-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathurukul.py
507 lines (416 loc) · 19.3 KB
/
urukul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from migen import *
# increment this if the behavior (LEDs, registers, EEM pins) changes
__proto_rev__ = 8
class SR(Module):
"""
Shift register, SPI slave
* CPOL = 0 (clock idle low during ~SEL)
* CPHA = 0 (sample on first edge, shift on second)
* SPI mode 0
* samples SDI on rising clock edges (SCK1 domain)
* shifts out SDO on falling clock edges (SCK0 domain)
* MSB first
* the first output bit (MSB) is undefined
* the first output bit is available from the start of the SEL cycle until
the first falling edge
* the first input bit is sampled on the first rising edge
* on the first rising edge with SEL assered, the parallel data DO
is loaded into the shift register
* following at least one rising clock edge, on the deassertion of SEL,
the shift register is loaded into the parallel data register DI
"""
def __init__(self, width):
self.sdi = Signal()
self.sdo = Signal()
self.sel = Signal()
self.di = Signal(width)
self.do = Signal(width)
# # #
sr = Signal(width)
self.clock_domains.cd_le = ClockDomain("le", reset_less=True)
# clock the latch domain from selection deassertion but only after
# there was a serial clock edge with asserted select (i.e. ignore
# glitches).
self.specials += Instance("FDPE", p_INIT=1,
i_D=0, i_C=ClockSignal("sck1"), i_CE=self.sel, i_PRE=~self.sel,
o_Q=self.cd_le.clk)
self.sync.sck0 += [
If(self.sel,
self.sdo.eq(sr[-1]),
)
]
self.sync.sck1 += [
If(self.sel,
sr[0].eq(self.sdi),
If(self.cd_le.clk,
sr[1:].eq(self.do[:-1])
).Else(
sr[1:].eq(sr[:-1])
)
)
]
self.sync.le += [
self.di.eq(sr)
]
class CFG(Module):
"""Configuration register
The configuration register is updated from the SPI shift register on the
deselection of the CPLD at the end of the SPI transaction.
The initial state is 0 (all bits cleared).
The bits in the configuration register (from LSB to MSB) are:
| Name | Width | Function |
|-----------+-------+-------------------------------------------------|
| RF_SW | 4 | Activates RF switch per channel |
| LED | 4 | Activates the red LED per channel |
| PROFILE | 3 | Controls DDS[0:3].PROFILE[0:2] |
| DUMMY | 1 | Reserved (used in a previous revision) |
| IO_UPDATE | 1 | Asserts DDS[0:3].IO_UPDATE where CFG.MASK_NU |
| | | is high |
| MASK_NU | 4 | Disables DDS from QSPI interface, disables |
| | | IO_UPDATE control through IO_UPDATE EEM signal, |
| | | enables access through CS=3, enables control of |
| | | IO_UPDATE through CFG.IO_UPDATE |
| CLK_SEL0 | 1 | Selects CLK source: 0 MMCX/OSC, 1 SMA |
| SYNC_SEL | 1 | Selects SYNC source |
| RST | 1 | Asserts DDS[0:3].RESET, DDS[0:3].MASTER_RESET, |
| | | ATT[0:3].RST |
| IO_RST | 1 | Asserts DDS[0:3].IO_RESET |
| CLK_SEL1 | 1 | Selects CLK source: 0 OSC, 1 MMCX |
| DIV | 2 | Clock divider configuration: 0: default, |
| | | 1: divide-by-one, 2: divider-by-two, |
| | | 3: divide-by-four |
"""
def __init__(self, platform, n=4):
self.data = Record([
("rf_sw", n),
("led", n),
("profile", 3),
("dummy", 1),
("io_update", 1),
("mask_nu", 4),
("clk_sel0", 1),
("sync_sel", 1),
("rst", 1),
("io_rst", 1),
("clk_sel1", 1),
("div", 2),
])
dds_common = platform.lookup_request("dds_common")
dds_sync = platform.lookup_request("dds_sync")
att = platform.lookup_request("att")
clk = platform.lookup_request("clk")
self.en_9910 = Signal()
self.comb += [
clk.in_sel.eq(self.data.clk_sel0),
clk.mmcx_osc_sel.eq(self.data.clk_sel1),
clk.osc_en_n.eq(clk.in_sel | clk.mmcx_osc_sel),
dds_sync.sync_sel.eq(self.data.sync_sel),
dds_common.master_reset.eq(self.data.rst),
dds_common.io_reset.eq(self.data.io_rst),
att.rst_n.eq(~self.data.rst),
]
for i in range(n):
sw = platform.request("eem", 12 + i)
dds = platform.lookup_request("dds", i)
self.comb += [
sw.oe.eq(0),
dds.rf_sw.eq(sw.io | self.data.rf_sw[i]),
dds.led[0].eq(dds.rf_sw), # green
dds.led[1].eq(self.data.led[i] | (self.en_9910 & (
dds.smp_err | ~dds.pll_lock))), # red
dds.profile.eq(self.data.profile),
dds.osk.eq(1),
dds.drhold.eq(0),
dds.drctl.eq(0),
]
class Status(Module):
"""Status register.
