-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRuntimeFile.py
35 lines (25 loc) · 1.03 KB
/
RuntimeFile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pickle
from sklearn.feature_extraction.text import CountVectorizer
#model filename
filename = 'reviews_classifier.sav'
loaded_classifier = pickle.load(open(filename, 'rb'))
cv = CountVectorizer(max_features = 2000)
with open('corpus.data', 'rb') as filehandle:
# read the data as binary data stream
corpus = pickle.load(filehandle)
cv.fit_transform(corpus)
print("Welcome to the Restaurant Review analyser")
print("The output will be either positive or negative.")
print("A count vectorizer was used")
print("---------------------------------------------------")
user_input=input("Enter the review of the restaurant: ")
test = [user_input]
test_vec = cv.transform(test)
val=loaded_classifier.predict(test_vec)[0]
print("---------------------------------------------------")
if(val==0):
print("The review entered was negative.")
print("The user did not like the restaurant.")
if(val==1):
print("The review entered was positive.")
print("The user liked the restaurant.")