-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
317 lines (225 loc) · 12.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
from numpy.linalg import inv
from scipy.interpolate import RectBivariateSpline as interpolate
import math
import random
from PIL import Image;
CORRESPONDENCE_AUT0 = 0
CORRESPONDENCE_MANUAL = 1
CALCULATE_H_NORMALLY = 0
CALCULATE_H_RANSAC = 1
def calculate_h(p,p_):
"takes setof points p and their corresponting points p_ , calculates the Homography matrix, returns 3x3 matrix"
#p is array of correspondance points of image 1, p_ is same for image 2
B=p_
A = np.zeros([2*p.shape[0],8]) #construct A from input points
for i in range(p.shape[0]): #constructs A from given points of image 1
A[i*2] = p[i,0],p[i,1],1,0,0,0,-p[i,0]*p_[i,0],-p[i,1]*p_[i,0]
A[i*2+1] = 0,0,0, p[i,0],p[i,1],1,-p[i,0]*p_[i,1],-p[i,1]*p_[i,1]
B=B.flatten().reshape(-1,1) # flatten and reshape to be one column for dimension suitability
H = np.linalg.lstsq(A,B,rcond=None)[0] #returns H
H=np.append(H,1) #puts 1 at the end of H
H = np.reshape(H,[3,3]) #return H as matrix of shape 3x3
return H
def get_correspondance_auto(image1_gray,image2_gray):
"get coresspondance points between two given images by sift"
orb = cv.ORB_create()
kp1, des1 = orb.detectAndCompute(image1_gray,None)#keypoints and descriptors of first image
kp2, des2 = orb.detectAndCompute(image2_gray,None)
bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True) #creates a matcher
# Match descriptors.
matches = bf.match(des1,des2) #matches the two descriptors
matches = sorted(matches, key = lambda x:x.distance) #sorts matches where best matcvhes come first
p=[] #list of correspondance point in first image
p_ = [] #list of correspondance point in second image
for match in matches: #loop on matches and fills p and p_
index1 = match.queryIdx
p.append((int(kp1[index1].pt[0]),int(kp1[index1].pt[1])) )
index2 = match.trainIdx
p_.append((int(kp2[index2].pt[0]),int(kp2[index2].pt[1])))
#matchImg = cv.drawMatches(image1_gray,kp1,image2_gray,kp2,matches[0:20],image2_gray) #draws the best 20 matches on the image and saves it as output image
#cv.imwrite('Matches.png', matchImg)
p=np.array(p)
p_=np.array(p_)
return p, p_
def get_correspondance_manually(image1,image2,number_of_points):
# Display images, select matching points
fig = plt.figure()
figA = fig.add_subplot(1,2,1)
figB = fig.add_subplot(1,2,2)
# Display the image
# lower use to flip the image
figA.imshow(image1)#,origin='lower')
figB.imshow(image2)#,origin='lower')
plt.axis('image')
# n = number of points to read
p1 = np.zeros([(number_of_points//2),2])
p2 = np.zeros([number_of_points//2,2])
pts = plt.ginput(n=number_of_points, timeout=0)
p1_itr = 0
p2_itr = 0
for i in range(0, number_of_points):
if (i % 2 == 0):
p1[p1_itr] = pts[i]
print("p1 of index ", p1_itr, " is ", pts[i])
p1_itr += 1
else:
p2[p2_itr] = pts[i]
print("p2 of index ", p2_itr, " is ", pts[i])
p2_itr += 1
return p1, p2
def InvTransform(h,point):
"for a point in second image gets its correspondance in first image"
inverse_point = np.dot(np.linalg.inv(h), point); #matrix multiplication with the inverse of H
inverse_point[0] /= inverse_point[2] #divides by weight
inverse_point[1] /= inverse_point[2]
return inverse_point[0:2]
def transform(h,point):
"for a point in first image gets its correspondance in second image "
corr_point = np.dot(h, point);
corr_point[0] /= corr_point[2];
corr_point[1] /= corr_point[2]
return corr_point[0:2]
def from_homo(points):
"converts homogoneous representation of a point a non-homo representation"
points[:,0] /= points[:,2]
points[:,1] /= points[:,2]
return points[:,0:2]