The status data is loaded into the SPI shift register on the first
rising SCK edge while the CPLD is selected. The bits from LSB to MSB
are:
| Name | Width | Function |
|-----------+-------+-------------------------------------------|
| RF_SW | 4 | Actual RF switch and green LED activation |
| | | (including that by EEM1.SW[0:3]) |
| SMP_ERR | 4 | DDS[0:3].SMP_ERR |
| PLL_LOCK | 4 | DDS[0:3].PLL_LOCK |
| IFC_MODE | 4 | IFC_MODE[0:3] |
| PROTO_REV | 7 | Protocol revision (see __proto_rev__) |
| DUMMY | 1 | Not used, not usable, undefined |
"""
def __init__(self, platform, n=4):
self.data = Record([
("rf_sw", n),
("smp_err", n),
("pll_lock", n),
("ifc_mode", 4),
("proto_rev", 7),
("dummy", 1)
])
self.comb += [
self.data.ifc_mode.eq(platform.lookup_request("ifc_mode")),
self.data.proto_rev.eq(__proto_rev__),
# self.data.hw_rev.eq(platform.request("hw_rev")),
]
for i in range(n):
dds = platform.lookup_request("dds", i)
self.comb += [
self.data.rf_sw[i].eq(dds.rf_sw),
self.data.smp_err[i].eq(dds.smp_err),
self.data.pll_lock[i].eq(dds.pll_lock),
]
class Urukul(Module):
"""
Urukul IO router and configuration/status
=========================================
The CPLD controls/monitors:
* the four AD9912 or AD9910 DDS (SPI, status, reset, IO update)
* the four digitally controlled RF step attenuators (SPI, reset)
* the four RF switches
* the clock input tree (division and clock selection)
* the synchronization tree (sync source selection, sync clock output,
sync drive)
* the eight LEDs
* the two EEM connectors
* the test pads
* the four configuration switches
Pin Out
-------
Urukul operates from one or two EEM connectors. In standard SPI mode, the
complete Urukul functionality can be accessed using only that interface.
Standard SPI mode only needs the second EEM connector to interface with
high resolution RF switching and synchronization signals. NU-Servo mode
always requires two EEM connectors.
| EEM | LVDS pair | PCB net | Function |
|------+-----------+---------+-------------------------|
| EEM0 | 0 | A0 | SCLK |
| EEM0 | 1 | A1 | MOSI |
| EEM0 | 2 | A2 | MISO, NU_CLK |
| EEM0 | 3 | A3 | CS0 |
| EEM0 | 4 | A4 | CS1 |
| EEM0 | 5 | A5 | CS2, NU_CS |
| EEM0 | 6 | A6 | IO_UPDATE |
| EEM0 | 7 | A7 | DDS_RESET, SYNC_OUT |
| EEM1 | 0 | B8 | SYNC_CLK, NU_MOSI0 |
| EEM1 | 1 | B9 | SYNC_IN, NU_MOSI1 |
| EEM1 | 2 | B10 | IO_UPDATE_RET, NU_MOSI2 |
| EEM1 | 3 | B11 | NU_MOSI3 |
| EEM1 | 4 | B12 | SW0 |
| EEM1 | 5 | B13 | SW1 |
| EEM1 | 6 | B14 | SW3 |
| EEM1 | 7 | B15 | SW4 |
IFC_MODE
--------
DIP switches are used to configure the operation of the Urukul CPLD. The
four IFC mode switches are assigned as:
| IFC_MODE | Name | Function |
|----------+---------+-------------------------------------------------|
| 0 | EN_9910 | On if AD9910 is populated (OR VARIANT) |
| 1 | EN_NU | On if NU-Servo mode is used |
| 2 | EN_EEM1 | On if the SYNC signals on EEM1 should be driven |
| 3 | UNUSED | Unusable on Urukul/v1.0 |
On Urukul/v1.0, IFC_MODE[0] | IFC_MODE[3] drive EN_9910.
On Urukul/v1.1, IFC_MODE[0] | VARIANT (board population) drive EN_9910.
See :class:`Urukul`
SPI
---
An SPI interface is provided to access any of the six serial devices (the
configuration/status SPI interface, the attenuator SPI interface, and the
four DDS SPI interfaces). It comprises the SCLK, MOSI, MISO, CS0, CS1, and
CS2 signals. With EN_NU, both MISO and CS2 (and the functionality provided
by them) are unavailable. I.e. CS >= 4 (the individual DDS access) are only
available outside of EN_NU or through CS = 3 (and CFG.MASK_NU).
