forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathone_sparse_recovery.py
68 lines (60 loc) · 1.74 KB
/
one_sparse_recovery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Non-negative 1-sparse recovery problem.
This algorithm assumes we have a non negative dynamic stream.
Given a stream of tuples, where each tuple contains a number and a sign (+/-), it check if the
stream is 1-sparse, meaning if the elements in the stream cancel eacheother out in such
a way that ther is only a unique number at the end.
Examples:
#1
Input: [(4,'+'), (2,'+'),(2,'-'),(4,'+'),(3,'+'),(3,'-')],
Output: 4
Comment: Since 2 and 3 gets removed.
#2
Input: [(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+')]
Output: 2
Comment: No other numbers present
#3
Input: [(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(1,'+')]
Output: None
Comment: Not 1-sparse
"""
def one_sparse(array):
"""1-sparse algorithm
Keyword arguments:
array -- stream of tuples
"""
sum_signs = 0
bitsum = [0]*32
sum_values = 0
for val,sign in array:
if sign == "+":
sum_signs += 1
sum_values += val
else:
sum_signs -= 1
sum_values -= val
_get_bit_sum(bitsum,val,sign)
if sum_signs > 0 and _check_every_number_in_bitsum(bitsum,sum_signs):
return int(sum_values/sum_signs)
else:
return None
#Helper function to check that every entry in the list is either 0 or the same as the
#sum of signs
def _check_every_number_in_bitsum(bitsum,sum_signs):
for val in bitsum:
if val != 0 and val != sum_signs :
return False
return True
# Adds bit representation value to bitsum array
def _get_bit_sum(bitsum,val,sign):
i = 0
if sign == "+":
while val:
bitsum[i] += val & 1
i +=1
val >>=1
else :
while val:
bitsum[i] -= val & 1
i +=1
val >>=1