def warp(source_image,dest_image,h):
"aligns the two images"
source_height = source_image.shape[0]
source_width = source_image.shape[1]
source_edges = np.array([[0,0],[source_width-1, 0],[0, source_height -1],[source_width-1, source_height-1]]) # array containing corner points of source image
source_edges= np.pad(source_edges,(0,1),'constant',constant_values=1) #pad 1 to make it homogoneous representation
source_edges = source_edges[:-1] #remove a redudant row from padding
corr_source_edges = from_homo(np.dot(h,source_edges.T).T) #get the points cerresponding to edges in non-homogoneous form each row is a point and each colum is x or y
#get the corresponting positions of the corner points
max_mapped_i,max_mapped_j = int(np.ndarray.max(corr_source_edges[:,1],axis=0)),int(np.ndarray.max(corr_source_edges[:,0],axis=0))
min_mapped_i,min_mapped_j =int( np.ndarray.min(corr_source_edges[:,1],axis=0)),int(np.ndarray.min(corr_source_edges[:,0],axis=0))
#gets the size of source image after warping
mapped_source_height = max_mapped_i-min_mapped_i+1
mapped_source_width = max_mapped_j-min_mapped_j+1
#determines the shift that happens to the second image
shiftHeight = -min_mapped_i
shiftWidth = - min_mapped_j
# new image containing the first image after warping
mapped_source_image = np.zeros((mapped_source_height,mapped_source_width,3), dtype=np.uint8);
#forward warping
for i in range(0,source_height):
for j in range(0, source_width):
mapped_position = transform(h,np.array([j,i,1]))
mapped_j = int(mapped_position[0])
mapped_i = int(mapped_position[1])
mapped_source_image[mapped_i+shiftHeight][mapped_j+shiftWidth] = source_image[i][j];
#save forward warped image
#the resulting image contains holes
###cv.imwrite("with holes.png",mapped_source_image)
#inverse warping to remove holes
for i in range(0, mapped_source_height):
for j in range(0, mapped_source_width):
#check if pixel is black
if (int(mapped_source_image[i][j][0]) == 0 and int(mapped_source_image[i][j][1]) == 0 and int(mapped_source_image[i][j][2]) == 0):
inverse_mapped_position = InvTransform(h,np.array([j - shiftWidth,i - shiftHeight,1]))
inverse_mapped_i = inverse_mapped_position[1]
inverse_mapped_j = inverse_mapped_position[0]
if inverse_mapped_i <= source_height-1 and inverse_mapped_i >= 0 and inverse_mapped_j <= source_width-1 and inverse_mapped_j >= 0:
#interpolate
low_i = int(inverse_mapped_i);
low_j = int(inverse_mapped_j);
idistance = inverse_mapped_i - low_i;
jdistace = inverse_mapped_j - low_j;
#interpolation for each channel
mapped_source_image[i][j][0] = (1-idistance)*(1-jdistace)*source_image[low_i][low_j][0] + (1-idistance)*(jdistace)*source_image[low_i][low_j+1][0] + (idistance)*(1-jdistace)*source_image[low_i+1][low_j][0] + (idistance)*(jdistace)*source_image[low_i+1][low_j+1][0]
mapped_source_image[i][j][1] = (1-idistance)*(1-jdistace)*source_image[low_i][low_j][1] + (1-idistance)*(jdistace)*source_image[low_i][low_j+1][1] + (idistance)*(1-jdistace)*source_image[low_i+1][low_j][1] + (idistance)*(jdistace)*source_image[low_i+1][low_j+1][1]
mapped_source_image[i][j][2] = (1-idistance)*(1-jdistace)*source_image[low_i][low_j][2] + (1-idistance)*(jdistace)*source_image[low_i][low_j+1][2] + (idistance)*(1-jdistace)*source_image[low_i+1][low_j][2] + (idistance)*(jdistace)*source_image[low_i+1][low_j+1][2]
#writes image after inverse warping
###cv.imwrite("without holes.png",mapped_source_image)
dest_image_height = dest_image.shape[0]
dest_image_width = dest_image.shape[1]
#get dimensions for the new image
mosaic_image_height = max(mapped_source_height, dest_image_height+shiftHeight)
mosaic_image_width= max(mapped_source_width, dest_image_width+shiftWidth)
mosaic_image = np.zeros((mosaic_image_height, mosaic_image_width, 3), dtype=np.uint8);
#put the second image in the mosaic image
for i in range(0,dest_image_height):
for j in range(0, dest_image_width):
mosaic_image[i + shiftHeight][j + shiftWidth] = dest_image[i][j]
#puts the first image in mosaic image
for i in range(0,mapped_source_image.shape[0]):
for j in range(0,mapped_source_image.shape[1]):
if not( int(mapped_source_image[i][j][0]) == 0 and int(mapped_source_image[i][j][1]) == 0 and int(mapped_source_image[i][j][2]) == 0 ):
mosaic_image[i][j] = mapped_source_image[i][j]
return mosaic_image
def ransac_error(single_p,single_p_,h):
"calcualtes difference between the calculated point and the given point"
point = np.array([single_p[0],single_p[1],1])
calculated_point_ = np.dot(h,point.reshape(-1,1))
calculated_point_ /= calculated_point_[2]
error = calculated_point_[0:2] - single_p_.reshape(-1,1) #difference
error = np.square(error) #squared
error = np.sum(error) #sum of dimensions
return math.sqrt(error)
def ransac(p,p_,threshold,iterations):
"takes coreespondance points and for each 4 random pairs it calculates h and counts inliners from a given threshold and keeps the best h"
max_inliners = 0
best_h = None
for i in range(iterations):
inliners = 0
randp = np.zeros([4,2])
randp_ = np.zeros([4,2])
H = None
for j in range(4):
random_index = random.randrange(0, p.shape[0],1) #picks random points from the given set
randp[j]=p[random_index]
randp_[j]=p_[random_index]
H = calculate_h(randp,randp_) #calculates h from the 4 random points
for j in range(p.shape[0]):
error = ransac_error(p[j],p_[j],H)
if(error<threshold):
inliners+=1
if(inliners>max_inliners):
max_inliners = inliners
best_h = H
#return the H and the number of inliners for H
return best_h , max_inliners
def construct_mosaic(path1,path2,correspondance_method,H_calculation_method,ransac_loops=100):
image1 = cv.imread(path1)
image2 = cv.imread(path2)
image1_gray = cv.cvtColor(image1,cv.COLOR_RGB2GRAY)
image2_gray = cv.cvtColor(image2,cv.COLOR_RGB2GRAY)
new_filename = path1.split(".")[0]+"and"+path2.split(".")[0]
corr_method_string = ""
H_method_string = ""
if(correspondance_method == CORRESPONDENCE_AUT0):
p1,p2 = get_correspondance_auto(image1_gray,image2_gray)
corr_method_string = "automatic correspondence"
else:
p1,p2 = get_correspondance_manually(image1,image2,8)
corr_method_string = "manual correspondence"
new_filename = new_filename +"_"+corr_method_string
if(H_calculation_method==CALCULATE_H_NORMALLY):
H = calculate_h(p1[0:90],p2[0:90])
H_method_string = "H calcualated without ransac"
else:
H, inliners = ransac(p1,p2,5,ransac_loops)
H_method_string = "H calcualated with ransac"
new_filename = new_filename +"_"+H_method_string + "_" + "ransacloops="+str(ransac_loops)
new_filename = new_filename +"_"+H_method_string
mosaic_image = warp(image1,image2,H)
#writes the output
cv.imwrite(new_filename+".png",mosaic_image)
print("writing "+new_filename+" image is done")
#construct_mosaic("1.png","2.png",CORRESPONDENCE_AUT0,CALCULATE_H_RANSAC,100)
construct_mosaic("1.png","2.png",CORRESPONDENCE_MANUAL,CALCULATE_H_RANSAC,10)
#construct_mosaic("1.png","2.png",CORRESPONDENCE_AUT0,CALCULATE_H_RANSAC,1000)
#construct_mosaic("1.png","2.png",CORRESPONDENCE_AUT0,CALCULATE_H_RANSAC,5000)
####
####
#construct_mosaic("1.png","2.png",CORRESPONDENCE_AUT0,CALCULATE_H_RANSAC,100)
#construct_mosaic("1.png","2.png",CORRESPONDENCE_AUT0,CALCULATE_H_NORMALLY)
###
###
#construct_mosaic("3.jpg","4.jpg",CORRESPONDENCE_AUT0,CALCULATE_H_RANSAC,1000)
#construct_mosaic("1.png","2.png",CORRESPONDENCE_AUT0,CALCULATE_H_NORMALLY)