The target chip (or set of chips) is selected by CS0/CS1/CS2 (CS2 being the
MSB). The encoding is as follows:
| CS | chip |
|-----------+--------------------------------------------|
| 0 = 0b000 | None |
| 1 = 0b001 | CFG |
| 2 = 0b010 | ATT |
| 3 = 0b011 | Multiple DDS (those masked by CFG.MASK_NU) |
| 4 = 0b100 | DDS0 |
| 5 = 0b101 | DDS1 |
| 6 = 0b110 | DDS2 |
| 7 = 0b111 | DDS3 |
The SPI interface is CPOL=0, CPHA=0, SPI mode 0, 4-wire, full fuplex. Clock
cycles during CS[0:2] = 0 are ignored (but may still be visible on the DDS
SCK outputs).
See :class:`Urukul` and :class:`SR`
CFG
---
The configuration status register controls the overall operation of Urukul,
allows some configuration options to be changed and the status of some
signals to be monitored.
It is 24 bits wide, MSB first.
See :class:`SR`
CFG write
.........
See :class:`CFG`
CFG read
........
See :class:`Status`
QSPI
----
If EN_NU is activated, the four DDS are additionally exposed through a
quad-SPI write-only interface defined by the signals NU_CLK, NU_CS, and
NU_MOSI[0:3].
Only those DDS which are **not** masked by CFG.MASK_NU can be accessed
through the QSPI interface. This allows initial setup and configuration of
the DDS individually through the "regular" SPI interface in EN_NU mode.
DDS[0:3].CS is driven by NU_CS (for those DDS not masked)
DDS[0:3].SCK is driven by NU_CLK (for those DDS not masked)
DDS[0:3].MOSI is driven by NU_MOSI[0:3] (for those DDS not masked)
DDS[0:3].MISO is unavailable
DDS[0:3].IO_UPDATE is driven by IO_UPDATE (for those DDS not masked)
See :class:`Urukul`
ATT
---
The digital step attenuators are daisy-chained (ATT[n].S_OUT driving the
next ATT[n+1].S_IN) and form a 32 bit SPI compatible shift register. The
data from the attenuator shift register is transferred to the active
attenuation register on the de-selection of the attenuators after shifting.
Clocking
--------
CFG.CLK_SEL selects the clock source for the clock fanout to the DDS.
Valid clocking options are:
- 0x00: on-board 100MHz oscillator
- 0x01: front-panel SMA
- 0x02: internal MMCX (hardware version >= 1.3 only)
For hardware revisions prior to v1.3, 0x00 selects either the on-board
oscillator or the MMCX, dependent on component population. In these
hardware revisions, the oscillator must be manually powered down to avoid
RF leakage through the clock switch.
If CFG.DIV is 0 the clock division is determined EN_9910. If it is on,
the clock to the DDS (from the XCO, the internal MMCX or the external
SMA) is divided by 4.
If CFG.DIV is 1, 2, or 3 it determines the clock divisor (1, 2, 4).
Synchronization
---------------
IO_UPDATE_RET is provided to determine the round trip time for IO_UPDATE.
DDS_RESET (not EN_9910) and SYNC_OUT (EN_9910) share an EEM signal.
DDS_RESET provides a way to deterministically reset all AD9912 DDS SYNC_CLK
divider. (https://ez.analog.com/docs/DOC-14472)
SYNC_OUT is an input to the SYNC fanout (input to Urukul, output from the
controlling FPGA upstream) to externally and actively synchronize the
AD9910 SYNC_CLK dividers. The SYNC fanout can be driven using either
EEM1.SYNC_OUT or DDS0.SYNC_OUT (selected by CFG.SYNC_SEL).
SYNC_CLK and SYNC_IN are available with EN_9910 & EN_EEM1 to synchronize
external logic to the DDS. A round-trip time measurement using
IO_UPDATE_RET would need to be performed. SYNC_IN is an output from Urukul,
an input to the controlling upstream FPGA, and an input to all DDS.
RF switches
-----------
The RF switches are activated with CFG.RF_SW or (logic OR) SW[0:3].
EEM1.SW[0:3] provide a high resolution and high-bandwidth port to RF
switching.
LEDs
----
The green channel LEDs mirror the status of the RF switches. The red LEDs
are activated by ``CFG.LED | (EN_9910 & (DDS[0:3].SMP_ERR |
~DDS[0:3].PLL_LOCK))``. I.e. they are lit by the register or (logic OR) an
synchronization/PLL error on that channel's DDS.
Test points
-----------
The test points expose miscellaneous signals for debugging and are not part
of the protocol revision.
