-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdiabetes.py
56 lines (44 loc) · 1.48 KB
/
diabetes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python3
#Diabetes Prediction Using Support Vector Machine
import pickle
import os
import sys
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.cross_validation import train_test_split
#For training
def train():
dataset = pd.read_csv('pima.csv')
X = dataset[['F','D','E','B','C']]
Y = dataset[['I']]
#train test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 101)
from sklearn.svm import SVC
model = SVC(kernel='linear')
svc=model.fit(X_train,Y_train)
#Save Model As Pickle File
with open('svc.pkl','wb') as m:
pickle.dump(svc,m)
test(X_test,Y_test)
#Test accuracy of the model
def test(X_test,Y_test):
with open('svc.pkl','rb') as mod:
p=pickle.load(mod)
pre=p.predict(X_test)
print (accuracy_score(Y_test,pre)) #Prints the accuracy of the model
def find_data_file(filename):
if getattr(sys, "frozen", False):
# The application is frozen.
datadir = os.path.dirname(sys.executable)
else:
# The application is not frozen.
datadir = os.path.dirname(__file__)
return os.path.join(datadir, filename)
def check_input(data) ->int :
df=pd.DataFrame(data=data,index=[0])
with open(find_data_file('svc.pkl'),'rb') as model:
p=pickle.load(model)
op=p.predict(df)
return op[0]
if __name__=='__main__':
train()