-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
669 lines (597 loc) · 26.6 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
from os import path
import math
import random
import json
import io
from collections import defaultdict
import h5py
import pdb
import tqdm
import imageio
import numpy as np
import torch
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
from runstats import Statistics
# always produce image of size RESIZE_DIM * RESIZE_DIM for training
RESIZE_DIM = 224
# the size of the image we store,
# this is done so that we can do shift data augmentation
EXTRA_RESIZE_DIM = 256
TRANS_VEC_STR = "transform_vector"
TRANS_VEC_KEY = ["raw_absolute", "aligned_absolute", "aligned_relative"]
TRANS_VEC_DIM = {
"raw_absolute": 24,
"aligned_absolute": 18,
"aligned_relative": 12
}
class SpatialDataset(Dataset):
def __init__(self, split, predicate_dim, object_dim, data_path, load_img,
data_aug_shift, data_aug_color, crop, norm_data, resize_mask,
trans_vec):
"""
:param split: which split of the json to use
:param predicate_dim: number of predicates
:param object_dim: number of object
:param data_path: path to the json file
:param load_img: whether to load image or not
:param data_aug_shift: whether to do shift data augmentation
:param data_aug_color: whether to do color data augmentation
:param crop: whether to crop the image to only fit the relations
:param norm_data: whether to normalize the data before feeding
:param resize_mask: whether or not to resize the mask before feeding
:param trans_vec: if empty list, no transform vector is loaded.
if not none, it is list of string containing the
name of the transformation vectors to add
"""
super().__init__()
data = json.load(open(data_path))
self.split = split
self.relations = data[split]
self.predicates = data['predicates']
self.objects = data['objects']
assert len(self.predicates) == predicate_dim
assert len(self.objects) == object_dim
# printing the dataset statistics
print('%d relations in %s' % (len(self.relations), split))
num_pos = 0
num_neg = 0
num_rel_pos = defaultdict(int)
num_rel_neg = defaultdict(int)
for sample in self.relations:
if sample['label']:
num_pos += 1
num_rel_pos[sample['predicate']] += 1
else:
num_neg += 1
num_rel_neg[sample['predicate']] += 1
all_rel = list(set(num_rel_neg) | set(num_rel_pos))
assert set(all_rel) == set(self.predicates)
print(f"Percentage of positive labels in {split}:"
f" {round(num_pos / (num_neg + num_pos), 3)}")
print(f"Percentage of negative labels in {split}:"
f" {round(num_neg / (num_neg + num_pos), 3)}")
print({
x: (num_rel_pos[x], num_rel_neg[x],
round(num_rel_pos[x] / (num_rel_pos[x] + num_rel_neg[x]), 3))
for x in all_rel
})
# reweighing the weights so that the average weight is one
# this is useful as the loss would remain in the same range
# as before if these weights are used
self.pred_weight = {
x: 1 / (num_rel_pos[x] + num_rel_neg[x])
for x in all_rel
}
sum_pred_weights = sum(list(self.pred_weight.values()))
for x in self.pred_weight:
self.pred_weight[x] = (
self.pred_weight[x] / sum_pred_weights) * len(self.pred_weight)
assert (sum(self.pred_weight.values()) - len(self.predicates)) < 1e-3
self.load_img = load_img
self.data_aug_shift = data_aug_shift
self.data_aug_color = data_aug_color
self.crop = crop
self.norm_data = norm_data
self.resize_mask = resize_mask
assert split in ["train", "test", "valid"]
if (self.data_aug_shift or self.data_aug_color) and split != "train":
print("WARNING: Doing data augmentation for not train set")
