forked from Disiok/poetry-seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrefine.py
50 lines (44 loc) · 1.98 KB
/
refine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
import sys
from word2vec import *
from utils import DATA_PROCESSED_DIR
from rhyme import RhymeUtil
_w2v_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec.npy')
_w2v_model_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec.model')
_w2v_with_alignment_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec_with_alignment.npy')
_w2v_with_alignment_model_path = os.path.join(DATA_PROCESSED_DIR, 'word2vec_with_alignment.model')
def print_unicode_list(lst):
msg = repr([x.encode(sys.stdout.encoding) for x in lst]).decode('string-escape')
print msg
def experiment1():
model = models.Word2Vec.load(_w2v_model_path)
model_alignment = models.Word2Vec.load(_w2v_model_path)
tests = ['一','两','十','七','八','东','南','西','北','红','绿','人','小','玉']
print "Experiment on similarity between word2vec with alignment or without alignment"
for test in tests:
print "==================", test, "=================="
for m, alignment in zip([model, model_alignment], [False, True]):
if alignment:
print "Top similarity from model without alignment:"
else:
print "Top similarity from model with alignment:"
result = [t[0] for t in m.wv.most_similar(positive=[unicode(test, "utf-8")])]
print_unicode_list(result)
def refine(ch_rhyme, ch, alignment=False, topn=50):
if alignment:
model = models.Word2Vec.load(_w2v_model_path)
else:
model = models.Word2Vec.load(_w2v_model_path)
rdict = RhymeUtil()
int2ch, ch2int = get_vocab()
rhyme = rdict.get_rhyme(unicode(ch_rhyme, "utf-8"))
result = [t[0] for t in model.wv.most_similar(positive=[unicode(ch, "utf-8")], topn=topn)]
filtered_result = filter(lambda ch: ch in ch2int, result)
for target in filtered_result:
if rdict.get_rhyme(target) == rhyme:
return target
return ch
if __name__ == '__main__':
experiment1()
from IPython import embed
embed()