2Y8s02xS7s5TGdvWsOdEkgVjQupC0lQrRfdmhsfY7+VV6T//eA/+T518dskv6fevb8tv8vQoi/DfxtgJs3b/4rPJ2tvwic1oheB+cd3gsIFFYIqBqcVriTHZooxCiJ7WqEFyDBCSj3QcZQHIao2NDrZTQCEJ5vHz7AiQ7HqkIjSYT+s8KkzR8PCFYm4PcvX6cyErzHOxB/+kPO46sS592muZdSyE4bFwXYYQueP2KrWxIFFSfRlEhAT3o2LRoEK7cplDotBwgX06xD4soRrD1i3UBl8E2D8x6pA5xUMOzRxIKyG/zZyfR1TipLbgUZmohNN36HR+KeH82vNLZWxFMLpUEsMpw34BzoALTGdDVNuHmD9Xh6cUVP5YSiwAuNEvL5k9/6oviXJnkhxH8FHPz/uOs/8N7/l89/5j9gMyHt7/7/ewLe+78D/B2Ab3zjG9vo+zeI91DcOEA4j0fgBaAltRDYumZ10KJynlVHQSConm/ftqGj2YOq42nCEh1mvHXnFCUFt8IrXo0u+Gr7FInijhZILIFIyF3O3Ek+aro8KIZ8UBzyJ6d3OV+2SEpN9ETQ+2mF0ILowQwuZzBdYMJNF0zX7yMdFIctzF6L/MCjb2XsnSz51uhjTpIL9pXnprZYD4UP+MyEODzvZyfUTYv6qkWFp33uSD+eQVXiihKnFDKJMTf2cWHIfF/SSAh0gRwZ7naueCe5Yk9JAkqMt8yM4qnpkZXw0dkt/FmKsp54YbCXC8gLjHMIpTZJvtOm6Qe4CuxOw1feuk+crDiv2vxia8qmmYEEX768oNj63P1Lk7z3/rf+m+4XQvwPgb8O/Kb/0xptOAVu/LkfO3l+29YXiBDQenvI0/WKwZkjkILKWDqjlIe7ioNuytRkDNoBU1kQ9kB5STBYsh+1SfpPiNlnv/8+d1qelrziJKzZ0ZtmZ7HaRXBNJbpcm3PWfp/Past3l3eoXcIPH9+gJTtYbxmVKcX9FR0dUpQN4npOJDbtBzp7faarmlY/YTrJkDdS8oFAnpT0duDt3lNC1QXOGOgW4Mh8SmFrPi5vEsuAz8Z99hmgLz0Hpaa6zgiFpW4MDkg7MaVOaPcTJmtDZxByJjL6XYENPXfDMaGMCIXEiwHeX3DtD/moVORmgBEa7zw9HSKup3R2O1xfLegNEuanBWq3g09jih609zTxcIEVO8R6wk4QEwqLR1N5iEQf8XJDY+tz9PPurvmrwP8K+DXvff7n7vr7wP9dCPG/B46AV4Hv/zzH2vrXj/fw/rBEDkOWNz1eeNAhLnBYqXnYqSg9rDoZgfL4do3Hc9hdc6PzlG6Y01GXvBI/5d3oGQLFnoSW9CREOLHcXMpw10y95VFd8sPsDt9f3sB6z3jWJXmi6SwV+tM1aWZo7p8SGIO7npJ7j5CKlRHIdptZ2bB6Z5erVwRKQjhoODl4yL32hFDAr8anRDImJuTcznha73C/2sPhmK1bzIwgXQgWq4LOtCA/u0JKCUKQW4nsJawuViy/NGTayzHC02lP+PUbn/B6esm+kgRCY1nwzBb85/MdjBeczwOmD1J6p57KlXTymmUBdp2xkgLRb1P2W5tLNKFkcTInbdU8KQ2/vfeQnjT0RUhNjvGSwJ0h1eBlh8fW5+TnvSb/HwER8HtCCIDvee//J97794UQ/ynwAZvLOP8z77ddkb5opBS8/XqPRxdLeq/kqMDhdclAdij1FQdBn0qeMdApUk35dHmAEpJ/9+R7LNwdzhrDN9uar4Yrlhzj3YK2CtAi4MrOcOImib/kj4qv8cO14TK7yaN1yPzZkAjN4EM4Ugn5h1MO0pDps3PaERRFieikhO2YKkwYHva4mhWk3zrgbNiw96qgkBXfvvWE262GX02fEatjdlSfihFz84wPmy+zdJ7GtjGmg2wibtZ9Fj7n3nXNYrkm7idURY3sDYlHXWa7PXoHHaZRw+1WxJnL+K0bY24kFSc6RcoOnowZR3xcx1TNHT5eefxkRFvEJMIyqDxmnbF33Oc8lIxOhkynGepWFys8zW3HjX6LUhd8fQCvhSuOgmMCIPMChESoG//Sf7utf3P8vLtrXvlvuO8/BP7Dn+fxt/715rzj7PBj4iNBIxxGOELpKNQKrQwimhNR0Y9OkUj+SucxB8GcXbXmgCt+s71iV3VQNPTJUTLEkuO9x/iKB+WEmYv5o6UkdyFPypKzvENTOeza0slg+WSGWhkm8wq3KLieTJFaIaSkQKH6CVdXGcvXdngyMjTaUUWrzWQoKm5EH9GWS6Qv0IRYf0HhGx7XDQLFx9MWT/MO8pFkbHIG90tmHz3Dlg3F9RQVR6jAsWocFrhc5Ey/onCjU/Z0zs32JxyqmkiUCJ9RI/igvKbwjj+ZeWonyeuKJtOk1w3rD8aovOTy0ZimMlw+uYKjEUtTI6SgaTwmOuWV/jWNMIQip7KPkTqmsDUz52ibpyTh2y87PLY+J9uK160XRiD437z2Id49RBIigFisEGJEKp6ycK/xXuZ5NVHkLudX0zlaKBKhaMQOoRdUYoRzpyxos7ZLvO+ydi3+3uKEVAz5f50PuBW2WFUTsvEJau7Y+X5A3Hjk/TmDYcr0o8cMdhIm0ym9vR5FZVGH+4SRZqk86ZdHXB1bDm6GXAwmvNmt6IQT/vbRdxEkdAiI9AFLd8aVv8MPq4rr8pjLdcDjn90hlQHhhyUHrYDiwTO6rYDZKqc97FLVBtFt0R6mTHqK9NUO1b0Zv7K3JghO+Xq8RFGC1zjR48xcMTb3+OergLuh5kfjgN5HXWzhaT9c0goVi9WK/u09JnmL/us3mIUxYVtTtz3Ja0uCuM9e8Ijf7DakQtFRI6xfcm77ZE4h5LatwRfJNslvvUCe0H9GIB2Nz5FYtPAE4hwpYKQf8zd6JakUSBSxUEgEAk3opuReoMQ1HkFjlixcxNM65FmT4rxi4daYfMTDwjN5fAO1gvZFiKsd9awi9p7lNN8UDZ3PgE2hk263cN6T5zX5u7tMBw5ix3RVIIbQiS749s4TFAaYM5AJtZthEdRmxsLscJk5fnp5jLWwaGr2G8tiWRDahvnTa2xjKIMQOil22GHRDchOFI0tSEIDckIkDJolAoFEszZzchfwpDJAyKpZsz6/Sbg0zzdUOpbnM4QQLMYLhBAsr9f4mwm5qSkPQUnPaen4t+MJr4ZzBlIDMwyCuVGcmZSvuznxtkHZF8Y2yW+9QIJvJy2EX7KyYL3GCUMk2jTktGQP7SUWhaeh9pYGMK5h7DpMrUPRp7AN/3j5FoUT3F+MKE2EKgzF+T6rsaDvIwaPKzoLh55VkGXIrMRPVgSBoM5z4p0uxmcEe0NMFFDe6mIHius3Ne22Rt5ectJqGKXP+F/e/OdIavalIhQBRtTUvstnjeT/Mv41Lis4f7rP5DqlfenoPW1IP1vRijTrqylJK8LOGvRODzPosL7Tpj6QrG563nhtwX73mgDJK/E5Q5EAFkPDme3z47pNIjfPc/GjW0RzCCpD/CxHPrtCK0npHGESYmSI+cYNcgHFbUGwl3Gzd003cNzSE9YuYk9qMgLGpuYfL9/AI/mbdF5yXGx9nrZJfuuFEs8LbwIcSniM2Ew0ck5QOZg4wUCCEjA2CZmH0yaio8HTMLchvze5jQs0Dkc5jaldwPJJn1ho8A6VWfRVgSwdYlEirhbIqsYu17hOjFAKEQWI3QHNToumn5DdjPCp3NQcCQ/Cc5gs+MWdz5BsplFFQhAIgQMyp/nuekTtFB6LXymCtSA9MwSrzeQl/J8r8xCbUYdsNiRsXgUBSI8A2qrhreiaRChAUNHgxWZilvOCp+Md0loBFp0b9LL+s22PUit8oKDbxWsJziFDiwotw7ggVrCrM7TQKKFYW8XEahx/ehJbXyTbJL/1AnkeN1cI76jZfPBoUTR+jcWTOYvxmtJrKjfgYd1naSKumw4eybLUfDK9yaoRUIBeBfjzCO+hfenRztGZ1PSfZpi8xq8yZFVh12tMYzaTl1SA6sbUR/s475m/1sKlgtUtgcOT3l7w9eNnpNGKvzX6CZHI2ZWKjggQwuKo+VkV87vz13hYdlllAZ8+3Sf5aUIbQWtsUEuDP7+i8hZf15hBBzWKyV87xHQEyzsSIx3pyYpMNvy14Sf8rf4DYtEQyBhQPKjhu+sBP8pu894nr1DMY2Rt6D6ytH52jUBg6hrbWGSSYIXGDds0VU32qsa9mVELuBtfMQrnHClBJCqMd/yo6mB9TF5IPs0PWDaOQfiyY2Pr87KdDLX1Agk+qL/BP1q+RuFbWFo4D5a9zQ4Z9nDec3/9Or97/jo/OL/HZ9c3MQ6U2eHD92/QtV2c8wymXfQDTYCkJTU0sFsLog8u6bZCvPO0WiH4zdbNuB3jvac7bOO8pzuIN28OrRDpQCnopopfOHnAzY5gEOUIMQI8keggBTgECzvkny3uYcwe9893sFeH8DiiFQZIQNWOVINdruj2EghDukc72J0u4kaM2QmpjwzdW4K3D075tb0ZX08eY8UQj8OJBI/ig2pE43d472qfXpLiveegiYjHNVESIqXHV5uCLe88rVf2KIYB+vWUfOC41Sm4013wtfQx92JPJDxK7eBxKDHEAatmgPcx/aD1kuNi6/O0XclvvTAez3826SHo8531LYyTWK+obEDtoajblPYrLIsE4RRFHuK9RyxPCNYKKmjOBdEkhXFDSwqCWYEqLfpqvRkHmJfMpiua2YK580gtEGGEtQJx44Sr/QH1jRH372rKuwnL1wpaacPeyYxXOhe81TsnFPCb6fvcCfoIF1GJOQ7FR3XIH66GfFQe8OHTHSbriGXmiKcKc7ame2XhyRXZ+Bpf10yfTRBxyuxqibk1YtLzCClw2nGRNvxSuuA3+x+wpxcIV9JTMUs75YOqzcfViB9cjhiv2yxMRftBgPzhlMB4ssUKJnNwnuXlAnnrhLPdlDqUrPMada9m1BkjgUAa9tUDWiLGMufU5vz+YoBjyPki5Ml1i2erFb2d9GWHx9bnZJvkt14YKSTd+nWu7RlnTw5wJiAvPHudmMurklsnEVfxFUf1gLkpiMoI7STxjyyDYYsnYcGbV5r5RwvS/Q7LxpI0Fm0M1fkFw8MB07pmtN/hsigY3D0iqwzsD9GR4noUMDhq81lScnCc8jSe8Uu3MqRa8pdGn6JFSKgcd6IOt4I+FXs4Tsn8PqVr+HvTr1I1bd57dMi+6rJuSu7mXWYm48azjGZZYldL4mGL9cwzunvAZFrS/+oNrgpLvx9TCku4W3DYNewEBi/uEoiMlj6hsJf82Nwhx1HZNsdJi09MwL3zPtnpmp3jLssnCyIMJlG4SNHe7bJKEnoHbU6LioMvK2a7S77VWRDImkNt6apjkBnP7Amf1Al7QY/HhaV6fIM9p7nR7r3s0Nj6HG2T/NYL47znH/4LheAGwm/aDEsvWc1qvJV8+rHDrXvo0qFsRFB6ZNngS5gvVgyvKpZFgysN6/MzdFVTZzllluONYZwV2MZwuV5jpGK6rBFJiEXgSkspAh4EBWXgeZqtqXs1JOfsBhmD4Aqw/FJ8wUilBHhK9xRPw0U954+LQ86qgCfXMfNCkvmC+APFNF/Tfn/F8uGmZYEtavLpCpEmXJ0vaG4e8emuohGCXKypD+Ht4QW/tvc+32w/5J0wpC0E1l+w8IaLpgQkH8673P+0iz0LWH60htwwXq5Qn55TXU8RUiC6babTgupLB5zHJVnPU+9N6AUZbXWGQNCXloG4oPaCh/WEwjuq5owfnn6Z5dQghOV0uqR7GL/s8Nj6nGyT/NYLI4Bv3u9webqgPFEQQmUsIx1xVRbcqQOWH67otSOyWY7ZjZACmlXFbuNYfHxK/+YuV/OSdl2QzTOkVkSxpiphePeAWWbZub3LuHKEXU2eVdTHIaKnyHqe4VHENJjxjVcqzs2Cb7cnGF9wV5ekMuBYp1gxIrenPLW3qewl/+fxbzNvPLNFC3ndI7pSnJgOy8mSe49yZp+NiQNBlZcIAZ3jHXKnSH7lHpMIOicJj/sZb395hhMV/4PDHzDQAV8JLVINcO6CBbss3SVPilvkjeenH96lE8SEi5qdJGDxJGNntmK+XBL3UqyQcPOItJcweSViFKcsOktuqBAfTTnSBo2hLxxKjFjaK67tHcb1NY+Wb1JUAd1CgRccdbZbKL9Itkl+64XxHq7PlkgPyYMSrKNtHV5U7CCoWCGFIJtkSCkIHs7xZU3iLFnTIKVkdTmHxZq1c0gpsMZudpgMuyxzg1SS5SxHdBKWUmBv9ljf8BQDR9MHozNeeeWCo+GEWyLny+0PaQl4JWgIEECI8HOeGsXHdUPmhkxqh0ByddmlOg9IrxRrW9J7kLO62BQj5Ys1VBUyjCjQ+JNdZvjNOS9K1K6jFgVKQGFDOmqBR4Kb4pE0ds5PyyE/mO+yXLfwXjEraw7PPNXTGfG0ZPV0jBCCumiQ3fbmtVoUSJEwz0v0GxWFnfOrwyfcCC42RVUiQfsVM+f4rIDz5pirdUNx0SG+skghmK0Keu3kJUfH1udlm+S3XhghoPvwknVlkPMM4T3eWKIkJA81oYS6MojaYKyFLEcIgVGKKAwwVYOKYkSgCXodbNWg2i3opjS7HVQSkDUFwY0eS1tR3QhoWgb9Zk4sBHfCKb9x/Izj5BkDFRD6OXe1JxKCCEUOzEzBh81NPqgiFvU+D9cBjx4cQ+UIfpYQIwmfFew+W1E9mxKEknqx2Ow2j2LE3g72sMP6Zpe4F7AaNOx+Y4V1htfTMfvRkm+l5+wqiIVi4jW1K/lPFt9g3Agmix6nix7R2NM587Qf5USRppguCKWgtBbV7+IGbaq9FJFqsn248eUVnd1rvtG75MutJ0SkdEWDoab2IZ/WQz5enHDZwOTHd4hKR1AY4rUnVdv/9l8k23/trRdKFjVynm1a7vKnE5uA8RzRS2CeIbTCVw3yeZ2OVwoChc9LSCJ8kiKERAhJddJDBcHmB7Wg7rcQIyhGjqRVEPdLSiGQUvLtw/sMwk1BViosb4ULAhESC8/CKmog8wVzG+IRTNdt3nu6T5FFuMLT9SCEJ55ZhHHPT87jyopg0McFIWa/h2sHm4EoSlAPIGxZElHS1xUH0ZKeNHSkRAlF4xRL76h8gMfyvAKK9MwTzz14EHWDXy4h3EyzotuGVoJtB8hYYo4agnbNKJ6hhUXg0V4SCcnMOaQQTFyb0oWMixCJwHvQmSGY2z+tz9r6gtgm+a0XxnvP6uwK7wXOObz3SC0p6hrhoSoahFRYpdGdEAKNE5IgTXBKIneG1EdDvHWsIoFrK/K9EO+h6Th8W1G2Dd1XVgjR0G8vOWxn3I3G9PSaX25/xrHaVLXuyARJwtoXXFvNAxPgcXx39VX+66vXyRrJ9ONj6soTXXk65472kwLfOOSzMdVyhS0qilCj0hS/N0IpQbkbU6ea+T1Ydxs6d+f0oxl/efiQX2w95maQMZKaAMGFySi85Y+yV/mHj+5gjSf/0ZDu0tN9avHWoc4n1IsFvqpoZIzaGWBORggpyPcF2esVar9h4eA3e+fcDpa8FSzoS03hFecOHA3fnd/jwaMBq1Kxc7+hV1taH82QUlAuSxh1X3Z4bH1OtsVQWy+MEIKDe4eAI0hCou7mOnB/v4/3nt6tEe7WAZ2THbxW6FZMPGzhpSC5O2D+pSHxrQ4eSA/buEijQ0nc1pi2YHcUYlqeWy2FFJ6TRBAIx15UMookGgtqh65s8LIPeAwDQGF8SOV3+KdPXyeod5mVKSOdgIe9uaB1WaEbT1sA13P6Ox28tQwO+gCk/RgZKHysaPUibCJ4/VbDt08+5Xf2rvh2+xGvRpqRDqi9Y+bb/Lgace7usbIRozAltyEdFSKlQHroxgH2ek5v1MMD/YMB3gvidohIJKs7np1uyKvDMb+8t+SN8JQbYcRQahqi5/NgBRfVHd6bHLKTJthaMugmCC8IY00YKno722KoL5LtSn7rhfHecyEi5Gt3sWLTxUZIyUJJ2BkxbYV447hWwI0RWaowGlwsuWxBo+FhZMluJNi4gb7H9zO89+zvLPHa81cHp3yjfYYSJftywWGQsSehLyWRjPAsqL3gUf2U2hv+RbnHtD7m+4s7WDyP5gOwEv1JD/MwY7dyuElBeL7EX16zLkpoaqanE0ScMM8M7pUbnN5KkVKwvC0oWzWdt6e8dvIJu/GMv9T+BC1qWiIkFQlzSj4oK56ZHepa8P94+hXcosZ/2CH4WUG6qAgezciuZ/i8ZPrsGhFEzNcN9s4+V0eSZkdQDS3h3jn77SVGWQ6DOT2REQnN1G0+2H2veIV/cPoq46zNoilIP4uwP7imVdYUD0+RUnD1ZEK3v030XxTbJL/1wkgp2fnrr/BosaD/rEYKgVk39A47zC5WdN4cMv1sgfjFHjNX051AFEpKYxjdiRlf5RzdCTmd53zlGzOsWnK16hIqQZxkvNOF3+n/gFq8zripeDfZoS81jbNYGVH7kkLsY/w5C+5Qmaes61uUjeXpp3dJjKJ/H3Z3Uy7rnJMwYJxl7I4XlOsMEWk6vT7Z9ZLRnX2urtZ0futNzr2lM4qpjCHaN9w7qPjm7Q94PQ54I/oMJW8T8pRADjE0zLwklHusTYt59TqyCdldjzgXNf1E4QpLqKB3PGReV+y/csDV6YLuL9zhIta0hzG1dMgko612Gegxv9z23AkSvNinsdes2cN7x3k9YlcOCU3Avf93e3ceI1mSH/b9+4t4V95XHV3d1ed0T8+1uzOzN++VaJIrS1zJMiQKsE1Jf1AUJMOCD0GW/pBgQIAlnzIMSKBtApKtA7RFSpSsgyJFakkudzmzx8zOfXV3VdeVmZX3u9+L8B9VI4+WO7skZ/rY6fdpJOplvKzK6MioX72MjPjF7QHz/SUbDYflZIFueihr2by4dq+7RuUuqoJ85Y4xxvJCNEN5wuqyixGLKIddXWDO1jiop6Q9F6MjtCMsrhiKoEQCy6S+gvMF++6K9qUZtj7BQfHxzg4tJ+aaf4Av0NYLNvVLfNjNCcQDNJqSVblkbHPeyhXTMuALqz7LYsBv7F+GxCWZC3pSUguFcRjReSVmuXeIEyVMDkcorbBFTqg0uhYwGoXkZzfZlZJcLMdOTHZOaG7N6J69Sd1ZctHbpa5CAm6xrlzm5hCL4pVknV+aDvjq4gLauIxeaxMuE5pvGMKdFf7OlHg4JiwMYBiHhrLbZSfQGCxLE5FuCOc6x8RBwqdbz/OpIMclB3tABLyQ+IDDC4ser9zwSY98pi+tsHHJ8auHiLXEyxRJE45ujmh+pLqSf1BUQb5yx4jA1sc99o9WOJdyPBcKyVgvG4x3Ci5e9Lh9GLF9RjFZFjxy9YBAGW6OG3ziTMj5xkuU5gKvLlM+1V1yXJQ87C/xlMtH/QgjG7jEFLJOYW6zsAHGRnw1bWFkQJQXPLP8OP963Oaq7zEKlzRe3CBe5LSN0JxDMU45o3yi52/RanuMdg9pdhskUYoz6OH1W4RJTufaJvu2QD1dZ0zIRrfEry/4w48/gyMBZ/Uxbb1BS0JqeoPMjjko1pmVlv/94Lspog47r3U4X6vTfzHmjOuyHM1ov3FAFidYY2h0asRenc5Gm8O0xH28wZGNaD8dUZOS33/xefqex6eDYxrOZTw7ZGG7zItjPr94mtzAW6N1mnGLbGbp+y7z+Ypm02FxOMdVFqkFrG0P7nXXqNxFVZCv3DEWy1F7irQNvkpwVEnDzVmWBY3rUHhLBu2MTrDk7FaBqwpaTswnzx8zcEOUKJruPv/hxoi+WqHRNJTFE6GwDq7MAA12yawMiEzE1DiEpWZl4AvTx9hLAmzo8UbocryzTTDN8WJLY79Arwoas5xMUsSUzI+miKOIljFKKYwWIivI2TUWJcRXGsSSokRIg4izZ6YoMVhWPBmMGegYj4DSLghtyagw/Ga4TYlivAQlwiTMaCWGcBlTP0pJVwliDWIt4WyFvtRluUgoLw2YmBTlQkaOYHExGDND4+LYOaDJzZI3iwZRWWJRJGGdcGhpToT8jTnBNGW1M0KMoTAWpRXL4xWdQbXq9UFRBfnKHSMIf+rqMwxjy/X2EVrAkQKsx+urNo82I3Zizafb+0BOnZJAhMOyw3nXMi8tW45HUxmgCxQUpiTDsLApGMXKGEamwetpm910ncOsxWuzdaKixsFBi/aiRjIxbExdeouU3l6GiXO8wwU2TTFFgc4TstmKeqeBMYKzOaDMC7JrZ8g2PTIPnA2fVT/j8vUJq7TgY+du0ndCnvQPOOMYtt0ahoCFGXNseuykPn/z4PvIjbB/0CUPA+q7cPZWgdyI8E1BOjyGIsMgqGYD50yf/Ewf3fVZDSxcycnTgsdaYz7U2eNHOi+jcOgqn5m1YGNezjb5UniG5462ASh2fdoj8A9ytKspJ3O0hiIv0b0uohRew7+HvaJyt1VBvnJHPVJb8uHayR6jADXJiazms71dUhpcdWdkorDWUlMaT4TreoHQoOVEOMrj5D2BIMCodCix3MibDBzFb6xabHia56ZrNIOTHPDpzCfPPbxDhWOF+mGBmwvmMEGsg7VgoxixJXYRomrOSYpjx8G2a5hBk0JB2lWYhiZuCc2GIh0YNltLrg8OWPNSzvoz1p2QvnYAhRWFxbIoa3xhuY4xCosQrQLIfPo3MvxYSK1FFSV2vkSsBRHE8xDXOZmB5CnSjqHdTOgMFjzaOOJy7RjBokRR2ILYBhwUHqk9+axjldUoS6jtCf7C4u8tceoO6XSB9oRCCbQboNW/XZhWeTBUQb5yB1m+KzjgZPO7t2+CUJxuC5gCCmPBUMMRMLbEYEltQoEhMQviMuXQlDhodooWe3mXo7yLRfPiYoOiDHhr1qJYOehUYw593DG05uCKwd8pqY8WuGGGmUxwgHK+wBiLaEVcljidLtn2WQBmV1onOWi2hXirwHQLTC3hqbO7/PubX8OVmAt6xYYu6CsHR4RJGfGVtEVozvBGssGXFg9xdNhmOW9Qe8Ol8VZKay/DHE2QMCFeLLBFgfU89KCHObvG4qxPtu6yaEN4NedT2zdQUnC1tc/12hFrUsMlJ8PyUlpnYuq8tlrnVw8fJnutTjA1tPYt7u4M53hJdmOGSWIy66GDGqWrod8mTAuq+TUPjirIV+4YEUWqtsjzW9TVSWqCVblEqzVSM8TTG6yKXZRaJzMLrA2waI5KS0d3eTVJOeu3+fIqR9PhKIVlVscqn8BfEIUX2H2tw7l+DfWqYeD7JPsl9ZHBdRwia1jTDsmNI9r9JqObY1oNj3Ae4jRquDWPRFx6aw2Gvk/3Spd9m6GvBISSIy5s1BXnrtwikA2Mn9HSPXKTsKFb9HSERjDSICdmVV7gXxw3sdEFDg883LKOShX913Oa4pAfHdLtBAz3hwzOdJjsT6hfOEPueywvNmgMfGK3YHMroHXhNgOnzsLM+Gg9o608AmXJ7Bpv5QsC3ceUU6bhZYZHHVrKwwYlipz2ZpvkaEl3q89wFdPd6rOcxXiDJlLz6PWqmTUPkirIV+4Yaw2r/FVAkZoUezrsUpR7GAyTfJfSZkRmCGgiA/PSZ2VrTBJNZNq8kgXsJAN2wj4KxTisE+Yu4ewqeuZhEiE8VKiRIVyVNGcGf5xjTUp3uCJfLCFKmEyWlPMFs5lFey7UahTWQZp15oWi2GywMxBScVisp2gRamdXDDYPuNAd48uYH2p/lY/4oClw0DjiMSxDEjvlX4cP8UvjDQ7SOvuv9sgLS+1A6N8s8Y5SktIi85DjoxEmzZgczaHVJmo0yXouUVdzuJaQbEHiL3i8vcLaY/7o4OtcclLk9N9+MWNsHCIz4mdHH+P5585BLNReTPEnGbUbK5aHI5gvmfgOVjTTWYLaXGfRVOQbmsPZ6VaFlQdCFeQrd4yIYtd8F655nd+IHyI1HqvS0Hca7KQpF4MGL65yfk93jGbCzw8/ClZzc1nnWgv6tTeZLB/ji28GXDubE5kY/cIaXevQ2MvprzXZJeJqWCP+2oi2q0nGC/Q8wvEcwv1jBud6jCcTNh46w6gsafYbRGGCevgSbs1hNHBZb9e4vZax1W8wHC156oklpYqxYni8UfAfdF+glEs87nogG2APmNBgVSaEZYfQ9hjnHc64PQ4WwmWvwe0o5sotC+MSMYaaq1gmEesX1xneHLLx2CXGuJRPDjC6RHc0W42A4/qCJ7cMDTfjP96Ys6EMVnpAwc085cic55cW68ThVV69VedC0GQYR/TFwTYVnizpnR8wTWI2Lq0z3J3Sf+ICs6yk+FQX5Si2NqqdoR4kVZCv3DHGGv6fiQDXKa1QWiitZi8tyI3DQaZJCvi/DreJiqss0oC0UKSpx+7UJSuexLMO+Qq+8vUAP6zjLizWZgRLWO0v6EUlK5si84xplOCsYrLlCmsMJk4YvhFT5iXD2xPyvGS6yNBrfQoLJsxJBw57WUqiLW+uTTAbOVkwQovwyfYNnmzcpKkWaF7GF4fSHgAFZXlMZODZ6BLHZZ2f33sUUzoMX+my/kpEIylJXw9RIrA3IhpPIc8YH8wx2mN4tCA/t8bMZORtYXW+pLQpD1/YJ/NK/lD/y5xVCzQGZXJCq4htyStxxqJU/Oa+yyoTivmS5isK89JJnvt0NCGczLF5zvDGkLLb43AWEl0fMJEUscLtxYJHa+v3untU7pL3JciLyH8B/PfAurV2LCIC/A3g9wER8MettV95P56r8p1DEHb2P8rKHHDjcBuMIsksazWf4TLjfKPO3iRmva5ZzEr8XKFFcOYlG52AA2/J5WWDxWshrUCTDVOCKEM7inxvRudMm2EYsZZlHL91SLMZEC1O0hq7NZ+8Xqd7psMshc71LcaLFH2+ycK1RNsaz9GsipSNKxrXLPjhR0cod5+OKBxCfnzwEiebijj4eoPcjliwzqoY8TPz72JaCp/fvYymwXJcsJYOqB0lXDiyLHeWeDYnn68wozHNZsBqZels9hiHOfozVxhrg2w6WKekM1gxaMHjrT1+sJvwydqYhj6PthMOCjgoFa+lG9xaPcStZZPevMt8lrB9VCNaxXhFjo0z8sWK5lqLKDZ0H9rkqFbDebTNsl3g9QG/ZLNTbeL9IHnPQV5EzgM/BOy8o/izwLXT2yeBv3n6tfIAscBzNzxMch6jAGtxc2GWZdRCmOYZwQpmaYEfCySGHNAolouc/h5kboZWQjKO8eICmxvyrERMQXg0x59MCQW0VkTLCAGMcsgLg7QahMsEs95hkRWUbU2cZ+Q9DyMQlQX6kYSot+JKZ4zvTejqkL6z4LHgGF8Mloi2qhHbJcPSxTDn2XjAuAAQ3EKYpAZ5q8XULWnvC8noZKerfLSC+RIBokWMs9ZnGWeYyxtM3ZONzldeSTaAxzaOsW7JD3Rvct2P0LgouzxtjZhV2eTZ5RXeXDR5c3qG5pGhPneJJgmtvZR8tkQvYhSWaJmg/IBwGqIadaJ5gu56UFsi/ZJFntIPqg9fHxTvx5X8/wT8eeAfv6Psc8DfsdZa4Isi0hWRLWvtwfvwfJXvEAKcf8Ylik/yx5/MorT4WpMnBQ3PEq/yk06YlOisxAJZzdKIDWYU4vualS3xj2aYwmAdBaWhXCxx6h4mypB2HWPA6bQxFvTaAFtzydsBuuay6ik477M0GekFwToFQT1GuZaPXLnBU60JG94BTwULPObUCHDRtFUAKCblihfzsxwUMM43+bXJWW4cbeAUJcuvD3BEaL9c0HAU5c4StT8mz0pYLLGlQQIfp9fBbK6RXG8z9yx6XbOoFzSuLXl4MORzF57HEeETwREd3cfDJ7IwLxL+ZXSJ/ajDr+xfxY4CZO7QvQXRqmT96yOKRYqZziiTBPF9HNelGHQx57qsNj2Sq5rsTMJ3f+jmyZ60nr2HvaJyt72nIC8inwP2rLXPyb+73cw5YPcd92+flv2WIC8iPwH8BMCFCxfeS3Uq96EgzMmHS8RRiBJMnOP2GmQImpN0xE5WUI5XYCxaK9zbEW7DJ5ot0J06MpwhrsLkOWQWwSKeh/Y9UB66HUAA0mlQAkpA1MlMfOVpLAbHEUxm0VooxKK6OY4SHqvt0XMUl50QfTIhkkAUNTGAwqL4etphbho8P+9Q13WOjlss0zplBAHgFOCMQryGT3ZzhJYSM12gXQcQbK+D6jQI+y5uTRN3c5o1IetYPrI2ZLM7RWHRKAI0ggNYIuvyWl7n1fAs4zjAWtBWwVzjWI03T3EQcmtRAgbAWrSryWsBtu+xPK9orZeozRAlJxtIaKkWQz1Ivm2QF5FfBM58k1N/CfiLnAzV/K5Za38K+CmAj33sY9UlxgeItRbzxRvUrcUai7UGEUEYU1NgC4NnSkx8MiRj84LSWigNMRZTlsSrJaQ5CaAc52RVquOhA59CK3S3TlH3EN8jrmnygc+8pbBiSQZATYj64HUinNaKD587oCU5T3Ruc8aZ8nAw4ox2aKgSZT00TVIychRvZpaX0xavpGf52vQiB3EdEwcM91r4I0tjqWntFPi3lnjjFWjBHk+JlYWixLgeTqtGud5jdq5Bsumha5ZoG5zOkmtnj/iRi19DITzpH3FOF7S0T0nMURnyT1fbzHOfXz66RLHwyXZbBDcN/YlBvzmitkyJdvbAQlGUKKVR62tkrsvqWpPl0w5xYAh6MWc2llxx97haH6OZAr173Dsqd8u3DfLW2h/8ZuUi8iHgMvD2Vfw28BUR+QSwB5x/x8O3T8sqDxClFFsX+hzsHOP5DqKELMnp9GqM3zqgd2GD4a0h3c0uq3mEU/NQWhEnOb31Fsc7I3pn+4x2RrTXO4TzGH3lHI7nkB1MaT68yV5TszloMbQJjbUaoc4p1iyBq/HXFpzxGujeLc7X6tSDN7nWyGmqYx4OIrQ4nNMeSq8j9oBSrTEr9tkrt4lNzvPROquiza8fbrFZbyE2o5P3OLYlW2ON2k/xbs1p+B6xQK8TcCRC/+IG00mEf3mTDCG62qLWCTg+n7Fdq3OsllxZFzLX0lB1DBnnHI0nLeZmipHz/GZSZ5Re5cW50JAaqQP+jtD266RZRG+jxXQa0z3TY3owodFpYIzFNAK8ix32LzlsdmrczEIuDAQjhh9oH9N0CnxdZaF8kPyuh2ustV8HNt6+LyI3gY+dzq75eeDPisg/4OQD13k1Hv/gMcZw4zdeRCkhQ7DGIgLDQ7DGMr55RJkVHO+O0K5HqQUrgjgOs0mM6vWY4yNbWyxdB9ncJKv7pNaSPnmRaU+TO7DrG8Kmw7SeYdtC2SnJe0varZSpSni8P+XDzRdRkrKlZ1zxVmxpwUXwlYtlSoZlP98jsyVfT0EIeCXp8fzoDPvzLjenGvt6h1VqWLthcN5copTANGYVTimOJwz3NKYomUUGU6szr9VQWkh8xVzlRC3Dbm3B1au7rAdz/r3BC3xv7RAPl5YKWJVjEnJSc5v94gK/MOyRxprjlxsEc2gfG5YmovPSmLlAsbPHsYApSkxdoTsNonMtppcckhYchSHdx0fUWkP+wOaLXPEOEQRldkFXc+UfFHdqnvw/42T65BucTKH8E3foeSr3MaUU137P0+ztTHA9B6WENCvp9upM5gnrvYCjl3boPHqBVWHRNRdlLdntMZ3L6xw0PbobTfajmGYvYFFmNI9LtKc5fAK2dIPpXsjgUo1iFbK1rYhtzPd86DUajuVy7Qa+2uCK+xxt5xIdGROoPg6awpaU4pPYmEg2eSZeMikf5ZUop68dkjLjKy8+gaN9/Czj8qhN+HzIRq9G+PoR9YZPtoyx0ylB02dVD9i4tMk4NvTPdTger2hs1cmsgS3NoK+RzpIPnwHlJfzEmUM29YK2Pgs2ZWRirFpnVqx4JXmaf7J/jl62wbBYcuHIp0wNTpHSEUVuDWstlyNX0z/XZzpa4HzqGoUSwkddBl2foR9x9ZKQ+Bk/ub3Duh7jSA8lCqXPf/sXr/KB8b4FeWvtpXccW+DPvF8/u/KdyRjDzRsTRKBIT2bOiAjjaYIBxquC/MIW49SiXIUtwVoorm6xCDSlgtt5RqZglSTYhjC/osgahtITbsqK/KmEpZtQv7og91OutufU/Sl9Z07TWaBZ0VArNtQNNDkBY0CjbMnSLJiaEghZmgFfCy2JcfjqtMvOaINo4VLaktZbmuVhBFHJdD5HL1IWt8fIcolNU6L5CuUHDHfGlGt9houM6GKfyM/J1x3iczH63ISrawuUtvzo2pfYduY4lLh2TmJLcptg7YpfDq/zS8N15pni+FUgbtEbJQiCt7tkdXMIsyVDzyELY0b7U1jvExYlIkKeKQ6WEebakkOv5A9svsRZ5yUUFjElDeUh5QGo6kr+QVGteK3cMSJC/fsvMr55jK65iBbyuKCx0WQ1WtF6ZMAhKe2mzzLPqM9KlCOMzwu9ZsAREeccj3BvRf0JWHkpg0aCryGblDy5HbPWfovLvovLLmdcaMgxx8UaDSV0VULP7eEZFy0DMAeMrYuyCV9O20zK83w1WiPKtvnK1OWS5zMNlyxevIBdWZq5pRVral9a0F1vcnw4p5ckzN7aJ2h4ZHkOvk9jo0fS6tDeaHKrp/GeaDAsY4IuuI2QTz71FjXlsKZ2+dF+xCVnQqDPoe2EpVGE1vJyus5+tsXf3fkw9ekmR7ctDx3UWIxiWssSu0xRexPqDY/VuKC12SbLS5rf+yFmcY7d9EhdS7yd0+k79LtjfvLiG1z2n6emNvDtlALFnJKOWkff685RuWuqIF+5Y6yFvUZJ/pEWlCfT5PF8whzKC3VyU6D8kkWSopQiOg/GNzTqJSuxaCvMnYTGkwuW2kcJlFhyKXj6ym0arkWhcGWCQlGaJY4DH/aP8JQhwMVlRqYCrImYljViFogoBMO8BEFzmJz8nFsLh+M3z+EtLCKKxu0M5zg9WYw1jfB3x0R5