if ((not (self.data_aug_shift or self.data_aug_color))
and split == "train"):
print("WARNING: Not doing data augmentation for train set")
if self.load_img:
print(f"Loading image for {split} set")
else:
print(f"Not loading image for {split} set")
if self.data_aug_shift:
print(f"Doing shift data augmentation for {split} set")
else:
print(f"Not doing shift data augmentation for {split} set")
if self.data_aug_color:
print(f"Doing color data augmentation for {split} set")
else:
print(f"Not doing color data augmentation for {split} set")
if self.crop:
print(f"Doing image cropping for {split} set")
else:
print(f"Not doing image cropping for {split} set")
if self.norm_data:
print(f"Normalizing data for {split} set")
else:
print(f"Not normalizing rgb for {split} set")
self.trans_vec = trans_vec
if self.trans_vec:
for x in self.trans_vec:
assert x in TRANS_VEC_KEY
h5_stats_path = f"{data_path[0:-5]}_stats_trans.h5"
if split == "train" and not path.exists(h5_stats_path):
print(f"Saving the trans stat at {h5_stats_path}")
self.save_trans_stats(h5_stats_path)
with h5py.File(h5_stats_path, 'r') as h5_stats:
self.trans_stats = {}
for key in TRANS_VEC_KEY:
self.trans_stats[key] = {
'mean': h5_stats[f'{key}_mean'][()],
'std': h5_stats[f'{key}_std'][()]
}
assert data_path[-5:] == ".json"
if self.load_img:
h5_path = f"{data_path[0:-5]}_{split}_{self.crop}.h5"
# a separate file so that validation and test data loaders
# can also read it
h5_stats_path = f"{data_path[0:-5]}_stats_{self.crop}.h5"
# WARNING: first run train dataloader once before running
# the test or validation data loader
if ((not path.exists(h5_path))
or (split == "train" and not path.exists(h5_stats_path))):
print(f"Saving the h5 at {h5_path}")
if split == "train":
self.save_h5(h5_path, h5_stats_path)
else:
self.save_h5(h5_path)
print("Reading all the data into memory")
with h5py.File(h5_path, 'r') as h5:
self.rgb_dataset = h5['rgb'][()]
self.depth_dataset = h5['depth'][()]
self.bbox_dataset = h5['bbox'][()]
self.rgb_path_to_id = json.loads(h5['rgb_path_to_id'][()])
self.depth_path_to_id = json.loads(h5['depth_path_to_id'][()])
assert len(self.depth_path_to_id) == len(self.rgb_path_to_id)
with h5py.File(h5_stats_path, 'r') as h5_stats:
self.img_mean = h5_stats['img_mean'][()]
self.depth_mean = h5_stats['depth_mean'][()]
self.bbox_mean = h5_stats['bbox_mean'][()]
self.img_std = h5_stats['img_std'][()]
self.depth_std = h5_stats['depth_std'][()]
self.bbox_std = h5_stats['bbox_std'][()]
def save_trans_stats(self, h5_stats_path):
stats = {
key: {'mean': 0.0, 'std': 0.0}
for key in TRANS_VEC_KEY
}
for key in TRANS_VEC_KEY:
all_data = np.zeros((len(self.relations), TRANS_VEC_DIM[key]))
for i, rel in enumerate(self.relations):
all_data[i] = np.array(rel[TRANS_VEC_STR][key])
stats[key]['mean'] = np.mean(all_data, 0)
stats[key]['std'] = np.std(all_data, 0)
with h5py.File(h5_stats_path, 'w') as hf:
for key in stats:
for key2 in stats[key]:
print(f'{key}_{key2}')
hf.create_dataset(f'{key}_{key2}',
data=stats[key][key2])
def save_h5(self, h5_path, h5_stats_path=None):
"""
Preprocess the images and save them in h5 format. Based on whether crop
is True or False, we first find the area of the image we want to store.
The assumption is the we would resize this relevant are to size
224*224. To support shift data augmentation, we we instead save an
image of size 256*256, such that the central 224*224 area corresponds
to the part of the image we actually desire.
