-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmodels.py
140 lines (108 loc) · 5.96 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
A set of models to train
"""
import tensorflow as tf
import numpy as np
def logistic_regression(input_dim, output_dim):
"""Simple logistic regression
Returns x and y placeholders, logits and y_ (y hat)"""
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, input_dim])
y = tf.placeholder(tf.float32, [None, output_dim])
learning_r = tf.placeholder(tf.float32, 1)[0]
drop_out = tf.placeholder(tf.float32, 1)[0]
w_init = tf.contrib.layers.xavier_initializer()
b_init = tf.initializers.truncated_normal(mean=0.1, stddev=0.025)
w = tf.get_variable('weights1', shape=[input_dim, output_dim], initializer=w_init)
b = tf.get_variable('bias1', shape=[output_dim], initializer=b_init)
logits = tf.matmul(tf.nn.dropout(x, keep_prob=drop_out), w) + b
y_ = tf.nn.softmax(logits)
[print(var) for var in tf.trainable_variables()]
return x, y, logits, y_, learning_r, drop_out
def lstm_nn(input_dim, output_dim, time_steps, n_hidden):
"""LSTM net returns x and y placeholders, logits and y_ (y hat)"""
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, time_steps, input_dim])
y = tf.placeholder(tf.float32, [None, output_dim])
learning_r = tf.placeholder(tf.float32, 1)[0]
drop_out = tf.placeholder(tf.float32, 1)[0]
w_init = tf.contrib.layers.xavier_initializer()
b_init = tf.initializers.truncated_normal(mean=0.1, stddev=0.025)
w = tf.get_variable('last_weights', shape=[n_hidden[-1], output_dim], initializer=w_init)
# b = tf.get_variable('bias1', shape=[output_dim], initializer=b_init)
x_split = tf.unstack(x, time_steps, 1)
# stack lstm cells, a cell per hidden layer
stacked_lstm_cells = [] # a list of lstm cells to be inputted into MultiRNNCell
for layer_size in n_hidden:
stacked_lstm_cells.append(tf.contrib.rnn.BasicLSTMCell(layer_size, activation=tf.nn.relu))
# create the net and add dropout
lstm_cell = tf.contrib.rnn.MultiRNNCell(stacked_lstm_cells)
lstm_cell_with_dropout = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=drop_out)
# forward propagate
outputs, state = tf.contrib.rnn.static_rnn(lstm_cell_with_dropout, x_split, dtype=tf.float32)
logits = tf.matmul(outputs[-1], w) # + b # logits are used for cross entropy
y_ = tf.nn.softmax(logits)
[print(var) for var in tf.trainable_variables()]
print([print(i) for i in outputs])
print(y_)
return x, y, logits, y_, learning_r, drop_out
def cnn(input_dim, output_dim, time_steps, filter):
"""CNN returns x and y placeholders, logits and y_ (y hat)"""
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, input_dim, time_steps, 1])
y = tf.placeholder(tf.float32, [None, output_dim])
learning_r = tf.placeholder(tf.float32, 1)[0]
drop_out = tf.placeholder(tf.float32, 1)[0]
conv1 = tf.layers.conv2d(inputs=x,
filters=filter[0],
kernel_size=(input_dim, 1),
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32),
strides=1,
padding='valid',
activation=tf.nn.relu)
conv1_dropout = tf.layers.dropout(inputs=conv1, rate=drop_out)
conv2 = tf.layers.conv2d(inputs=conv1_dropout,
filters=filter[1],
kernel_size=(1, time_steps),
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32),
strides=1,
padding='valid',
activation=tf.nn.relu)
logits_dense = tf.layers.dense(inputs=conv2,
units=output_dim,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32),
activation=None,
use_bias=False)
logits = tf.reshape(logits_dense, (-1, output_dim))
y_ = tf.nn.softmax(tf.reshape(logits_dense, (-1, output_dim)))
[print(var) for var in tf.trainable_variables()]
print(y_)
return x, y, logits, y_, learning_r, drop_out
def vanilla_nn(input_dim, output_dim, architecture, drop_layer=0, drop_keep_prob=0.9):
"""Vanilla neural net
Returns x and y placeholders, logits and y_ (y hat)"""
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, input_dim])
y = tf.placeholder(tf.float32, [None, output_dim])
w_init = tf.contrib.layers.xavier_initializer()
b_init = tf.initializers.truncated_normal(mean=0.1, stddev=0.025)
layer_sizes = [input_dim] + architecture + [output_dim]
weights, biases = {}, {}
layer_values = {0: x}
for layer, size_current, size_next in zip(range(len(layer_sizes)), layer_sizes, layer_sizes[1:]):
# create weights
last_layer = layer == len(layer_sizes) - 2 # dummy variable for last layer
weights[layer] = tf.get_variable('weights{}'.format(layer), shape=[size_current, size_next], initializer=w_init)
biases[layer] = tf.get_variable('biases{}'.format(layer), shape=[size_next], initializer=b_init)
# forward-propagate
if not last_layer:
layer_values[layer+1] = tf.nn.relu(tf.matmul(layer_values[layer], weights[layer]) + biases[layer])
else:
layer_values[layer+1] = tf.matmul(layer_values[layer], weights[layer]) + biases[layer]
y_ = tf.nn.softmax(layer_values[layer+1])
if drop_layer == layer:
layer_values[layer+1] = tf.nn.dropout(layer_values[layer+1], keep_prob=drop_keep_prob)
[print(var) for var in tf.trainable_variables()]
print([print(value) for _, value in layer_values.items()])
print(y_)
return x, y, layer_values[len(layer_values)-1], y_