itJCmhSI1qh2k1Q5KK0I4xw1cFjYHK2EohnSPbdAyUnq5M90bjHQlpN3EitAsywz3sprPBNe4K1VjzLymMwtfiSE8xQtCruI8faXyGJFYiyCOfmgerPPKitPPqzWhrSnaWwlRA78gfWb9JxDBE1pljSVx8hk2FLRsQug+vD1QVEF+codIwLRd5dEZYYIIBYEfEfIKfD8nLJM8Q2oGFqbK3ynpOFmuOKQrkoeX1/gOnNMrjHWsOXP6OmYJxoHGOpEpcsZR7A2p6cMIg415ZLbkthmxDjsFwmhbfBW1mSSXyI1Li/MN1nkdUbTJuWwT5wVtG806M4L/FWJihOar0xBhCJcIXlGOV3gNGtYUbhnNrBAsdWDwGU5UOj1gHm/pP74ijIpeOryDh/q7HHVH3LFi3nITUHqKKvZKzOMyfm51aMMkya/fHQNsYrZGz02Dlz8cU49MjAMcW6NsXGCSVJELKrRRD9xmVQpyr7DqiksHzE0z8548toursBn2i/T0nXOaRcXzYqCr2VdQNG3PlVigwdHFeQrd9SlbohlyOvTsyBQisHXDllpCRwhKi2NmiWr5WgFWgQwNBxLbzCl6QmpMWzVUjwV8iF/hqsKBENdKS7oOVa6aBthqGPJOOnWGoulxMMSU1gfi2Vvtc5rsz7D4y4Gl9kNn7ZbIw0zXKNJTI6/yNH7S6yxaA12Msdp17DG4rZrZBkoR1OWBqsECRTThxV9R+M9NKVed8j8jJpjsAhnvSk15SEYwGFmDOOyy05q2Q/7HKc+6XFAoBXe0OKhyI3FywrK3Sk6LzBZjtUKN3BJe110zcUmBaquSVvQPbsi6CYIhqa2rKsSxKUpMLceizLHogFBiXtP+0Tl7qqCfOUOsvzgxV/DAj+w/TpCibWahs6ISs2ml7Eqoe+uECu0VIInOY5AXZU4GNa1IsPSVgXK+jS1BiylrWEpAYeSlBhDaBbEVjHKXG7nbcbFBRLr8dpqjRePz4PJ2L+9jpMr/LFCLyztOTiSs3GQUduf4hQ5am+M0kIZJeRZhgDJKkF122SDdZSxLLsephOw2tYstw3ZhsV6ERcuzPjsxqvkxvDh2h6X3ZhtxwGbIQi38hWhLTnI4Qurq/yr/SuYlUe52yA2lsGexdiE9mszWETI8ZQ8TRGt0K0mubHYjR4hlskjAfmmobiU8sTV2yjg+1uv8LH6mPOOACEWy2tZisHh+dUmN9IzPHUm51z1m//AqF7qyh0jotgOzjBKD/lQY0EglkASlmzwShqz5vXw8yMe8tusqWM0mgyXZbmgrtfZkGMKtYlnbqNlDVhi8Chw2C9WdJ11ahyx4gzW7rC0AzKz5GeHnwR8Xhy3udpxWLCgt1zj9q2M9U6NlcoJ0NTqinKesak8otdu0es1GO+MaXVqpEmOrnm43TrRdEX/4gbHk4jOdofpwYLadpsEsI/lbLaFtbO3acgaM2VZd1tEZsQTvk9DSow1ZNLlZh4zLy/zTAjT+CG+NgloHHdII/B3od70UbdGDM62md0e0jvTZaqEoF2jNAY8l9agydQR2pc6DGspVz5cELemdB0HTzI+3Zjj6gFwTKE2OMx20WqLrDzm5fF1hlmHjlPNrHmQVEG+csdYa/gh/1fA//9zpSgUsOBDrkEYIt7J+DsnmWxObtoBZoBgONkEPLEnu0cNi5iFhZV1OM4PuJ23yGzOTnadUdZkN1rndtihtJbRvM1bU405Wqc1hiJ3kDdTBlNLME6QRYKzTMhWIUQJ470hRVYwnc7Qnouq1ciWKWxtMrUeyWPrvLHlUJzpEg8M5XaJ3ooZtCesdaYEasof6X6VjwcLHAp6qk5pIbE5+1nO2Hj82rLGqAj4Nzsb5AZkVaAnHt7KkBxGNCcJq2mKmYeMFyEmSynrdWSjj9kaEBvL+LEax42MyfWch7Zu4onliv8G39e6zbpOEEIcHG5k+yS2YCeJ+OfHn+ALB+sIilurJY/3qyyUD4oqyFfuGBEF+lFseQPwAIUhxcqAzBygZRPNAQUDhAUlLqlV7BcRdb3BgAlH9iIvJjMuOAFNmXJcuhwXHQxLInuBWT7lufH38MxQ8UgvpzAJzrJJYF2WC+HipE34XMjgfJ3b0YrzuxnF4QpT9/DrDsm8YHCmzehmwvqlTUa7I5prbeKkQLUaOJttxhfarK01uN1MONusM5pHrF8D48Z02hGPtlOaXsTTdc33BimuuozLiJl1yGxMYlqUqssotcyWj/D5nSZn0w6TGymbew5lUmJXJW2tScuC9a7PkaPon+syOZwRfPwRCiCpaxprNY47BQ99suTi2h6PNBzicsof7R3jykmKs1I6vFEMKeQik2LEF8Y/wHOHbTZut1Eozte797ZjVO6qKshX7hhrDWXxCidJh9/e4xVKexsoye0uc5MhssRYTWKFzEKKS1rs82oesLRzcmt4Ji4JzVmGSZOjtMGsaCAobk4fJot80sLwxbdc3HkXfykYYwmOYTkLIS5ZvDanexgSDucorbC7I9I0w0Yxh1oos4KxKSnRzGKD6vcway2SpkOm4HCZkHZLdlRI+EiK9OZcXx/z0d4uF9whD3kjtp0AT3I8hkCB2CWFLfl60mRhU/7R6Cne2q+xyoTdMMJfKqLDCBHBvzVlFWawf8Dw0CELI0Z7Ful1WWQnC53m6x5HQc7ySkbcHeHqjMyM+Wz/JZqyRFA41mVaHlDYgsjs8y/mj/MvbrexsSKbZShRHEyXtLeCe9o3KndPFeQrd5DwG+lTuGaXXDxC49GSkLHZoqf22Suv8XqSc86FrgyZFw1y65KbnHF+gV+d9Nj2A/rO6+yvLiFmyas7l3BE0Qom1OYDyh3DVqfGIXPOvRWQzgtM3eJaoRzHrFvFdLyir4TpaIVf5qTLDMIY33PIagHdzS6T0YLm9Qscj+bw6UvERUnhlKiuw7Jp2LgK9bPHXHQ90vKYn7z2LEKCb6HnCOtKo6ULjDgyNayZ8JX0Atbm/K3dTxOt+uzcqrNV9/EPY7anAaujkMYkpMwNvLVLreYRFiXNzQ6ZEZrf9wSzOMds+eTasrxoOPNQxrVLu1wMPFp6h59YP6TOCpc6hpKbZYyhzUtJjS9Nvot/trdG/3aP+TyjNQc3s2zUqgmUD5IqyFfuIMtXl5plfoV+fYW1YGlRWs0bdpsSjVDy8qLOIl1HfENmNHHuE2U+du5z1ISXk0coI41ZdimNUGAw+33SSNAiRIuc1tQln+dohGC/QOUGPYspk5RamJDkKTrKSMoCTAmiyJIMVa8TRylyeZMw8FFn14mKEkRIthVJr8Tfikk6hvO1OYEWvrv/JlpCFMIVd0FD5XQloLQhE+NxUMQMizbPLtfJcShjl9kCvFBYpiW91xQZGe2DEg4WOIBRimSVnKwtWCS4vQ5hfrLQaeUasr6Ld36FaS3RKAob8Zn2LQISBIWlILcWi8Ky4tdnT/LicRcVOYRhcZKzZpbiTSxhlNHrVmPyD4oqyFfuGIvw91/5NHGR0/YitBhqTkmc1qm5EWncRTtLRuMBxlrqOoNMcB2DndXIQ8B1cFRMa8/BGsFKiS5ARQXtWUmkSzoRhGmCO0/AGljEUJSUaYZSUKY5buBhjUE166AUUm9gApey7lI81CN0BbfpENqM8CFQqkQ/HHG2seJC55gPN44ZuEOerk1xWdHAxxGHjjhkKGY2IcPha1mDX108yaqwvHq8wWHYhls1JNV0XzM0RHBfjfDKknw8wwzHIIItDUorpNtBr3eI2gHRozWKpGB1zVDfnPP4w/s4Yvlk81V+pD2jp1Y4BChgtzwZDnsmvsRvTi7xK8OreLe62JnFn1vcg4Lul49RAq6ptm14kFRBvnLHCBCIx8rkxPstlBFGfUPLehytfNZocJhpmmhiU6B2PEQUYQO6xiU1GUGpSY419UVJsUixzQAHBdOUAEV5nBPUXPJxgochDxNsnKCw5EmG16uTFRa37hEvE9xaQF6USM3HafokNRfPdzFlju4qkq2C7nqJ8mJW4uAJPFm/Rc1pAgaFj7CgphQ+OQurQE4WXOXUMFgcHEoyjHXBgL8Prid4BxG1QZOstHhY8uVJPcu8wCoHx/fIfQ/ZaLA45+M1NYlbMjgX4nViBEPHsXyqcYCjWggGIx6JSbFoDJZnpuc5itfJhx5NrVnZnEYiqJ0QSU8Snbl+9Wv/IKle7codYy3wCwUD7aEyAQs1R+FkBl8r6nmGY8GNU3pKcCKLtSVda3CjiAaGoAzxkgRnmlLTgslH2KKENCNOUjCGlYI8yShKg3I11kKpHXTgkxagux3Sug/XB4Qtj6LnkQ5c0joULUW+WZApS+fKDCUF7daMs42Qa7UDHq/d5rI/QeGyqSw1HFzVoLQFGZZRCSExz4bXWZg2vz7eZrrqMBo3sfsurUNF67bFmJTG7Qi1F6NuHxGZAhPFGM9D+Q5qbUDuuERXe4wfrxF5hrCbwrkV16/dRAE/0H6Fj9ZGbDvFSVZKfN4qplgsX43P8cXZFT4/fJh0P8COfKKypP9ySf25MWQF+eEYpRSL4YL+evted4/KXVJt9li5Y5QSHuq08VOhIYqW0vRfmnEuAi8VNmoBbgrrnoeXWWpKaLkKNzUMag5uZuhToG8e0mk5aAWeQLPmoq1hsNVBGcvgbA8t0N3qoT2H4KHzNK+fx1zfpvOhi4jr0L62jm548Kk+8eM1dMeltelRe3LFxW0HpwHXW4qaNjzUgJZjOeeneHqAxqHlnKGmBHHOIOIQSZ/Q1vmn8yf5tcWn+Se7T/Ha0dPsvrJN6/ZZGi8HnB969A4NzdtzNlY5cjSm54MkEYOtLk6rQWutg9+so9t1atf7LB73GWzW0Y5w9qyLdoU116HrCB8PQprOAHAo1Sa3yxKjtsmtzzPTD3NzcR6722RNNXGs4nxRo31jSbehYbWk3gqoNX0G56qt/x4k1ZV85Y4xxjD9hy/SPt1UG3OSoCw8WNHKSxIFzTQnLg2+AluU5BakyJkagylKxgqKtGA8WaD0ybuByFqsCMdhgrFwfLSEVptFqdFnzpAHNSJfYxoeQ61YfXyLWaBYPtQiXsvRIhRXcrxeRKudsFIJ3//QbT7R2kVJxllnxpazYlNBXRkaEpAzwmJIyj12y4SdXHg+Ps8L0RoGw81lmx3jkE19bic5wdiSjRPq+xF2uCTcn1POl4xejiiSjMk4wqBZOT4yGLC61GC+rUnbcNuEFB9ZUDZW/OjWG3y28xw9Ec65ICxxUNzMb5PYlN004l8vnuZfHp7FzjzMxOHI5gyeKzE3jpFlyvHtfbCWsChQSji6MaT11OV73T0qd0kV5Ct3jFKKixc67O9McByNciBLCzoNl+PDMf2rW4yHKZ1+jeU8RolBu4rEKvpbXSYHUzYurnF0Y0R3e0AUF0iWohs1smaL7qDBKClZ63iM3zykfmFAFKZIv07QcAnFUr/YYrkKaT3RYLU25mJWI0pyPv74a2jtcRALH+9m/N7Or2PUFfazhCteAxdDXYGSGokN2TPbvJ7NCO1VvrZS7K+2OUpc6hRIWcdZBlw67LL8ash61yN+YYTf9CgosfMpzXaNpeuwcXGN4e6YwWPbTPem6Ec2iH1h/l0B7ZrLMg+5elEzDSL+q6svsea+SV16OJIjFOTS5PX8GOQS42LIr4x/D7961KG5M6AsgKRkkPs4r++x3nIYvjmkd/ZkUVXr4jZKK85c2fi2r13lg6MK8pU7xhjDjS+8BEBqwVqLKGF4em74xj55mjMcnWR1xJ7uA+toxnsTSoTx0RLrOExGK7TvgVfDaA8rMJ7GZA2PYWqJr55hWhPMdo28JaQNKBvCkYoJL5fMggWemxA1F6w1E/Bi6s4xf7C3w1V3QaAifHmdh+sWB40jHpkpsXbGbpGxW45JrbAqjliW5xinMaMoIDxsk8YOzRuwGIXYpGS2s0SvMor9CbJYYqOYeBEi2mV0e4JtdxmKpjy3RlQTwosusS4I05z+w8fMfMMPbz3HlvcqmoJ1ldBVDoW1TPKQAktcHvD/zh7nF/a7FLHCznIEoX+zIH9zAlHK8PYBeZIy2klAK1ZxjlLCaH9Os1NNoXxQVEG+cseICOuPXmK0O8L1XMTRZFFKe63NfDine3mT6Tyl0W0QRhkqTVCOJssLGhc3mJdQq2sm+xOCs13SVULRC6DpMNv06NUCDt2EDb/G7GhB+TGXyOTUOimeVrjLlM2+S2onfOb8hEHtLcTUCQvDI7UxNeXS1yHnvD6FSanrdbBDVviERcZX0y6Iz+cX52jrNotkxlF4jYNFzvzrF8kyQ2e3pKYcnJfmdNbrTPfndJchixtDvKZPXpaI59Fo1oitpnnlDOM8R3+4w3Ickj7qQitl/VxItwEXerf4Y2f2ueC+Qk1tgplTE4+FMbySa0Q6vBwFfHXyCf7l3oCN231m85TOTFCrks6zYwIKwt0DWhttjmcrug9fYBll2Me2MUronqkSlD1IqiBfuWOstYRJidtpgYXSgmy3iAuD2++SlCBaEWGxHZ9C17DWokshVoq8p4hyjbmwzryvMds1KCEP5GQnprJA+0IYJKincpZWIUpouxHaNVzdHJLR4KHahLP1ET2dISwY1CM2dUYgJR3xcFmhdR1DQo7DMDcMiwCDYG2GRjHJ4DduPo52HaZv1nHTEkHQaUGRlfhJQja0+LvHJGmCUkIWJihXo3yfPDfozTUSJcSP9ShqJdm2h12LCDZSBhtLFIYfXn+Trl4haLQNaSuXnJwchUVR2ojPH3+UG5MuzsohDHO0KGSSUd9NUHlGvIoQJUTLGF0PiLISmgGZaxEFUZzR61VX8g+KKshX7iAhfOosWZSCCMYRTN3F0Qp7HBFvNsiOI4qtOgaL8U7yUOqoxGw4JI4ldB3SRUpyQWEBRYnUS1xrMA1oSMK1CwuMxPimpC4pH1+7iQAXnBGucskKeKpe4hBjrYNBEYhPYUtyClJbMCsyjo3HuOjxC4tHsBaOozqzPGA8aZPdHpDMoZFruvsF7qrACXMab8wBS3k4RBSUywin7oOA02pBp0XZroOribZ8kicaLIMSr1tiGzGffOJNFJbH67d5unbEI/4MJQ18WyNBWJGxU9S4lXb44uoib03X+crBNt29Bt6spL6yOEc57a+NIUkoxxOwFluUOFvrlIWhfPgMqYbpdR9RYP1qUt2DpHq1K3eMCHQ225RNH9Wt4bRqADQbAWk/oNlrkPYDGoGHCDha47sOWVfRbNQw1tJq1ogHiqZ38hhpCW7doewXdDo+Tj+h4daxWNYbsNkM0aJxlYdQ4qsWl/0xSrURLIFu0lIOrrg4qglYrOqwtAW59BmVLr7yEdEcpj2iss/hokU9qGGMpeMFWAst6xBEJ9NEg5oHxtLqNbDG0uw1sBb8Zg2tBNWsUes2SNsenfrJ/6vd8MlbJZ7y0KLZcpcE2kewaNWhphRadQBLbBuE1uco71LQxVhoN3yMsXS1j7s0eJ6D47kIUD/dxarVqWENNBs+YsFzNJ7jEHjVtd2DRKy9f5Y4f+xjH7PPPvvsva5G5X2UFyVxkuM4CkHIioJG4LEIUzrNgEWY0Kh5pHmBUgolQlaW1H2XRZzSrQfMkoSm75GeTgHUokjKnKbrsypi2k6NsIyoaZ/C5mhAicbaGC1NrJ0j0kVYgDTAZoCAOFgbA01KO0NJj9yu0FKnsAWlUThKE+U5LddnHid0goAwzqh5DkVhwBhczyFeJjS6dZbHS1r9JtEixq/7FKd5cFzXIcpymnWPWZzQqQWsipS6ozEYHHKUChCzBOkgdg6qjbUrDAFgSI3gKZdFltP1AmZRQifwieIMTyuMOVk969d9okVMq99gOY1odutEUYbjO4Cl7nv3tE9U3n8i8mVr7ce+6bkqyFcqlcp3tm8V5KvhmkqlUvkAq4J8pVKpfIBVQb5SqVQ+wN5zkBeR/1REXhGRF0Xkr7+j/L8WkTdE5FUR+eH3+jyVSqVS+Z17T3OpROQzwOeAj1hrUxHZOC1/DPgx4HHgLPCLIvKwtbZ8rxWuVCqVym/fe72S/9PAf2utTQGstcPT8s8B/8Bam1prbwBvAJ94j89VqVQqld+h9xrkHwa+V0S+JCL/RkQ+flp+Dth9x+Nun5b9FiLyEyLyrIg8OxqN3mN1KpVKpfJO33a4RkR+ETjzTU79pdPv7wOfAj4O/IyIXPmdVMBa+1PAT50+10hEbv1Ovv89WgPGd/H53g9Vne+Oqs53R1Xn98fFdzvxbYO8tfYH3+2ciPxp4GftyYqq3xQRw0kD7AHn3/HQ7dOyb/dc69/uMe8nEXn23RYQ3K+qOt8dVZ3vjqrOd957Ha75R8BnAETkYcDj5C/czwM/JiK+iFwGrgG/+R6fq1KpVCq/Q+81U9FPAz8tIi8AGfDjp1f1L4rIzwAvAQXwZ6qZNZVKpXL3vacgb63NgP/oXc79VeCvvpeffxf81