-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.c
185 lines (165 loc) · 5.07 KB
/
nn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include "yoctograd.h"
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
typedef struct __attribute__((__packed__)) Neuron {
int16_t n_in;
Var* b;
Var** w;
} Neuron;
Neuron* neuron_new(uint16_t n_in, bool nonlin) {
Neuron* out = malloc(sizeof(Neuron));
out->w = malloc(n_in * sizeof(Var*));
for (uint16_t i = 0; i < n_in; i++) out->w[i] = v_const(.1*rand()/(float)RAND_MAX);
out->b = v_const(0);
out->n_in = n_in;
if (!nonlin) out->n_in = -out->n_in;
return out;
}
Var* neuron_forward(Neuron* n, Var** xs) {
Var* out = v_const(0);
for (uint16_t i = 0; i < n->n_in; i++) {
out = v_add(out, v_mul(n->w[i], xs[i]));
}
out = v_add(out, n->b);
if (n->n_in > 0) out = v_relu(out);
return out;
}
typedef struct Layer {
uint16_t sz;
Neuron** neurons;
} Layer;
Layer* layer_new(uint16_t n_in, uint16_t n_out) {
Layer* layer = malloc(sizeof(Layer));
layer->neurons = malloc(n_out * sizeof(Neuron));
for (uint16_t i = 0; i < n_out; i++) {
layer->neurons[i] = neuron_new(n_in, true);
}
layer->sz = n_out;
return layer;
}
Var** layer_forward(Layer* l, Var** xs) {
Var** out = malloc(l->sz * sizeof(Var*));
for (uint16_t i = 0; i < l->sz; i++) {
out[i] = neuron_forward(l->neurons[i], xs);
}
return out;
}
typedef struct Net {
uint16_t sz;
float lr;
Layer** layers;
} Net;
Net* net_new(uint16_t n_layers, float lr) {
Net* out = malloc(sizeof(Net));
out->layers = malloc(n_layers * sizeof(Layer*));
out->sz = n_layers;
out->lr = lr;
return out;
}
void net_update(Net* n) {
for (int i = 0; i < n->sz; i++) {
Layer* layer = n->layers[i];
for (int j = 0; j < layer->sz; j++) {
Neuron* neuron = n->layers[i]->neurons[j];
for (int k = 0; k < neuron->n_in; k++) {
#ifdef DEBUG
printf(
"Layer %d, neuron %d, weight %d has value %f and grad %f\n",
i, j, k,
neuron->w[k]->value,
neuron->w[k]->grad
);
#endif
neuron->w[k]->value -= neuron->w[k]->grad * n->lr;
}
#ifdef DEBUG
printf(
"Layer %d, neuron %d, bias has value %f and grad %f\n",
i, j,
neuron->b->value,
neuron->b->grad
);
#endif
neuron->b->value -= neuron->b->grad * n->lr;
}
}
}
void v_zero(Var* v) {
v->grad = 0;
if (v->parents[0] != NULL) v_zero(v->parents[0]);
if (v->parents[1] != NULL) v_zero(v->parents[1]);
}
Var** net_forward(Net* n, Var** inputs) {
Var** prev = inputs;
for (int i = 0; i < n->sz; i++) {
prev = layer_forward(n->layers[i], prev);
}
return prev;
}
float read_data_line(char* line, Var** inputs) {
int counter = 0;
float label;
char* pch = strtok(line, ",");
while (pch != NULL) {
if (counter == 4) {
label = strtof(pch, NULL);
} else {
inputs[counter]->value = strtof(pch, NULL);
}
pch = strtok(NULL, ",");
counter += 1;
}
return label;
}
int main() {
srand(time(NULL));
size_t EPOCHS = 100;
float LR = 0.0001;
Net* net = net_new(3, LR);
net->layers[0] = layer_new(4, 8);
net->layers[1] = layer_new(8, 8);
net->layers[2] = layer_new(8, 1);
Var** inputs = malloc(4 * sizeof(Var*));
for (int i = 0; i < 4; i++) inputs[i] = v_const(0.0);
size_t MAX_LINE = 64;
FILE* train = fopen("./train.txt", "r");
FILE* test = fopen("./test.txt", "r");
char* line = malloc(MAX_LINE * sizeof(char));
for (int i = 0; i < EPOCHS; i++) {
float total_loss = 0;
float total_val_loss = 0;
int train_lines = 0;
int test_lines = 0;
while (getline(&line, &MAX_LINE, train) != -1) {
float label = read_data_line(line, inputs);
Var* out = net_forward(net, inputs)[0];
Var* err = v_add(out, v_mul(v_const(-1), v_const(label)));
Var* loss = v_mul(err, err);
#ifdef DEBUG
printf(" batch | out: %f label: %f loss: %f\n", out->value, label, loss->value);
#endif
total_loss += loss->value;
loss->grad = 1;
v_back(loss);
net_update(net);
v_zero(loss);
train_lines += 1;
}
while (getline(&line, &MAX_LINE, test) != -1) {
float label = read_data_line(line, inputs);
Var* out = net_forward(net, inputs)[0];
Var* err = v_add(out, v_mul(v_const(-1), v_const(label)));
Var* loss = v_mul(err, err);
total_val_loss += loss->value;
loss->grad = 1;
test_lines += 1;
}
fseek(train, 0, SEEK_SET);
fseek(test, 0, SEEK_SET);
printf("epoch %d/%zu: avg train loss of %f, avg val loss of %f\n", i+1, EPOCHS, total_loss/train_lines, total_val_loss/test_lines);
}
}