-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_label.py
52 lines (43 loc) · 1.59 KB
/
get_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# -*- coding:utf-8 *-*
# @Time : 2017/11/24 0024 16:18
# @Author : LQY
# @File : get_label.py
# @Software: PyCharm Community Edition
import pandas as pd
import numpy as np
from datetime import datetime
def get_label(date1,date2):
users=pd.read_csv('E:\\JD\\Sales_Forecast.csv',header=-1)
orders=pd.read_csv('E:\\JD\\data\\t_order.csv',parse_dates=[0],header=-1)
#print orders[0]
data=orders[orders[0]>=date1]
data =data[data[0]<=date2]
a=data.groupby([4])[1].sum()#sale_amt
#print a.index
b=data.groupby([4])[6].sum()#rtn_amt
c=data.groupby([4])[2].sum()#offer_amt
#print a[3],b[3],c[3]
all=-0.40190693*a-23.88246236*c+5.61020851*b+138648150
pd.DataFrame(all).to_csv('E:\\JD\\label_result_1031.csv')
#print all
#get_label(datetime(2016,11,1),datetime(2017,1,29))
def get_shop_mean():
users = pd.read_csv('E:\\JD\\Sales_Forecast.csv', header=0,index_col='shop_id')
f = pd.read_csv('E:\\JD\\t_sales_sum.csv',header=0,index_col='shop_id')
f.drop(['date'])
t=f.groupby(['shop_id'])['sale_amt_3m'].mean()
for d in t.index:
users.ix[d,'sale_amt_3m']=t[d]
#print users
users.to_csv('E:\\JD\\shop_mean.csv',header=None)
#get_shop_mean()
def getmean():
shop_mean=pd.read_csv('E:\\JD\\shop_mean.csv',header=-1,index_col=[0])
result = pd.DataFrame(index=shop_mean.index,columns=['sales'])
#print shop_mean
xgresult = pd.read_csv('E:\\JD\data\\pre_result.csv',header=-1,index_col=[0])
a=(shop_mean[1]+xgresult[1])/2
result['sales']=a
print result
result.to_csv('E://JD//result_a.csv',header=None)
getmean()