-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmtl_testing.py
138 lines (109 loc) · 4.51 KB
/
mtl_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import random
from io import open
import pickle
import torch
import torch.nn as nn
from torch.autograd import Variable
import texttable as tt
from mtl_learning import MetaData, EncoderRNN, AttnDecoderRNN
from mtl_learning import print_msg, variables_from_data
USE_CUDA = False
MAX_LENGTH = 52
SPLIT_RATIOS = {'train': 80, 'validation': 10, 'test': 10}
BATCH_SIZE = 32
SOS_TOKEN = 0
EOS_TOKEN = 1
def test(encoder, decoder, test_set,
meta_data, max_length=MAX_LENGTH, printEvery=25):
test_pairs = [variables_from_data(sample, meta_data) for sample in test_set]
criterion = nn.NLLLoss()
avg_loss = 0
nw_output = []
for i, pair in enumerate(test_pairs):
if (i+1) % printEvery == 0:
print_msg("%s samples tested .." % (i))
input_variable = pair[0]
target_variable = pair[1]
input_length = input_variable.size()[0]
target_length = target_variable.size()[0]
encoder_hidden = encoder.init_hidden()
encoder_outputs = Variable(torch.zeros(max_length, encoder.hidden_size))
encoder_outputs = encoder_outputs.cuda() if USE_CUDA else encoder_outputs
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_variable[ei],
encoder_hidden)
encoder_outputs[ei] = encoder_outputs[ei] + encoder_output[0][0]
decoder_input = Variable(torch.LongTensor([[SOS_TOKEN]]))
decoder_input = decoder_input.cuda() if USE_CUDA else decoder_input
decoder_hidden = encoder_hidden
loss = 0
decoded_words = []
for di in range(target_length):
decoder_output,\
decoder_hidden,\
decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
loss += criterion(decoder_output, target_variable[di])
if ni == EOS_TOKEN:
break
else:
decoded_words.append(meta_data.index_to_word[ni])
decoder_input = Variable(torch.LongTensor([[ni]]))
decoder_input = decoder_input.cuda() if USE_CUDA else decoder_input
nw_output.append((test_set[i][0], test_set[i][1], ' '.join(decoded_words)))
avg_loss += loss.data[0] / target_length
test_loss = avg_loss / len(test_pairs)
return test_loss, nw_output
def rogue1_F1(outputs):
avg_r1_f1 = 0
r1_f1_scores = []
for i, output in enumerate(outputs):
ref_tokens = output[1].split(' ')
sys_tokens = output[2].split(' ')
tt_dict = {}
for token in ref_tokens:
if token in tt_dict:
tt_dict[token] = tt_dict[token] + 1
else:
tt_dict[token] = 0
num_overlaps = 0
for token in sys_tokens:
if token in tt_dict and tt_dict[token] > 0:
tt_dict[token] = tt_dict[token] - 1
num_overlaps += 1
r1_recall = num_overlaps / len(ref_tokens)
r1_precision = num_overlaps / len(sys_tokens)
try:
r1_f1 = 2*(r1_precision * r1_recall) / (r1_precision + r1_recall)
except ZeroDivisionError:
r1_f1 = 0
r1_f1_scores.append((r1_f1, i))
avg_r1_f1 += r1_f1
return (avg_r1_f1 / len(outputs)), r1_f1_scores
def print_sample(outputs):
tab = tt.Texttable()
headings = ['Text','Reference Summary','System Summary']
tab.header(headings)
for output in outputs:
tab.add_row(list(output))
s = tab.draw()
print_msg(s)
if __name__ == '__main__':
encoder = torch.load('checkpoint_models/summ_encoder_06_10_18_22_37_14_1')
decoder = torch.load('checkpoint_models/decoder_06_10_18_22_37_14_1')
meta_data = pickle.load(open('pickles/meta_data.pkl', 'rb'))
test_data = pickle.load(open('pickles/test_summ_data.pkl', 'rb'))
print_msg('models, metadata, and data loaded ..')
print_msg('testing started ..')
loss, nw_outputs = test(encoder.eval(), decoder.eval(),
test_data, meta_data)
print_msg('testing done ..')
print_msg("The negative log likelihood loss for the test data is %s .." %
(loss))
avg_r1_f1, r1_f1_scores = rogue1_F1(nw_outputs)
print_msg("The average ROGUE-1 F1 measure is %s .." % (avg_r1_f1))
sample_outputs = random.sample(nw_outputs, 10)
print_msg("Here are some of the sample results .. ")
print_sample(sample_outputs)