-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathevaluation_tts.py
322 lines (258 loc) · 11.8 KB
/
evaluation_tts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# coding: utf-8
"""Evaluation script for GAN-based text-to-speech synthesis.
usage: evaluation_vc.py [options] <acoustic_checkpoint> <duration_checkpoint> \
<data_dir> <labels_dir> <outputs_dir>
options:
--fs=<fs> Sampling frequency [default: 16000].
--disable-duraton-gen Disable duration generation.
--post-filter Apply Merlin's post filter to spectral features.
-h, --help Show this help message and exit.
"""
from docopt import docopt
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from scipy.io import wavfile
import pyworld
import pysptk
import sys
import os
from os.path import splitext, join, abspath, basename, exists
from nnmnkwii import preprocessing as P
from nnmnkwii import paramgen
from nnmnkwii.datasets import FileSourceDataset, FileDataSource
from nnmnkwii.io import hts
from nnmnkwii.frontend import merlin as fe
from nnmnkwii.postfilters import merlin_post_filter
import gantts
from gantts.multistream import multi_stream_mlpg, get_static_features
from gantts.multistream import get_static_stream_sizes, select_streams
from gantts.seqloss import MaskedMSELoss, sequence_mask
from hparams import tts_acoustic as hp_acoustic
from hparams import tts_duration as hp_duration
from train import NPYDataSource
use_cuda = torch.cuda.is_available()
binary_dict, continuous_dict = hts.load_question_set(hp_acoustic.question_path)
def gen_parameters(y_predicted, Y_mean, Y_std, mge_training=True):
mgc_dim, lf0_dim, vuv_dim, bap_dim = hp_acoustic.stream_sizes
mgc_start_idx = 0
lf0_start_idx = mgc_dim
vuv_start_idx = lf0_start_idx + lf0_dim
bap_start_idx = vuv_start_idx + vuv_dim
windows = hp_acoustic.windows
ty = "acoustic"
# MGE training
if mge_training:
# Split acoustic features
mgc = y_predicted[:, :lf0_start_idx]
lf0 = y_predicted[:, lf0_start_idx:vuv_start_idx]
vuv = y_predicted[:, vuv_start_idx]
bap = y_predicted[:, bap_start_idx:]
# Perform MLPG on normalized features
mgc = paramgen.mlpg(mgc, np.ones(mgc.shape[-1]), windows)
lf0 = paramgen.mlpg(lf0, np.ones(lf0.shape[-1]), windows)
bap = paramgen.mlpg(bap, np.ones(bap.shape[-1]), windows)
# When we use MGE training, denormalization should be done after MLPG.
mgc = P.inv_scale(mgc, Y_mean[ty][:mgc_dim // len(windows)],
Y_std[ty][:mgc_dim // len(windows)])
lf0 = P.inv_scale(lf0, Y_mean[ty][lf0_start_idx:lf0_start_idx + lf0_dim // len(windows)],
Y_std[ty][lf0_start_idx:lf0_start_idx + lf0_dim // len(windows)])
bap = P.inv_scale(bap, Y_mean[ty][bap_start_idx:bap_start_idx + bap_dim // len(windows)],
Y_std[ty][bap_start_idx:bap_start_idx + bap_dim // len(windows)])
vuv = P.inv_scale(vuv, Y_mean[ty][vuv_start_idx], Y_std[ty][vuv_start_idx])
else:
# Denormalization first
y_predicted = P.inv_scale(y_predicted, Y_mean, Y_std)
# Split acoustic features
mgc = y_predicted[:, :lf0_start_idx]
lf0 = y_predicted[:, lf0_start_idx:vuv_start_idx]
vuv = y_predicted[:, vuv_start_idx]
bap = y_predicted[:, bap_start_idx:]
# Perform MLPG
Y_var = Y_std[ty] * Y_std[ty]
mgc = paramgen.mlpg(mgc, Y_var[:lf0_start_idx], windows)
lf0 = paramgen.mlpg(lf0, Y_var[lf0_start_idx:vuv_start_idx], windows)
bap = paramgen.mlpg(bap, Y_var[bap_start_idx:], windows)
return mgc, lf0, vuv, bap
def gen_waveform(y_predicted, Y_mean, Y_std, post_filter=False, coef=1.4,
fs=16000, mge_training=True):
alpha = pysptk.util.mcepalpha(fs)
fftlen = fftlen = pyworld.get_cheaptrick_fft_size(fs)
frame_period = hp_acoustic.frame_period
# Generate parameters and split streams
mgc, lf0, vuv, bap = gen_parameters(y_predicted, Y_mean, Y_std, mge_training)
if post_filter:
mgc = merlin_post_filter(mgc, alpha, coef=coef)
spectrogram = pysptk.mc2sp(mgc, fftlen=fftlen, alpha=alpha)
aperiodicity = pyworld.decode_aperiodicity(bap.astype(np.float64), fs, fftlen)
f0 = lf0.copy()
f0[vuv < 0.5] = 0
f0[np.nonzero(f0)] = np.exp(f0[np.nonzero(f0)])
generated_waveform = pyworld.synthesize(f0.flatten().astype(np.float64),
spectrogram.astype(np.float64),
aperiodicity.astype(np.float64),
fs, frame_period)
# Convert range to int16
generated_waveform = generated_waveform / \
np.max(np.abs(generated_waveform)) * 32767
# return features as well to compare natural/genearted later
return generated_waveform, mgc, lf0, vuv, bap
def _generator_input(hp, x, seed=None):
if seed is not None:
torch.manual_seed(seed)
if hp.generator_add_noise:
z = torch.rand(x.size(0), x.size(1), hp.generator_noise_dim)
z = Variable(z)
return torch.cat((x, z), -1)
return x
def gen_duration(label_path, duration_model, X_min, X_max, Y_mean, Y_std):
# Linguistic features for duration
hts_labels = hts.load(label_path)
duration_linguistic_features = fe.linguistic_features(
hts_labels,
binary_dict, continuous_dict,
add_frame_features=hp_duration.add_frame_features,
subphone_features=hp_duration.subphone_features).astype(np.float32)
# Apply normali--post-filterzation
ty = "duration"
duration_linguistic_features = P.minmax_scale(
duration_linguistic_features,
X_min[ty], X_max[ty], feature_range=(0.01, 0.99))
# Apply models
duration_model.eval()
# Apply model
x = Variable(torch.from_numpy(duration_linguistic_features)).float()
xl = len(x)
x = x.view(1, -1, x.size(-1))
x = _generator_input(hp_duration, x)
x = x.cuda() if use_cuda else x
duration_predicted = duration_model(x, [xl]).data.cpu().numpy()
duration_predicted = duration_predicted.reshape(-1, duration_predicted.shape[-1])
# Apply denormalization
duration_predicted = P.inv_scale(duration_predicted, Y_mean[ty], Y_std[ty])
duration_predicted = np.round(duration_predicted)
# Set minimum state duration to 1
# print(duration_predicted)
duration_predicted[duration_predicted <= 0] = 1
hts_labels.set_durations(duration_predicted)
return hts_labels
def tts_from_label(models, label_path, X_min, X_max, Y_mean, Y_std,
post_filter=False,
apply_duration_model=True, coef=1.4, fs=16000,
mge_training=True):
duration_model, acoustic_model = models["duration"], models["acoustic"]
if use_cuda:
duration_model = duration_model.cuda()
acoustic_model = acoustic_model.cuda()
# Predict durations
if apply_duration_model:
duration_modified_hts_labels = gen_duration(
label_path, duration_model, X_min, X_max, Y_mean, Y_std)
else:
duration_modified_hts_labels = hts.load(label_path)
# Linguistic features
linguistic_features = fe.linguistic_features(
duration_modified_hts_labels,
binary_dict, continuous_dict,
add_frame_features=hp_acoustic.add_frame_features,
subphone_features=hp_acoustic.subphone_features)
# Trim silences
indices = duration_modified_hts_labels.silence_frame_indices()
linguistic_features = np.delete(linguistic_features, indices, axis=0)
# Apply normalization
ty = "acoustic"
linguistic_features = P.minmax_scale(
linguistic_features, X_min[ty], X_max[ty], feature_range=(0.01, 0.99))
# Predict acoustic features
acoustic_model.eval()
x = Variable(torch.from_numpy(linguistic_features)).float()
xl = len(x)
x = x.view(1, -1, x.size(-1))
x = _generator_input(hp_duration, x)
x = x.cuda() if use_cuda else x
acoustic_predicted = acoustic_model(x, [xl]).data.cpu().numpy()
acoustic_predicted = acoustic_predicted.reshape(-1, acoustic_predicted.shape[-1])
return gen_waveform(acoustic_predicted, Y_mean, Y_std, post_filter,
coef=coef, fs=fs, mge_training=mge_training)
def load_checkpoint(model, optimizer, checkpoint_path):
print("Load checkpoint from: {}".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["state_dict"])
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
def get_lab_files(data_dir, label_dir, test=False):
if test:
files = NPYDataSource(join(data_dir, "X_acoustic"), test=True).collect_files()
else:
files = NPYDataSource(join(data_dir, "X_acoustic"), train=False).collect_files()
lab_files = list(map(
lambda f: join(label_dir, splitext(basename(f))[0] + ".lab"), files))
return lab_files
def get_wav_files(data_dir, wav_dir, test=False):
if test:
files = NPYDataSource(join(data_dir, "X_acoustic"), test=True).collect_files()
else:
files = NPYDataSource(join(data_dir, "X_acoustic"), train=False).collect_files()
wav_files = list(map(
lambda f: join(wav_dir, splitext(basename(f))[0] + ".wav"), files))
return wav_files
if __name__ == "__main__":
args = docopt(__doc__)
print("Command line args:\n", args)
acoustic_checkpoint = args["<acoustic_checkpoint>"]
duration_checkpoint = args["<duration_checkpoint>"]
data_dir = args["<data_dir>"]
labels_dir = args["<labels_dir>"]
outputs_dir = args["<outputs_dir>"]
post_filter = args["--post-filter"]
disable_duration_gen = args["--disable-duraton-gen"]
fs = int(args["--fs"])
# Collect stats and create models
X_min = {}
X_max = {}
Y_mean = {}
Y_var = {}
Y_std = {}
models = {"acoustic": {}, "duration": {}}
for typ in ["acoustic", "duration"]:
X_min[typ] = np.load(join(data_dir, "X_{}_data_min.npy".format(typ)))
X_max[typ] = np.load(join(data_dir, "X_{}_data_max.npy".format(typ)))
Y_mean[typ] = np.load(join(data_dir, "Y_{}_data_mean.npy".format(typ)))
Y_var[typ] = np.load(join(data_dir, "Y_{}_data_var.npy".format(typ)))
Y_std[typ] = np.sqrt(Y_var[typ])
hp = hp_acoustic if typ == "acoustic" else hp_duration
if hp.generator_params["in_dim"] is None:
D = X_min[typ].shape[-1]
if hp.generator_add_noise:
D = D + hp.generator_noise_dim
hp.generator_params["in_dim"] = D
if hp.generator_params["out_dim"] is None:
hp.generator_params["out_dim"] = Y_mean[typ].shape[-1]
models[typ] = getattr(gantts.models, hp.generator)(**hp.generator_params)
checkpoint_path = duration_checkpoint if hp == hp_duration \
else acoustic_checkpoint
load_checkpoint(models[typ], None, checkpoint_path)
print(models)
# Generate samples for
# 1. Evaluation set
# 2. Test set
eval_dir = join(outputs_dir, "eval")
test_dir = join(outputs_dir, "test")
if not exists(eval_dir):
os.makedirs(eval_dir)
if not exists(test_dir):
os.makedirs(test_dir)
eval_lab_files = get_lab_files(data_dir, labels_dir, test=False)
test_lab_files = get_lab_files(data_dir, labels_dir, test=True)
for dst_dir, files in [(eval_dir, eval_lab_files), (test_dir, test_lab_files)]:
for label_path in files:
print(dst_dir, label_path)
name = splitext(basename(label_path))[0]
dst_path = join(dst_dir, name + ".wav")
waveform, mgc, lf0, vuv, bap = tts_from_label(
models, label_path, X_min, X_max, Y_mean, Y_std,
apply_duration_model=not disable_duration_gen,
post_filter=post_filter, fs=fs)
wavfile.write(dst_path, fs, waveform.astype(np.int16))
sys.exit(0)