:param h5_path: where to save
:param h5_stats_path: save stats if not none
:return:
"""
if h5_stats_path is not None:
r_sta = Statistics()
g_sta = Statistics()
b_sta = Statistics()
depth_sta = Statistics()
sub_sta = Statistics()
obj_sta = Statistics()
with h5py.File(h5_path, 'w') as hf:
# storing rbg images images in compressed format
# for saving disk space
data_type = h5py.special_dtype(vlen=np.dtype('uint8'))
rgb_dataset = hf.create_dataset('rgb', (len(self.relations), ),
dtype=data_type)
depth_dataset = hf.create_dataset('depth', (len(self.relations), ),
dtype=data_type)
bbox_dataset = hf.create_dataset('bbox', (len(self.relations), ),
dtype=data_type)
rgb_path_to_id = {}
depth_path_to_id = {}
for i, sample in tqdm.tqdm(enumerate(self.relations)):
img = Image.open(sample['rgb'])
depth = Image.open(sample['depth'])
rgb_path_to_id[sample['rgb']] = i
depth_path_to_id[sample['depth']] = i
width = sample['width']
height = sample['height']
subj_bbox = self.convert_bbox(sample['subject']['bbox'])
obj_bbox = self.convert_bbox(sample['object']['bbox'])
bbox_mask = self.get_bbox_mask(height, width, subj_bbox,
obj_bbox)
padded_bbox_mask = Image.fromarray(np.concatenate(
[bbox_mask, np.zeros((height, width, 1), dtype=np.uint8)],
2))
if self.crop:
union_bbox = self.get_union_bbox(subj_bbox, obj_bbox)
else:
union_bbox = (0, height, 0, width)
union_top, union_bottom, union_left, union_right = union_bbox
union_width = union_right - union_left
union_height = union_bottom - union_top
crop_width = int(
(EXTRA_RESIZE_DIM / RESIZE_DIM) * union_width)
crop_height = int(
(EXTRA_RESIZE_DIM / RESIZE_DIM) * union_height)
left_extra_width = int(
(crop_width - union_width) / 2)
right_extra_width = int(
(crop_width - union_width) - left_extra_width)
top_extra_height = int(
(crop_height - union_height) / 2)
bottom_extra_height = int(
(crop_height - union_height) - top_extra_height)
pad = (left_extra_width, top_extra_height,
right_extra_width, bottom_extra_height)
img_extra = TF.pad(img, padding=pad)
depth_extra = TF.pad(depth, padding=pad)
padded_bbox_mask_extra = TF.pad(padded_bbox_mask, padding=pad)
img_crop = TF.crop(img_extra, union_top, union_left,
crop_height, crop_width)
depth_crop = TF.crop(depth_extra, union_top, union_left,
crop_height, crop_width)
padded_bbox_mask_crop = TF.crop(
padded_bbox_mask_extra, union_top, union_left, crop_height,
crop_width)
img_crop = TF.resize(img_crop,
(EXTRA_RESIZE_DIM, EXTRA_RESIZE_DIM))
depth_crop = TF.resize(depth_crop,
(EXTRA_RESIZE_DIM, EXTRA_RESIZE_DIM))
padded_bbox_mask_crop = TF.resize(
padded_bbox_mask_crop, (EXTRA_RESIZE_DIM,
EXTRA_RESIZE_DIM))
rgb_dataset[i] = self.compress_png(img_crop, is_unit8=True)
depth_crop = self.convert_img_uint8(depth_crop)
depth_dataset[i] = self.compress_png(depth_crop, is_unit8=True)
bbox_dataset[i] = self.compress_png(padded_bbox_mask_crop,
is_unit8=True)
if h5_stats_path is not None:
# calculating statistics of the center region
_rgb = np.array(
TF.to_tensor(TF.center_crop(img_crop, RESIZE_DIM)))
_depth = np.array(
TF.to_tensor(TF.center_crop(depth_crop, RESIZE_DIM)))
_bbox = np.array(
TF.to_tensor(TF.center_crop(padded_bbox_mask_crop,
RESIZE_DIM)))
assert _rgb.shape[0] == 3
