Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Llama 3.2 1B model bad response. #7424

Open
Jayantparashar10 opened this issue Dec 22, 2024 · 0 comments
Open

Llama 3.2 1B model bad response. #7424

Jayantparashar10 opened this issue Dec 22, 2024 · 0 comments
Labels
llm: evaluation Perplexity, accuracy

Comments

@Jayantparashar10
Copy link
Contributor

🐛 Describe the bug

The Llama 3.2 1B model provided incorrect responses to questions about political leaders. The responses from my Llama 3.2 1B model were mixed and provided information that had no connection to the leaders' lives.
WhatsApp Image 2024-12-23 at 12 21 32 AM

Versions

Collecting environment information...
PyTorch version: 2.6.0.dev20241112+cpu
Is debug build: False
CUDA used to build PyTorch: Could not collect
ROCM used to build PyTorch: N/A

OS: Ubuntu 24.04.1 LTS (x86_64)
GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version: 18.1.3 (1ubuntu1)
CMake version: version 3.30.5
Libc version: glibc-2.39

Python version: 3.10.15 | packaged by conda-forge | (main, Oct 16 2024, 01:24:24) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.8.0-51-generic-x86_64-with-glibc2.39
Is CUDA available: False
CUDA runtime version: 12.6.68
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.4.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 7 6800H with Radeon Graphics
CPU family: 25
Model: 68
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
Stepping: 1
CPU(s) scaling MHz: 44%
CPU max MHz: 4785.0000
CPU min MHz: 400.0000
BogoMIPS: 6388.38
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap
Virtualization: AMD-V
L1d cache: 256 KiB (8 instances)
L1i cache: 256 KiB (8 instances)
L2 cache: 4 MiB (8 instances)
L3 cache: 16 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-15
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] executorch==0.5.0a0+fc42a4e
[pip3] numpy==1.21.3
[pip3] torch==2.6.0.dev20241112+cpu
[pip3] torchao==0.5.0+git0916b5b2
[pip3] torchaudio==2.5.0.dev20241112+cpu
[pip3] torchsr==1.0.4
[pip3] torchvision==0.20.0.dev20241112+cpu
[conda] executorch 0.5.0a0+fc42a4e pypi_0 pypi
[conda] numpy 1.21.3 pypi_0 pypi
[conda] torch 2.6.0.dev20241112+cpu pypi_0 pypi
[conda] torchao 0.5.0+git0916b5b2 pypi_0 pypi
[conda] torchaudio 2.5.0.dev20241112+cpu pypi_0 pypi
[conda] torchsr 1.0.4 pypi_0 pypi
[conda] torchvision 0.20.0.dev20241112+cpu pypi_0 pypi

@mcr229 mcr229 added the llm: evaluation Perplexity, accuracy label Jan 14, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
llm: evaluation Perplexity, accuracy
Projects
None yet
Development

No branches or pull requests

2 participants