-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_benchmark.py
206 lines (151 loc) · 6.91 KB
/
main_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Copyright 2023 Lujo Bauer, Clement Fung
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import lime
import shap
import networkx as nx
import os
import pickle
import pdb
import sys
# Ignore ugly futurewarnings from np vs tf.
import warnings
warnings.filterwarnings('ignore',category=FutureWarning)
import tensorflow as tf
from sklearn.model_selection import train_test_split
sys.path.append('..')
from data_loader import load_train_data, load_test_data
from live_bbox_explainer.score_generator import counterfactual_score_generator, counterfactual_minus_score_generator
from live_bbox_explainer.score_generator import mse_score_generator, mse_sd_score_generator
from live_bbox_explainer.score_generator import lime_score_generator, shap_score_generator, lemna_score_generator
from live_grad_explainer import smooth_grad_mse_explainer, integrated_gradients_mse_explainer, expected_gradients_mse_explainer
from main_train import load_saved_model
from utils import tep_utils, attack_utils, utils
def expl_to_anomaly_score(explain_scores):
assert (len(explain_scores.shape) == 3)
return np.sum(np.abs(explain_scores[0]), axis=0)
def run_unit_test(event_detector, expl, Xwindow_src, Ywindow_src, sensor_cols, dataset, mag=2, baselines=None, verbose=False, method='MSE'):
mse_ranks = np.zeros(len(sensor_cols))
mse_props = np.zeros(len(sensor_cols))
exp_ranks = np.zeros(len(sensor_cols))
exp_props = np.zeros(len(sensor_cols))
for i in range(0, len(sensor_cols)):
Xwindow_mod = Xwindow_src.copy()
Xwindow_mod[:, :, i] += (mag + 1e-3)
mses = ((event_detector.predict(Xwindow_mod) - Ywindow_src)**2)[0]
if method == 'LIME':
exp_attribution = lime_score_generator(event_detector, expl, Xwindow_mod, Ywindow_src)
expl_scores = expl_to_anomaly_score(np.expand_dims(exp_attribution, axis=0))
elif method == 'SHAP':
exp_attribution = shap_score_generator(event_detector, expl, Xwindow_mod, Ywindow_src)
expl_scores = expl_to_anomaly_score(np.expand_dims(exp_attribution, axis=0))
elif method == 'LEMNA':
exp_attribution = lemna_score_generator(event_detector, Xwindow_mod, Ywindow_src)
expl_scores = expl_to_anomaly_score(np.expand_dims(exp_attribution, axis=0))
elif method == 'CF-Add':
exp_attribution = counterfactual_score_generator(event_detector, Xwindow_mod, Ywindow_src, baseline=baselines)
expl_scores = np.abs(exp_attribution)
elif method == 'CF-Sub':
exp_attribution = counterfactual_minus_score_generator(event_detector, Xwindow_mod, Ywindow_src, baseline=baselines)
expl_scores = np.abs(exp_attribution)
else:
# Generic case for whitebox
output_mod = expl.explain(Xwindow_mod, baselines=baselines, multiply_by_input=True)
expl_scores = expl_to_anomaly_score(output_mod)
mse_choice = np.argmax(mses)
expl_choice = np.argmax(expl_scores)
mserank = np.where(np.argsort(mses)[::-1] == i)[0] + 1
exrank = np.where(np.argsort(expl_scores)[::-1] == i)[0] + 1
mseprop = 100 * mses[i] / np.sum(mses)
exprop = 100 * expl_scores[i] / np.sum(expl_scores)
mse_props[i] = mseprop
mse_ranks[i] = mserank
exp_props[i] = exprop
exp_ranks[i] = exrank
if verbose:
if i == expl_choice:
print(f'col {i}: {sensor_cols[i]} passed. MSErank {mserank} {mseprop:.2f}% EXPrank {exrank} {exprop:.2f}%')
else:
print(f'col {i}: {sensor_cols[i]} failed. MSErank {mserank} {mseprop:.2f}% ({sensor_cols[mse_choice]}) EXPMank {exrank} {exprop:.2f}% ({sensor_cols[expl_choice]})')
return mse_ranks, mse_props, exp_ranks, exp_props
def parse_arguments():
parser = utils.get_argparser()
# Explain specific
parser.add_argument("--explain_params_method",
default=['SM'],
nargs='+',
type=str,
help="Which explanation methods to use? Options: [SM, SG, IG, EG]")
return parser.parse_args()
if __name__ == "__main__":
import os
args = parse_arguments()
model_type = args.model
dataset_name = args.dataset
exp_methods = args.explain_params_method
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
run_name = args.run_name
config = {}
utils.update_config_model(args, config, model_type, dataset_name)
model_name = config['name']
Xfull, sensor_cols = load_train_data(dataset_name)
event_detector = load_saved_model(model_type, f'models/{run_name}/{model_name}.json', f'models/{run_name}/{model_name}.h5')
history = event_detector.params['history']
if dataset_name == 'TEP':
sensor_cols = tep_utils.get_short_colnames()
# Take a single example
att_point = 50000
Xinput = Xfull[att_point:att_point+history+2]
Xwindow_src, Ywindow_src = event_detector.transform_to_window_data(Xinput, Xinput)
Ypred = event_detector.predict(Xwindow_src)
benign_errors = (Ypred - Ywindow_src)**2
print(f'Benign MSE: {np.mean(benign_errors)}')
for method in exp_methods:
use_wbox = True
baseline = utils.build_baseline(Xfull, history, method=method)
if method == 'SM':
expl = smooth_grad_mse_explainer.SaliencyMapMseHistoryExplainer()
elif method == 'SG':
expl = smooth_grad_mse_explainer.SmoothGradMseHistoryExplainer()
elif method == 'IG':
expl = integrated_gradients_mse_explainer.IntegratedGradientsMseHistoryExplainer()
elif method == 'EG':
expl = expected_gradients_mse_explainer.ExpectedGradientsMseHistoryExplainer()
elif method == 'LIME':
expl = lime.lime_tabular.RecurrentTabularExplainer(baseline,
feature_names=np.arange(baseline.shape[2]),
verbose=False,
mode='regression')
use_wbox = False
elif method == 'SHAP':
expl = shap.DeepExplainer(event_detector.inner, baseline)
use_wbox = False
else:
use_wbox = False
expl = None
if use_wbox:
### Zero test
expl.setup_explainer(event_detector.inner, Ypred)
gif_output_zero = expl.explain(Xwindow_src, baselines=Xwindow_src, multiply_by_input=True)
print(f'Zero test: {np.sum(gif_output_zero)}')
expl.setup_explainer(event_detector.inner, Ywindow_src)
mag = 2
mse_ranks, mse_props, exp_ranks, exp_props = run_unit_test(event_detector, expl, Xwindow_src, Ywindow_src,
sensor_cols, dataset_name,
mag=mag, baselines=baseline, verbose=True, method=method)
print(f'Mag {mag} MSE: avg rank {np.mean(mse_ranks)} avg prop {np.mean(mse_props)}')
print(f'Mag {mag} EXP: avg rank {np.mean(exp_ranks)} avg prop {np.mean(exp_props)}')
np.save(f'meta-storage/benchmark-{model_name}-{run_name}-{method}.npy', np.vstack([mse_ranks, mse_props, exp_ranks, exp_props]))
print("Finished!")