assert _bbox.shape[0] == 3
assert _depth.shape[0] == 1
self.push_list(r_sta, _rgb[0].ravel())
self.push_list(g_sta, _rgb[1].ravel())
self.push_list(b_sta, _rgb[2].ravel())
self.push_list(depth_sta, _depth[0].ravel())
self.push_list(sub_sta, _bbox[0].ravel())
self.push_list(obj_sta, _bbox[1].ravel())
hf.create_dataset('rgb_path_to_id',
data=json.dumps(rgb_path_to_id))
hf.create_dataset('depth_path_to_id',
data=json.dumps(depth_path_to_id))
if h5_stats_path is not None:
with h5py.File(h5_stats_path, 'w') as hf:
hf.create_dataset(
'img_mean',
data=[r_sta.mean(), g_sta.mean(), b_sta.mean()])
hf.create_dataset(
'img_std',
data=[r_sta.stddev(), g_sta.stddev(), b_sta.stddev()])
hf.create_dataset('depth_mean', data=[depth_sta.mean()])
hf.create_dataset('depth_std', data=[depth_sta.stddev()])
hf.create_dataset(
'bbox_mean',
data=[sub_sta.mean(), obj_sta.mean()])
hf.create_dataset(
'bbox_std',
data=[sub_sta.stddev(), obj_sta.stddev()])
def __len__(self):
return len(self.relations)
def __getitem__(self, idx, visualize=False):
rel = self.relations[idx]
width = rel['width']
height = rel['height']
subj_bbox = self.convert_bbox(rel['subject']['bbox'])
obj_bbox = self.convert_bbox(rel['object']['bbox'])
union_bbox = self.get_union_bbox(subj_bbox, obj_bbox)
subj_t = self._getT(subj_bbox, obj_bbox)
obj_t = self._getT(obj_bbox, subj_bbox)
example = {
'subject': {
'name': rel['subject']['name'],
'idx': self.objects.index(rel['subject']['name']),
'bbox': np.array([
subj_bbox[0] / height, subj_bbox[1] / height,
subj_bbox[2] / width, subj_bbox[3] / width
], dtype=np.float32), # x0, x1, y0, y1
't': np.array(subj_t, dtype=np.float32),
},
'object': {
'name': rel['object']['name'],
'idx': self.objects.index(rel['object']['name']),
'bbox': np.array([
obj_bbox[0] / height, obj_bbox[1] / height,
obj_bbox[2] / width, obj_bbox[3] / width
], dtype=np.float32),
't': np.array(obj_t, dtype=np.float32),
},
'predicate': {
'name': rel['predicate'],
'idx': self.predicates.index(rel['predicate']),
'bbox': np.array([
union_bbox[0] / height, union_bbox[1] / height,
union_bbox[2] / width, union_bbox[3] / width
], dtype=np.float32),
},
'label': rel['label'],
'rgb_source': rel['rgb'],
'weight': self.pred_weight[rel['predicate']]
}
if self.load_img:
sample_id = self.rgb_path_to_id[rel['rgb']]
assert sample_id == self.depth_path_to_id[rel['depth']]
_img = self.decompress_png(
self.rgb_dataset[sample_id], return_unit8=True)
_depth = self.decompress_png(
self.depth_dataset[sample_id], return_unit8=True)
_padded_bbox_mask = self.decompress_png(
self.bbox_dataset[sample_id], return_unit8=True)
img = Image.fromarray(_img)
depth = Image.fromarray(_depth)
padded_bbox_mask = Image.fromarray(_padded_bbox_mask)
if self.data_aug_shift:
crop_left = random.randint(
0, EXTRA_RESIZE_DIM - RESIZE_DIM - 1)
crop_top = random.randint(
0, EXTRA_RESIZE_DIM - RESIZE_DIM - 1)
img_crop = TF.crop(
img, crop_top, crop_left, RESIZE_DIM, RESIZE_DIM)
depth_crop = TF.crop(
depth, crop_top, crop_left, RESIZE_DIM, RESIZE_DIM)
padded_bbox_mask_crop = TF.crop(
padded_bbox_mask, crop_top, crop_left,
RESIZE_DIM, RESIZE_DIM)
else:
img_crop = TF.center_crop(img, RESIZE_DIM)
depth_crop = TF.center_crop(depth, RESIZE_DIM)
