-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdual_pivot_quicksort.hpp
444 lines (409 loc) · 19.3 KB
/
dual_pivot_quicksort.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
// MayanSort - many sort algorithms implementation in C++ 20.
//
// MIT License:
// Copyright (c) 2023 The pysoft group.
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this softwareand associated documentation files(the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and /or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions :
//
// The above copyright noticeand this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// Copied from https://github.com/MichaelAxtmann/DualPivotQuicksort/blob/master/include/dual_pivot_quicksort.hpp
// Original File Header:
/*
* Copyright (c) 2009, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2019 Michael Axtmann <[email protected]>
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
// This is a modified file from
// http://hg.openjdk.java.net/jdk/jdk/raw-file/tip/src/java.base/share/classes/java/util/DualPivotQuicksort.java
// downloaded at the 7th of November 2019.
#pragma once
#include <iterator>
#include <cstddef>
namespace MayanSort {
namespace dual_pivot_quicksort {
/**
* Dual-Pivot Quicksort.
*/
template<class Iterator, class Comp = std::less<>>
void sort(Iterator begin, Iterator end, Comp comp = Comp{});
/**
* If the length of an array to be sorted is less than this
* constant, insertion sort is used in preference to Quicksort.
*/
static size_t INSERTION_SORT_THRESHOLD = 47;
/**
* Sorts the specified range of the array by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param leftmost indicates if this part is the leftmost in the range
*/
template<class Iterator, class Comp>
void sort_rec(Iterator a, ptrdiff_t left, ptrdiff_t right, bool leftmost, Comp comp) {
using T = typename std::iterator_traits<Iterator>::value_type;
ptrdiff_t length = right - left + 1;
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
if (leftmost) {
/*
* Traditional (without sentinel) insertion sort,
* optimized for server VM, is used in case of
* the leftmost part.
*/
for (ptrdiff_t i = left, j = i; i < right; j = ++i) {
T ai = std::move(a[i + 1]);
while (comp(ai, a[j])) {
a[j + 1] = std::move(a[j]);
if (j-- == left) {
break;
}
}
a[j + 1] = std::move(ai);
}
}
else {
/*
* Skip the longest ascending sequence.
*/
do {
if (left >= right) {
return;
}
++left;
} while (!comp(a[left], a[left - 1]));
/*
* Every element from adjoining part plays the role
* of sentinel, therefore this allows us to avoid the
* left range check on each iteration. Moreover, we use
* the more optimized algorithm, so called pair insertion
* sort, which is faster (in the context of Quicksort)
* than traditional implementation of insertion sort.
*/
for (ptrdiff_t k = left; ++left <= right; k = ++left) {
T a1 = a[k], a2 = a[left];
if (comp(a1, a2)) {
a2 = std::move(a1); a1 = std::move(a[left]);
}
while (comp(a1, a[--k])) {
a[k + 2] = std::move(a[k]);
}
a[++k + 1] = std::move(a1);
while (comp(a2, a[--k])) {
a[k + 1] = std::move(a[k]);
}
a[k + 1] = std::move(a2);
}
T last = std::move(a[right]);
while (comp(last, a[--right])) {
a[right + 1] = std::move(a[right]);
}
a[right + 1] = std::move(last);
}
return;
}
// Inexpensive approximation of length / 7
ptrdiff_t seventh = (length >> 3) + (length >> 6) + 1;
/*
* Sort five evenly spaced elements around (and including) the
* center element in the range. These elements will be used for
* pivot selection as described below. The choice for spacing
* these elements was empirically determined to work well on
* a wide variety of inputs.
*/
ptrdiff_t e3 = (left + right) >> 1; // The midpoptrdiff_t // todo correct?
ptrdiff_t e2 = e3 - seventh;
ptrdiff_t e1 = e2 - seventh;
ptrdiff_t e4 = e3 + seventh;
ptrdiff_t e5 = e4 + seventh;
// Sort these elements using insertion sort
if (comp(a[e2], a[e1])) { T t = std::move(a[e2]); a[e2] = std::move(a[e1]); a[e1] = std::move(t); }
if (comp(a[e3], a[e2])) {
T t = std::move(a[e3]); a[e3] = std::move(a[e2]); a[e2] = t;
if (comp(t, a[e1])) { a[e2] = std::move(a[e1]); a[e1] = std::move(t); }
}
if (comp(a[e4], a[e3])) {
T t = std::move(a[e4]); a[e4] = std::move(a[e3]); a[e3] = t;
if (comp(t, a[e2])) {
a[e3] = std::move(a[e2]); a[e2] = t;
if (comp(t, a[e1])) { a[e2] = std::move(a[e1]); a[e1] = std::move(t); }
}
}
if (comp(a[e5], a[e4])) {
T t = std::move(a[e5]); a[e5] = std::move(a[e4]); a[e4] = t;
if (comp(t, a[e3])) {
a[e4] = std::move(a[e3]); a[e3] = t;
if (comp(t, a[e2])) {
a[e3] = std::move(a[e2]); a[e2] = t;
if (comp(t, a[e1])) { a[e2] = std::move(a[e1]); a[e1] = std::move(t); }
}
}
}
// Poptrdiff_ters
ptrdiff_t less = left; // The index of the first element of center part
ptrdiff_t great = right; // The index before the first element of right part
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
T pivot1 = a[e2];
T pivot2 = a[e4];
/*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back ptrdiff_to their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = std::move(a[left]);
a[e4] = std::move(a[right]);
/*
* Skip elements, which are less or greater than pivot values.
