-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_nn_features.py
118 lines (79 loc) · 2.93 KB
/
prepare_nn_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy
def CompetitionOpenSinceYear2int(since_year_array):
# since_year_array is numpy array
since_year_array[since_year_array < 2000] = 1
since_year_array[since_year_array >= 2000] -= 1998
return since_year_array
def split_features(X):
X = numpy.array(X)
X_list = []
store_index = X[..., [1]] - 1
X_list.append(store_index)
day_of_week = X[..., [2]] - 1
X_list.append(day_of_week)
promo = X[..., [3]]
X_list.append(promo)
year = X[..., [4]] - 2013
X_list.append(year)
month = X[..., [5]] - 1
X_list.append(month)
day = X[..., [6]] - 1
X_list.append(day)
state_holiday = X[..., [7]]
X_list.append(state_holiday)
school_holiday = X[..., [8]]
X_list.append(school_holiday)
has_competition_for_months = X[..., [9]]
X_list.append(has_competition_for_months)
has_promo2_for_weeks = X[..., [10]]
X_list.append(has_promo2_for_weeks)
latest_promo2_for_months = X[..., [11]]
X_list.append(latest_promo2_for_months)
log_distance = X[..., [12]]
X_list.append(log_distance)
StoreType = X[..., [13]]
X_list.append(StoreType)
Assortment = X[..., [14]]
X_list.append(Assortment)
PromoInterval = X[..., [15]]
X_list.append(PromoInterval)
CompetitionOpenSinceYear = CompetitionOpenSinceYear2int(X[..., [16]])
X_list.append(CompetitionOpenSinceYear)
Promo2SinceYear = X[..., [17]] - 2008
Promo2SinceYear[Promo2SinceYear < 0] = 0
X_list.append(Promo2SinceYear)
State = X[..., [18]]
X_list.append(State)
week_of_year = X[..., [19]] - 1
X_list.append(week_of_year)
temperature = X[..., [20, 21, 22]]
X_list.append(temperature)
humidity = X[..., [23, 24, 25]]
X_list.append(humidity)
wind = X[..., [26, 27]]
X_list.append(wind)
cloud = X[..., [28]]
X_list.append(cloud)
weather_event = X[..., [29]]
X_list.append(weather_event)
promo_first_forward_looking = X[..., [30]] - 1
X_list.append(promo_first_forward_looking)
promo_last_backward_looking = X[..., [31]] - 1
X_list.append(promo_last_backward_looking)
stateHoliday_first_forward_looking = X[..., [32]] - 1
X_list.append(stateHoliday_first_forward_looking)
stateHoliday_last_backward_looking = X[..., [33]] - 1
X_list.append(stateHoliday_last_backward_looking)
stateHoliday_count_forward_looking = X[..., [34]]
X_list.append(stateHoliday_count_forward_looking)
stateHoliday_count_backward_looking = X[..., [35]]
X_list.append(stateHoliday_count_backward_looking)
schoolHoliday_first_forward_looking = X[..., [36]] - 1
X_list.append(schoolHoliday_first_forward_looking)
schoolHoliday_last_backward_looking = X[..., [37]] - 1
X_list.append(schoolHoliday_last_backward_looking)
googletrend_DE = X[..., [38]]
X_list.append(googletrend_DE)
googletrend_state = X[..., [39]]
X_list.append(googletrend_state)
return X_list