padded_bbox_mask_crop = TF.center_crop(
padded_bbox_mask, RESIZE_DIM)
if self.data_aug_color:
img_crop = TF.adjust_brightness(
img_crop, random.uniform(0.9, 1.1))
img_crop = TF.adjust_contrast(
img_crop, random.uniform(0.9, 1.1))
img_crop = TF.adjust_gamma(img_crop, random.uniform(0.9, 1.1))
img_crop = TF.adjust_hue(img_crop, random.uniform(-0.05, 0.05))
if visualize:
vis = Image.new(mode='RGB', size=(2 * 224, 2 * 224))
vis.paste(img_crop, (0, 0))
depth_crop_arr = (255 * np.array(
depth_crop, dtype=np.float32)).astype(np.uint8)
vis.paste(Image.fromarray(depth_crop_arr), (224, 0))
mask_arr = np.array(
TF.resize(padded_bbox_mask_crop, (224, 224)))
vis.paste(
Image.fromarray(np.hstack([mask_arr[:, :, 0],
mask_arr[:, :, 1]])),
(0, 224))
draw = ImageDraw.Draw(vis)
# font = ImageFont.truetype("sans-serif.ttf", 16)
draw.text(
(0, 0),
f"{example['subject']['name']}"
f"--{example['predicate']['name']}"
f"--{example['object']['name']}"
f"--{example['label']}",
(255, 255, 255),
# font=font)
)
vis.save('vis_%04d.jpg' % idx)
img_crop = TF.to_tensor(img_crop)
depth_crop = TF.to_tensor(depth_crop)
if self.resize_mask:
padded_bbox_mask_crop = TF.resize(
padded_bbox_mask_crop, (32, 32))
padded_bbox_mask_crop = TF.to_tensor(padded_bbox_mask_crop)
bbox_mask_crop = padded_bbox_mask_crop[:2]
example['subject']['bbox'] = self.get_rel_coo_from_mask(
bbox_mask_crop[0])
example['object']['bbox'] = self.get_rel_coo_from_mask(
bbox_mask_crop[1])
example['predicate']['bbox'] = np.array(
self.get_union_bbox(example['subject']['bbox'],
example['object']['bbox'])
)
if self.norm_data:
img_crop = TF.normalize(
img_crop, mean=self.img_mean, std=self.img_std)
depth_crop = TF.normalize(
depth_crop, mean=self.depth_mean, std=self.depth_std)
bbox_mask_crop = TF.normalize(
bbox_mask_crop, mean=self.bbox_mean, std=self.bbox_std)
example['img_crop'] = img_crop
example['depth_crop'] = depth_crop
example['bbox_mask'] = bbox_mask_crop
if self.trans_vec:
for key in self.trans_vec:
example[key] = np.array(
rel[TRANS_VEC_STR][key]).astype('float32')
if self.norm_data:
trans_mean = self.trans_stats[key]['mean']
trans_std = self.trans_stats[key]['std']
example[key] = (example[key] - trans_mean) / trans_std
return example
@staticmethod
def push_list(sta, lst):
for x in lst:
sta.push(x)
@staticmethod
def convert_bbox(bbox):
bbox = {k: float(v) for k, v in bbox.items()}
return [bbox['top'], bbox['top'] + bbox['height'],
bbox['left'], bbox['left'] + bbox['width']]
@staticmethod
def get_union_bbox(bbox_a, bbox_b):
return [min(bbox_a[0], bbox_b[0]), max(bbox_a[1], bbox_b[1]),
min(bbox_a[2], bbox_b[2]), max(bbox_a[3], bbox_b[3])]
@staticmethod
def get_bbox_mask(height, width, subj_bbox, obj_bbox):
mask = np.zeros((height, width, 2), dtype=np.uint8)
mask[int(subj_bbox[0]): int(subj_bbox[1]),
int(subj_bbox[2]): int(subj_bbox[3]), 0] = 255
mask[int(obj_bbox[0]): int(obj_bbox[1]),
int(obj_bbox[2]): int(obj_bbox[3]), 1] = 255
return mask
def get_rel_coo_from_mask(self, mask):
"""
get relative coordinates from mask
:param mask:
:return:
"""
assert mask.dim() == 2
h, w = mask.shape
nz_mask = mask.nonzero()
if len(nz_mask) != 0:
t, l = nz_mask.min(0).values
b, r = nz_mask.max(0).values