*/
while (comp(a[++less], pivot1));
while (comp(pivot2, a[--great]));
/*
* Partitioning:
*
* left part center part right part
* +--------------------------------------------------------------+
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
* +--------------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Poptrdiff_ter k is the first index of ?-part.
*/
// outer:
for (ptrdiff_t k = less - 1; ++k <= great; ) {
T ak = a[k];
if (comp(ak, pivot1)) { // Move a[k] to left part
a[k] = std::move(a[less]);
/*
* Here and below we use "a[i] = b; i++;" instead
* of "a[i++] = b;" due to performance issue.
*/
a[less] = std::move(ak);
++less;
}
else if (comp(pivot2, ak)) { // Move a[k] to right part
while (comp(pivot2, a[great])) {
if (great-- == k) {
// break outer;
goto outer1;
}
}
if (comp(a[great], pivot1)) { // a[great] <= pivot2
a[k] = std::move(a[less]);
a[less] = std::move(a[great]);
++less;
}
else { // pivot1 <= a[great] <= pivot2
a[k] = std::move(a[great]);
}
/*
* Here and below we use "a[i] = b; i--;" instead
* of "a[i--] = b;" due to performance issue.
*/
a[great] = std::move(ak);
--great;
}
}
outer1:
// Swap pivots ptrdiff_to their final positions
a[left] = std::move(a[less - 1]); a[less - 1] = pivot1;
a[right] = std::move(a[great + 1]); a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivots
sort_rec(a, left, less - 2, leftmost, comp);
sort_rec(a, great + 2, right, false, comp);
/*
* If center part is too large (comprises > 4/7 of the array),
* swap ptrdiff_ternal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
}
while (a[great] == pivot2) {
--great;
}
/*
* Partitioning:
*
* left part center part right part
* +----------------------------------------------------------+
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |
* +----------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (*, less) == pivot1
* pivot1 < all in [less, k) < pivot2
* all in (great, *) == pivot2
*
* Poptrdiff_ter k is the first index of ?-part.
*/
// outer:
for (ptrdiff_t k = less - 1; ++k <= great; ) {
T ak = a[k];
if (ak == pivot1) { // Move a[k] to left part
a[k] = std::move(a[less]);
a[less] = std::move(ak);
++less;
}
else if (ak == pivot2) { // Move a[k] to right part
while (a[great] == pivot2) {
if (great-- == k) {
// break outer;
goto outer2;
}
}
if (a[great] == pivot1) { // a[great] < pivot2
a[k] = std::move(a[less]);
/*
* Even though a[great] equals to pivot1, the
* assignment a[less] = pivot1 may be incorrect,
* if a[great] and pivot1 are floating-poptrdiff_t zeros
* of different signs. Therefore in float and
* double sorting methods we have to use more
* accurate assignment a[less] = a[great].
*/
a[less] = pivot1;
++less;
}
else { // pivot1 < a[great] < pivot2
a[k] = std::move(a[great]);
}
a[great] = std::move(ak);
--great;
}
}
}
outer2:
// Sort center part recursively
sort_rec(a, less, great, false, comp);
}
else { // Partitioning with one pivot
/*
* Use the third of the five sorted elements as pivot.
* This value is inexpensive approximation of the median.
*/
T pivot = a[e3];
/*
* Partitioning degenerates to the traditional 3-way
* (or "Dutch National Flag") schema:
*
* left part center part right part
* +-------------------------------------------------+
* | < pivot | == pivot | ? | > pivot |
* +-------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Poptrdiff_ter k is the first index of ?-part.
*/
for (ptrdiff_t k = less; k <= great; ++k) {
if (a[k] == pivot) {
continue;
}
T ak = a[k];
if (comp(ak, pivot)) { // Move a[k] to left part
a[k] = std::move(a[less]);
a[less] = std::move(ak);
++less;
}
else { // a[k] > pivot - Move a[k] to right part
while (comp(pivot, a[great])) {
--great;
}
if (comp(a[great], pivot)) { // a[great] <= pivot
a[k] = std::move(a[less]);
a[less] = std::move(a[great]);
++less;
}
else { // a[great] == pivot
/*
* Even though a[great] equals to pivot, the
* assignment a[k] = pivot may be incorrect,
* if a[great] and pivot are floating-poptrdiff_t
* zeros of different signs. Therefore in float
* and double sorting methods we have to use
* more accurate assignment a[k] = a[great].
*/
a[k] = pivot;
}
a[great] = std::move(ak);
--great;
}
}
/*
* Sort left and right parts recursively.
* All elements from center part are equal
* and, therefore, already sorted.
*/
sort_rec(a, left, less - 1, leftmost, comp);
sort_rec(a, great + 1, right, false, comp);
}
}
template<class Iterator, class Comp>
void sort(Iterator begin, Iterator end, Comp comp) {
if (begin == end) return;
sort_rec(begin, 0, (end - begin) - 1, true, comp);
}
} // namespace dual_pivot_quicksort
}