-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
231 lines (180 loc) · 9.71 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import copy
import torch
from torch import nn
from transformers import T5ForConditionalGeneration
from transformers.modeling_outputs import Seq2SeqLMOutput
class T5WithSpan(T5ForConditionalGeneration):
def __init__(self, config, num_span, consistency_task, max_seq_len, expected_vocab_size):
super(T5WithSpan, self).__init__(config)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
self.resp_decoder = type(self.decoder)(decoder_config, self.shared)
self.resp_lm_head = type(self.lm_head)(
config.d_model, config.vocab_size, bias=False)
self.max_seq_len = max_seq_len
self.expected_vocab_size = expected_vocab_size
if consistency_task:
self.consistency_head = torch.nn.Linear(self.max_seq_len * expected_vocab_size, 1)
self.dropout = nn.Dropout(config.dropout_rate)
def initialize_additional_decoder(self):
decoder_config = copy.deepcopy(self.config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
self.resp_decoder = type(self.decoder)(decoder_config, self.shared)
self.resp_lm_head = type(self.lm_head)(
self.config.d_model, self.config.vocab_size, bias=False)
self.resp_decoder.load_state_dict(self.decoder.state_dict())
self.resp_lm_head.load_state_dict(self.lm_head.state_dict())
def initialize_weights(self, modules):
for module in modules:
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def predict_span(self, encoder_hidden_states, attention_mask, span_labels=None):
span_loss, pred_spans, span_logits = 0, None, None
return span_loss, pred_spans, span_logits
def prepare_inputs_for_generation(self, input_ids,
past=None, attention_mask=None,
use_cache=None, encoder_outputs=None,
**kwargs):
if past is not None:
input_ids = input_ids[:, -1:]
return {"decoder_input_ids": input_ids,
"past_key_values": past,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"use_cache": use_cache,
"decoder_type": kwargs.get("decoder_type")}
def forward(self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
span_labels=None,
lm_labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
encoder_only=None,
span_task=None,
decoder_type=None,
consistency_task=False,
tau=1):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.return_dict
span_loss, pred_spans, span_logits = 0, None, None
if encoder_outputs is None:
encoder_outputs = self.encoder(input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
return_dict=return_dict)
if return_dict:
encoder_hidden_states = encoder_outputs.last_hidden_state
else:
encoder_hidden_states = encoder_outputs[0]
hs = encoder_hidden_states * (self.model_dim ** -0.5)
if span_task:
span_loss, pred_spans, span_logits = self.predict_span(
hs, attention_mask, span_labels)
else:
if isinstance(encoder_outputs, tuple):
encoder_hidden_states = encoder_outputs[0]
else:
encoder_hidden_states = encoder_outputs.last_hidden_state
if encoder_only:
return (span_loss, pred_spans, span_logits), encoder_outputs
if lm_labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = self._shift_right(lm_labels)
if decoder_type == "resp":
decoder = self.resp_decoder
lm_head = self.resp_lm_head
else:
decoder = self.decoder
lm_head = self.lm_head
if past_key_values is not None:
assert lm_labels is None, "Decoder should not use cached key value states when training"
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_inputs_embeds is not None:
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
decoder_outputs = decoder(input_ids=decoder_input_ids,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
use_cache=use_cache,
return_dict=return_dict)
sequence_output = decoder_outputs[0]
sequence_output = sequence_output * (self.model_dim ** -0.5)
lm_logits = lm_head(sequence_output)
lm_loss = None
if lm_labels is not None:
lm_loss_fct = nn.CrossEntropyLoss(ignore_index=0)
lm_loss = lm_loss_fct(
lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
consistency_loss = None
if consistency_task and not return_dict:
batch_size = lm_labels.shape[0]
if batch_size - 1 > 0:
consistency_loss_fct = nn.BCEWithLogitsLoss()
generated_hard = torch.nn.functional.gumbel_softmax(lm_logits, dim=2, tau=tau, hard=True)
generated_soft = torch.nn.functional.gumbel_softmax(lm_logits, dim=2, tau=tau)
generated = generated_hard - generated_soft.detach() + generated_soft
padding = torch.nn.functional.one_hot(torch.zeros([generated.shape[0], self.max_seq_len - generated.shape[1]], dtype=torch.long, device=generated.device), num_classes=generated.shape[2])
generated = torch.cat((generated, padding), 1)
truth = torch.nn.functional.one_hot(lm_labels, num_classes=generated.shape[2]).to(dtype=torch.float)
truth = torch.cat((truth, padding), 1)
generated = generated.reshape(generated.shape[0], self.expected_vocab_size * self.max_seq_len)
truth = truth.reshape(truth.shape[0], self.expected_vocab_size * self.max_seq_len)
gen_logits = self.consistency_head(generated)
gen_loss = consistency_loss_fct(gen_logits, torch.zeros([gen_logits.shape[0], 1], device=gen_logits.device))
truth_logits = self.consistency_head(truth)
truth_loss = consistency_loss_fct(truth_logits, torch.ones([truth_logits.shape[0], 1], device=truth_logits.device))
consistency_loss = gen_loss + truth_loss
else:
consistency_loss = torch.tensor(0, dtype=torch.float).to(lm_labels.device)
# Training
if not return_dict:
pred_lm = torch.argmax(lm_logits, dim=-1)
outputs = (lm_loss, pred_lm,) + \
(span_loss, pred_spans, span_logits, encoder_hidden_states, consistency_loss) + \
decoder_outputs[1:]
# Inference
else:
outputs = Seq2SeqLMOutput(
loss=lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs[1] if len(
encoder_outputs) > 1 else None,
encoder_attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None)
return outputs
class T5WithTokenSpan(T5WithSpan):
def __init__(self, config, num_span, consistency_task, max_seq_len, expected_vocab_size):
super(T5WithTokenSpan, self).__init__(config, num_span, consistency_task, max_seq_len, expected_vocab_size)
self.num_span_labels = num_span + 2
self.span_head = nn.Linear(config.d_model, self.num_span_labels)
self.initialize_weights([self.span_head])
def predict_span(self, encoder_hidden_states, attention_mask, span_labels=None):
span_head = self.span_head.to(encoder_hidden_states.device)
span_logits = span_head(encoder_hidden_states)
pred_spans = torch.argmax(span_logits, dim=-1)
span_loss = 0
if span_labels is not None:
span_loss_fct = nn.CrossEntropyLoss(ignore_index=0)
span_loss = span_loss_fct(
span_logits.view(-1, self.num_span_labels), span_labels.view(-1))
return span_loss, pred_spans, span_logits