L2uwO9CVee7o6rz3VHV+Q67rxKUVSqVSuX9VaU1qFQqlQ+wKshXKpXKB9gDGeRF5K+IyJ6IfO309vvece6+zLkjIv/daY6g50Xk50Ske1p+SUTid/xf/tY9ruq/Q0R+5LQt3xCRv3Cv6/ONROS8iPyyiLx0mn/pPzstf9c+cr8QkZsi8vXT+j17WtYXkX8lIq+ffu3d63oCiMj1d7Tl10RkISJ/7n5sZxH5aREZnk4oebvsm7arnPhfTvv38yLy9L2r+buw1j5wN+CvAP/lNyl/DHgO8IHLwJuAvtf1Pa3bDwHO6fFfA/7a6fEl4IV7Xb93qbM+bcMrnEyvfQ547F7X6xvquAU8fXrcAl477QfftI/cTzfgJrD2DWV/HfgLp8d/4e1+cj/dTvvFIScLeO67dga+D3j6nb9X79auwO8D/jkgnCwK/dK9rv833h7IK/lv4b7NuWOt/QVrbXF694ucLDC7330CeMNa+5Y9mYn1Dzhp4/uGtfbAWvuV0+Ml8DLvkoLjO8TngL99evy3gT9476ryrn4v8Ka19m6ubv9ts9Z+Hph8Q/G7tevngL9jT3wR6IrI1l2p6G/Tgxzk/+zp26uffsdb2t92zp177E9ycvXwtssi8tXT/EHfe68q9U18p7QncDL0BTwFfOm06Jv1kfuJBX5BRL4sIj9xWrZprT04PT4ENu9N1b6lHwP+/jvu3+/tDO/ervd9H//ABnkR+UUReeGb3D4H/E3gIeBJ4AD4H+5lXd/2ber89mP+EicLzP7uadEBcMFa+xTwnwN/T0Tad7/239lEpAn8Q+DPWWsX3Kd95Bt8j7X2aeCzwJ8Rke9750l7Mp5wX82RFhEP+FHg/z4t+k5o53/H/diu38p7XfF637LfIufOO4nI/wb809O7v6ucO++Xb1dnEfnjwO8Hfu9pR8OepHl+O9Xzl0XkTU6yg94PO6Lf0/b87RIRl5MA/3ettT8LYK09esf5d/aR+4a1du/061BEfo6T4bEjEdmy1h6cDhsMv+UPufs+C3zl7fb9TmjnU+/Wrvd9H//AXsl/K98wZvaHgLc/Rb9vc+6IyI8Afx74UWtt9I7ydRHRp8dXOKnzW/emlr/FM8A1Ebl8egX3Y5y08X1DRAT4P4CXrbX/4zvK362P3BdEpCEirbePOflg/gVO2vfHTx/248A/vjc1fFd/jHcM1dzv7fwO79auPw/8J6ezbD4FzN8xrHNfeCBXvIrI/8nJ20PLyQyFP/X2C3M6HPInORkS+XPW2n/+Lj/mrhKRNziZ9XN8WvRFa+1PisgfBv4bIAcM8Jettf/kHlXztzidEvc/czKj4qftSbqL+4aIfA/wq8DXOWk/gL/ISTB6km/SR+4Hp3/Qf+70rgP8PWvtXxWRAfAzwAXgFvBHrLXf+CHiPXH6x2gHuGKtnZ+Wvevv4r0iIn8f+AFOMuoeAX+Zk2SMv6VdTy8S/lfgR4AI+BPW2vvhXfS/9UAG+UqlUnlQPJDDNZVKpfKgqIJ8pVKpfIBVQb5SqVQ+wKogX6lUKh9gVZCvVCqVD7AqyFcqlcoHWBXkK5VK5QPs/wNN8utTLHFJXwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.scatter(*pol2cart(target_r[dst_flatten], target_phi[dst_flatten]), c=model.trec.pos_embedding_target.pe[0,:,2],\n", - " marker='.', s=8)\n", - "plt.axis('equal');" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True, used: True\n", - "TPU available: None, using: 0 TPU cores\n", - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" - ] - } - ], - "source": [ - "trainer = Trainer(max_epochs=20, \n", - " gpus=1,\n", - " checkpoint_callback=ModelCheckpoint(\n", - " filepath=None,\n", - " save_top_k=1,\n", - " verbose=False,\n", - " save_last=True,\n", - " monitor='Train/avg_val_mse',\n", - " mode='min',\n", - " prefix='best_val_loss_'\n", - " ), \n", - " deterministic=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - " | Name | Type | Params\n", - "-----------------------------------------\n", - "0 | trec | TRecTransformer | 1.9 M \n", - "-----------------------------------------\n", - "1.9 M Trainable params\n", - "0 Non-trainable params\n", - "1.9 M Total params\n", - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, val dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validation sanity check'), FloatProgress(value=1.0, bar_style='info', layout=Layout…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/tbuchhol/.local/lib/python3.7/site-packages/torch/nn/functional.py:1628: UserWarning: nn.functional.tanh is deprecated. Use torch.tanh instead.\n", - " warnings.warn(\"nn.functional.tanh is deprecated. Use torch.tanh instead.\")\n", - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, train dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a8abc29607404d44be845b0bfb03bc9d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Training'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), max…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/tbuchhol/Gitrepos/FourierImageTransformer/fit/utils/RAdam.py:119: UserWarning: This overload of addcmul_ is deprecated:\n", - "\taddcmul_(Number value, Tensor tensor1, Tensor tensor2)\n", - "Consider using one of the following signatures instead:\n", - "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:882.)\n", - " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Saving latest checkpoint...