forked from Disiok/poetry-seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_samples.py
81 lines (59 loc) · 2.46 KB
/
generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# encoding=utf8
from utils import DATA_SAMPLES_DIR
from cnt_words import get_pop_quatrains
from plan import Planner
from predict import Seq2SeqPredictor
import random
import os
import string
import os.path
human_samples_path = os.path.join(DATA_SAMPLES_DIR, 'human.txt')
rnn_samples_path = os.path.join(DATA_SAMPLES_DIR, 'default.txt')
def sample_poems(poems, num=4000):
sampled_poems = random.sample(poems, num)
return sampled_poems
def generate_human_samples(sampled_poems):
with open(human_samples_path, 'w+') as fout:
for poem in sampled_poems:
for idx, sentence in enumerate(poem):
punctuation = u'\uff0c' if idx % 2 == 0 else u'\u3002'
line = (sentence + punctuation + '\n').encode('utf-8')
fout.write(line)
def generate_rnn_samples(sampled_poems):
planner = Planner()
with Seq2SeqPredictor() as predictor:
with open(rnn_samples_path, 'w+') as fout:
for poem_idx, poem in enumerate(sampled_poems):
input = string.join(poem).strip()
keywords = planner.plan(input)
print 'Predicting poem {}.'.format(poem_idx)
lines = predictor.predict(keywords)
for idx, sentence in enumerate(lines):
punctuation = u'\uff0c' if idx % 2 == 0 else u'\u3002'
line = (sentence + punctuation + '\n').encode('utf-8')
fout.write(line)
def load_samples(file_path):
with open(file_path) as fin:
lines = fin.read().decode('utf-8').split()
lines_clean = map(lambda line: line[:-1], lines) # remove punctuations
poems = [lines_clean[i: i + 4] for i in range(0, len(lines_clean), 4)]
return poems
def load_human_samples():
return load_samples(human_samples_path)
def load_rnn_samples():
return load_samples(rnn_samples_path)
def main():
if os.path.exists(human_samples_path):
print 'Poems already sampled, use the same human samples.'
cleaned_poems = load_human_samples()
else:
print 'Poems not yet sampled, use new human samples.'
poems = get_pop_quatrains()
sampled_poems = sample_poems(poems)
cleaned_poems = map(lambda poem: poem['sentences'], sampled_poems)
print 'Generating human samples.'
generate_human_samples(cleaned_poems)
print 'Generating model samples'
generate_rnn_samples(cleaned_poems)
if __name__ == '__main__':
main()