forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolation_search.py
61 lines (43 loc) · 1.68 KB
/
interpolation_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Python implementation of the Interpolation Search algorithm.
Given a sorted array in increasing order, interpolation search calculates
the starting point of its search according to the search key.
FORMULA: start_pos = low + [ (x - arr[low])*(high - low) / (arr[high] - arr[low]) ]
Doc: https://en.wikipedia.org/wiki/Interpolation_search
Time Complexity: O(log2(log2 n)) for average cases, O(n) for the worst case.
The algorithm performs best with uniformly distributed arrays.
"""
from typing import List
def interpolation_search(array: List[int], search_key: int) -> int:
"""
:param array: The array to be searched.
:param search_key: The key to be searched in the array.
:returns: Index of search_key in array if found, else -1.
Examples:
>>> interpolation_search([-25, -12, -1, 10, 12, 15, 20, 41, 55], -1)
2
>>> interpolation_search([5, 10, 12, 14, 17, 20, 21], 55)
-1
>>> interpolation_search([5, 10, 12, 14, 17, 20, 21], -5)
-1
"""
# highest and lowest index in array
high = len(array) - 1
low = 0
while (low <= high) and (array[low] <= search_key <= array[high]):
# calculate the search position
pos = low + int(((search_key - array[low]) *
(high - low) / (array[high] - array[low])))
# search_key is found
if array[pos] == search_key:
return pos
# if search_key is larger, search_key is in upper part
if array[pos] < search_key:
low = pos + 1
# if search_key is smaller, search_key is in lower part
else:
high = pos - 1
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()