"""
def __init__(self, platform):
clk = platform.request("clk")
dds_sync = platform.request("dds_sync")
dds_common = platform.request("dds_common")
ifc_mode = platform.request("ifc_mode")
variant = platform.request("variant")
att = platform.request("att")
fsen = platform.request("fsen")
dds = [platform.request("dds", i) for i in range(4)]
ts_clk_div = TSTriple()
self.specials += [
ts_clk_div.get_tristate(clk.div)
]
self.eem = eem = []
for i in range(12):
tsi = TSTriple()
eemi = platform.request("eem", i)
tsi._pin = eemi.io
self.specials += tsi.get_tristate(eemi.io)
self.comb += eemi.oe.eq(tsi.oe)
eem.append(tsi)
# AD9910 only
self.clock_domains.cd_sys = ClockDomain("sys", reset_less=True)
self.clock_domains.cd_sck0 = ClockDomain("sck0", reset_less=True)
self.clock_domains.cd_sck1 = ClockDomain("sck1", reset_less=True)
platform.add_period_constraint(eem[0]._pin, 8.)
platform.add_period_constraint(eem[2]._pin, 8.)
self.specials += [
Instance("BUFG", i_I=eem[0].i, o_O=self.cd_sck1.clk),
]
en_9910 = Signal() # AD9910 populated (instead of AD9912)
en_nu = Signal() # NU-Servo operation with quad SPI
en_eem1 = Signal() # EEM1 connected and sync outputs used
self.comb += [
fsen.eq(1),
en_9910.eq(ifc_mode[0] | variant),
en_nu.eq(ifc_mode[1]),
en_eem1.eq(ifc_mode[2]),
[eem[i].oe.eq(0) for i in range(12) if i not in (2, 10)],
eem[2].oe.eq(~en_nu),
eem[10].oe.eq(~en_nu & en_eem1),
eem[10].o.eq(eem[6].i),
self.cd_sck0.clk.eq(~self.cd_sck1.clk),
dds_sync.clk_out_en.eq(~en_nu & en_eem1 & en_9910),
dds_sync.sync_out_en.eq(~en_nu & en_eem1 & en_9910),
]
cfg = CFG(platform)
stat = Status(platform)
sr = SR(24)
assert len(cfg.data) <= len(sr.di)
assert len(stat.data) <= len(sr.do)
self.submodules += cfg, stat, sr
sel = Signal(8)
cs = Signal(3)
miso = Signal(8)
mosi = eem[1].i
self.specials += [Instance("FDPE", p_INIT=1,
i_D=0, i_C=ClockSignal("sck1"), i_CE=sel[2], i_PRE=~sel[2],
o_Q=att.le[i]) for i in range(4)]
self.comb += [
cfg.en_9910.eq(en_9910),
cs.eq(Cat(eem[3].i, eem[4].i, ~en_nu & eem[5].i)),
Array(sel)[cs].eq(1), # one-hot
eem[2].o.eq(Array(miso)[cs]),
miso[3].eq(miso[4]), # for all-DDS take DDS0:MISO
att.clk.eq(sel[2] & self.cd_sck1.clk),
Cat(att.s_in, miso[2]).eq(Cat(mosi, att.s_out)),
sr.sel.eq(sel[1]),
sr.sdi.eq(mosi),
miso[1].eq(sr.sdo),
cfg.data.raw_bits().eq(sr.di),
sr.do.eq(stat.data.raw_bits()),
# dividers: z: 1, 0: 2, 1: 4
# 1: div-by-4 for AD9910
# z: div-by-1 for AD9912
ts_clk_div.oe.eq(Array([en_9910, 0, 1, 1])[cfg.data.div]),
ts_clk_div.o.eq(Array([1, 1, 0, 1])[cfg.data.div]),
]
for i, ddsi in enumerate(dds):
sel_spi = Signal()
sel_nu = Signal()
self.comb += [
sel_spi.eq(sel[i + 4] | (sel[3] & cfg.data.mask_nu[i])),
sel_nu.eq(en_nu & ~cfg.data.mask_nu[i]),
ddsi.cs_n.eq(~Mux(sel_nu, eem[5].i, sel_spi)),
ddsi.sck.eq(Mux(sel_nu, eem[2].i, self.cd_sck1.clk)),
ddsi.sdi.eq(Mux(sel_nu, eem[i + 8].i, mosi)),
miso[i + 4].eq(ddsi.sdo),
ddsi.io_update.eq(Mux(cfg.data.mask_nu[i],
cfg.data.io_update, eem[6].i)),
ddsi.reset.eq(cfg.data.rst | (~en_9910 & eem[7].i)),
]
tp = [platform.request("tp", i) for i in range(5)]
self.comb += [
tp[0].eq(dds[0].cs_n),
tp[1].eq(dds[0].sck),
tp[2].eq(dds[0].sdi),
tp[3].eq(dds[0].sdo),
tp[4].eq(dds[0].drover),
]