-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistic.py
60 lines (58 loc) · 1.85 KB
/
statistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding:utf-8 *-*
# @Time : 2017/11/22 0022 15:51
# @Author : LQY
# @File : statistic.py
# @Software: PyCharm Community Editiont
import pandas as pd
import numpy as np
from datetime import datetime
from pandas import DataFrame
import get_feature as gf
def statistic_shop():
df=pd.read_csv('E:\\JD\\t_sales_sum.csv')
dic=dict(list(df.groupby('dt')))
#print dic['2016-11-30']
print dic.keys()
i=1
for key in dic:
dic[key].to_csv('E:\\JD\\'+str(i)+'.csv',index=False)
i+=1
#statistic_shop()
def get_sales_sum():
test11={}
path='E:\\JD\\1.csv'
resultpath='E:\\JD\\data'
s1_date=datetime(2016,7,1)
e3_date=datetime(2016,9,30)
file = open(path, 'r')
for line in file.readlines():
line = line.split(',')
test11[line[1]] = line[2]
fileadd='E:\\JD\\data\\t_order.csv'
name=['shop_id','sale_amount','offer_amount','rtn_amount']
gf.fetchfeature(fileadd, test11, 4, pcol=[1,2,6],
process=['sum','sum','sum'], timecol=0, rename=name, out_name='sales_sum',
start_date=datetime(2016,7,1), end_date=datetime(2016,9,30), result_path='E:\\JD\\data')
#get_sales_sum()
# raw_data = pd.read_csv('E:\\JD\\data\\t_order.csv', header=-1)
# keycol=4
# test11={}
# file = open('E:\\JD\\1.csv', 'r')
# for line in file.readlines(100):
# line = line.split(',')
# test11[line[1]] = line[2]
# #print raw_data
#raw_data[0]
# a = raw_data[keycol].astype(np.str)
# #print a
# raw_data.pop(keycol)
# print raw_data
# raw_data.insert(keycol, keycol, a)
# print raw_data
# data = raw_data[raw_data[keycol].isin(test11)]
# se=data[0]
# print type(se.values[0])
t=pd.read_csv('E:\\JD\\1.csv',header=0)
asu=pd.read_csv('E:\\JD\\data\\sales_sumresult.csv',header=0)
re=pd.merge(t,asu,how='left',left_on='shop_id',right_on='shop_id')
re.to_csv('E:\\JD\\data\\sales_sum_merge.csv')