# this can happen when we crop an object out of the image
else:
# Resolution: there are some samples with height=0, width=0
# this happens when object is right at the edge
# assert self.data_aug_shift
# assert self.split == "train"
t, l, b, r = [0]*4
return np.array([
float(t) / h, float(b) / h,
float(l) / w, float(r) / w
], np.float32)
@staticmethod
def _getT(bbox1, bbox2):
h1 = bbox1[1] - bbox1[0]
w1 = bbox1[3] - bbox1[2]
h2 = bbox2[1] - bbox2[0]
w2 = bbox2[3] - bbox2[2]
return [(bbox1[0] - bbox2[0]) / (float(h2) + 1e-5),
(bbox1[2] - bbox2[2]) / (float(w2) + 1e-5),
math.log(float(h1 + 1e-5) / (float(h2) + 1e-5)),
math.log(float(w1 + 1e-5) / (float(w2) + 1e-5))]
@staticmethod
def convert_img_uint8(image):
"""
Convert an image into uint8
:param image:
:return:
"""
assert isinstance(image, Image.Image) or isinstance(image, np.ndarray)
if isinstance(image, Image.Image):
image = np.array(image)
assert not image.dtype == 'uint8'
assert image.dtype == 'float32'
assert np.all(np.logical_and(image >= 0.0, image <= 1.0))
return Image.fromarray((image * 255).round().astype(np.uint8))
def compress_png(self, image, is_unit8):
"""
:param image: a PIL image
:param is_unit8: whether the image is unit8
:return:
compressed image as a numpy array
"""
_image = np.array(image)
if is_unit8:
assert _image.dtype == 'uint8'
assert np.all(np.logical_and(_image >= 0, _image <= 255))
else:
assert np.all(np.logical_and(_image >= 0.0, _image <= 1.0))
assert _image.dtype == 'float32'
image = self.convert_img_uint8(_image)
with io.BytesIO() as b:
imageio.imwrite(b, image, format='png')
b.seek(0)
image_comp = np.frombuffer(b.read(), dtype='uint8')
return image_comp
@staticmethod
def decompress_png(image_comp, return_unit8):
"""
:param image_comp: a PIL image
:param return_unit8: whether the image is unit8
:return:
compressed image as a numpy array
"""
assert image_comp.dtype == 'uint8'
image = imageio.imread(io.BytesIO(image_comp))
if not return_unit8:
assert image
image = image.astype(np.float32)
image = image / 255
return image
def create_dataloader(split, predicate_dim, object_dim, datapath, num_workers,
crop, norm_data, load_img, data_aug_shift,
data_aug_color, batch_size, resize_mask, trans_vec):
dataset_args = {
"split": split,
"predicate_dim": predicate_dim,
"object_dim": object_dim,
"data_path": datapath,
"load_img": load_img,
"data_aug_shift": (data_aug_shift and split == "train"),
"data_aug_color": (data_aug_color and split == "train"),
"crop": crop,
"norm_data": norm_data,
"resize_mask": resize_mask,
"trans_vec": trans_vec,
}
dataset = SpatialDataset(**dataset_args)
return (
DataLoader(
dataset,
batch_size,
num_workers=num_workers,
shuffle=(split == "train"),
drop_last=(split == "train"),
pin_memory=torch.cuda.is_available()),
dataset.predicates,
dataset.objects
)
if __name__ == '__main__':
_dataset_args = {
"split": 'train',
"predicate_dim": 30,
"object_dim": 67,
"data_path": 'data/c_0.9_c_0.1.json',
"load_img": True,
"data_aug_shift": False,
"data_aug_color": False,
"crop": True,
"norm_data": False,
"resize_mask": False,
"trans_vec": [],
}
_dataset = SpatialDataset(**_dataset_args)
for i in range(10):
_dataset.__getitem__(10000 + i, visualize=True)