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "trainer.fit(model, datamodule=dm);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/examples/TinyLoDoPaB - TRec.ipynb b/examples/TinyLoDoPaB - TRec.ipynb deleted file mode 100644 index 9dae103..0000000 --- a/examples/TinyLoDoPaB - TRec.ipynb +++ /dev/null @@ -1,3052 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from fit.datamodules.tomo_rec.TRecDataModule import LoDoPaBFourierTargetDataModule\n", - "from fit.utils import convert2FC, fft_interpolate\n", - "from fit.utils.tomo_utils import get_proj_coords, get_img_coords\n", - "\n", - "from fit.modules import TRecTransformerModule\n", - "\n", - "from matplotlib import pyplot as plt\n", - "\n", - "import torch\n", - "\n", - "import numpy as np\n", - "\n", - "from pytorch_lightning import Trainer, seed_everything\n", - "from pytorch_lightning.callbacks import ModelCheckpoint" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "22122020" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "seed_everything(22122020)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "dm = LoDoPaBFourierTargetDataModule(batch_size=4, gt_shape=63, num_angles=33)\n", - "dm.setup()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "det_len = dm.gt_ds.get_ray_trafo().geometry.detector.shape[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "proj_xcoords, proj_ycoords, src_flatten = get_proj_coords(angles=dm.gt_ds.get_ray_trafo().geometry.angles, \n", - " det_len=det_len)\n", - "target_xcoords, target_ycoords, dst_flatten, order = get_img_coords(img_shape=dm.gt_shape, det_len=det_len)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "model = TRecTransformerModule(d_model=128, y_coords_proj=proj_ycoords, x_coords_proj=proj_xcoords,\n", - " y_coords_img=target_ycoords, x_coords_img=target_xcoords, \n", - " src_flatten_coords=src_flatten, dst_flatten_coords=dst_flatten, \n", - " dst_order=order,\n", - " angles=dm.gt_ds.get_ray_trafo().geometry.angles, img_shape=dm.gt_shape,\n", - " detector_len=det_len,\n", - " init_bin_factor=4, bin_factor_cd=5,\n", - " lr=0.0001, weight_decay=0.01, attention_type='linear', n_layers=4,\n", - " n_heads=8, d_query=128//8, dropout=0.1, attention_dropout=0.1)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: True, used: True\n", - "TPU available: None, using: 0 TPU cores\n", - "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n" - ] - } - ], - "source": [ - "trainer = Trainer(max_epochs=200, \n", - " gpus=1,\n", - " checkpoint_callback=ModelCheckpoint(\n", - " filepath=None,\n", - " save_top_k=1,\n", - " verbose=False,\n", - " save_last=True,\n", - " monitor='Train/avg_val_mse',\n", - " mode='min',\n", - " prefix='best_val_loss_'\n", - " ), \n", - " deterministic=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - " | Name | Type | Params\n", - "-----------------------------------------\n", - "0 | trec | TRecTransformer | 1.9 M \n", - "-----------------------------------------\n", - "1.9 M Trainable params\n", - "0 Non-trainable params\n", - "1.9 M Total params\n", - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, val dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validation sanity check'), FloatProgress(value=1.0, bar_style='info', layout=Layout…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/tbuchhol/Programs/miniconda3/envs/ft/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py:49: UserWarning: The dataloader, train dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0478c3a3aae44355aa701677d5a618be", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Training'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), max…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/tbuchhol/Gitrepos/FourierImageTransformer/fit/utils/RAdam.py:119: UserWarning: This overload of addcmul_ is deprecated:\n", - "\taddcmul_(Number value, Tensor tensor1, Tensor tensor2)\n", - "Consider using one of the following signatures instead:\n", - "\taddcmul_(Tensor tensor1, Tensor tensor2, *, Number value) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:882.)\n", - " exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reduced bin_factor to 2.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reduced bin_factor to 1.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value='Validating'), FloatProgress(value=1.0, bar_style='info', layout=Layout(flex='2'), m…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Saving latest checkpoint...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "trainer.fit(model, datamodule=dm);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -}