forked from wbpowell328/stochastic-optimization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBloodManagementNetwork.py
126 lines (90 loc) · 3.93 KB
/
BloodManagementNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
from collections import (namedtuple, defaultdict)
from BloodManagementModel import contribution
class Graph:
def __init__(self):
self.bloodnodes = list()
self.bloodamount = []
self.demandnodes = list()
self.demandamount = []
self.demcontrib = {}
self.demedges = defaultdict(list)
self.demweights = {}
self.supersink = None
self.holdnodes = list()
self.holdamount = []
self.holdedges = defaultdict(list)
self.holdweights = {}
self.holdvbar = []
self.parallelarr = {}
self.varr = {}
self.sqGrad = {} #this will store the sum of the squared gradients when using AdaGrad stepsizes.
# supersink_node
def add_supersinknode(self, name):
self.supersink = name
self.amount[name] = 0
# node of type (bloodtype, age) for current blood inventory
def add_bloodnode(self, name):
self.bloodnodes.append(name)
self.bloodamount.append(0)
# node - (bloodtype, age)
def add_demandnode(self, name):
self.demandnodes.append(name)
self.demandamount.append(0)
# node - (bloodtype, age)
def add_holdnode(self, name):
self.holdnodes.append(name)
self.holdamount.append(0)
# create an edge between two nodes
def add_demedge(self, from_node, to_node, weight):
self.demedges[from_node].append(to_node)
self.demweights[(from_node, to_node)] = weight
# create an edge between two nodes
def add_holdedge(self, from_node, to_node, weight):
self.holdedges[from_node].append(to_node)
self.holdweights[(from_node, to_node)] = weight
def add_parallel(self, t, from_node, to_node, parallelarray):
self.parallelarr[(t, from_node, to_node)] = parallelarray
def add_varr(self, t, from_node, to_node, varr):
self.varr[(t, from_node, to_node)] = varr
def add_demcontribArr(self, bldnode,demcontribArr):
self.demcontrib[bldnode] = demcontribArr
def add_sqGradArr(self, t, bldnode,sqGradArr):
self.sqGrad[(t,bldnode)] = sqGradArr
def create_bld_net(params):
# create the network
Bl_Net = Graph()
Bl_Net.supersink = ('supersink', np.inf)
# (BloodUnit, Age) pairs and respective hold nodes
for i in params['Bloodtypes']:
for j in params['Ages']:
Bl_Net.add_bloodnode((i, str(j)))
Bl_Net.add_holdnode((i, str(j)))
# all possible demand nodes
for i in params['Bloodtypes']:
for j in params['Surgerytypes']:
for k in params['Substitution']:
Bl_Net.add_demandnode((i, j, k))
#add edges from (bloodunit, age) pairs to suitable demand nodes
for bld in Bl_Net.bloodnodes:
for dmd in Bl_Net.demandnodes:
weight = contribution(params,bld, dmd)
Bl_Net.add_demedge(bld, dmd, weight)
for bld in Bl_Net.bloodnodes:
demcontribArr = [contribution(params,bld, dmd) for dmd in Bl_Net.demandnodes]
Bl_Net.add_demcontribArr(bld,demcontribArr)
# add edges from blood nodes to hold nodes
for bld in Bl_Net.bloodnodes:
for hld in Bl_Net.holdnodes:
if bld[0] == hld[0] and bld[1] == hld[1]:
Bl_Net.add_holdedge(bld, hld, 0)
# add parallel edges from hold nodes to supersink
for t in params['Times']:
for hld in Bl_Net.holdnodes:
parArr = np.zeros(params['NUM_PARALLEL_LINKS'])
vArr = np.zeros(params['NUM_PARALLEL_LINKS'])
Bl_Net.add_parallel(t, hld, Bl_Net.supersink, parArr)
Bl_Net.add_varr(t, hld, Bl_Net.supersink, vArr)
sqGradArr = np.zeros(params['NUM_PARALLEL_LINKS'])
Bl_Net.add_sqGradArr(t, hld, sqGradArr)
return(Bl_Net)