forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum_flow.py
149 lines (141 loc) · 4.83 KB
/
maximum_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
Given the capacity, source and sink of a graph,
computes the maximum flow from source to sink.
Input : capacity, source, sink
Output : maximum flow from source to sink
Capacity is a two-dimensional array that is v*v.
capacity[i][j] implies the capacity of the edge from i to j.
If there is no edge from i to j, capacity[i][j] should be zero.
"""
from queue import Queue
# pylint: disable=too-many-arguments
def dfs(capacity, flow, visit, vertices, idx, sink, current_flow = 1 << 63):
"""
Depth First Search implementation for Ford-Fulkerson algorithm.
"""
# DFS function for ford_fulkerson algorithm.
if idx == sink:
return current_flow
visit[idx] = True
for nxt in range(vertices):
if not visit[nxt] and flow[idx][nxt] < capacity[idx][nxt]:
available_flow = min(current_flow, capacity[idx][nxt]-flow[idx][nxt])
tmp = dfs(capacity, flow, visit, vertices, nxt, sink, available_flow)
if tmp:
flow[idx][nxt] += tmp
flow[nxt][idx] -= tmp
return tmp
return 0
def ford_fulkerson(capacity, source, sink):
"""
Computes maximum flow from source to sink using DFS.
Time Complexity : O(Ef)
E is the number of edges and f is the maximum flow in the graph.
"""
vertices = len(capacity)
ret = 0
flow = [[0]*vertices for _ in range(vertices)]
while True:
visit = [False for _ in range(vertices)]
tmp = dfs(capacity, flow, visit, vertices, source, sink)
if tmp:
ret += tmp
else:
break
return ret
def edmonds_karp(capacity, source, sink):
"""
Computes maximum flow from source to sink using BFS.
Time complexity : O(V*E^2)
V is the number of vertices and E is the number of edges.
"""
vertices = len(capacity)
ret = 0
flow = [[0]*vertices for _ in range(vertices)]
while True:
tmp = 0
queue = Queue()
visit = [False for _ in range(vertices)]
par = [-1 for _ in range(vertices)]
visit[source] = True
queue.put((source, 1 << 63))
# Finds new flow using BFS.
while queue.qsize():
front = queue.get()
idx, current_flow = front
if idx == sink:
tmp = current_flow
break
for nxt in range(vertices):
if not visit[nxt] and flow[idx][nxt] < capacity[idx][nxt]:
visit[nxt] = True
par[nxt] = idx
queue.put((nxt, min(current_flow, capacity[idx][nxt]-flow[idx][nxt])))
if par[sink] == -1:
break
ret += tmp
parent = par[sink]
idx = sink
# Update flow array following parent starting from sink.
while parent != -1:
flow[parent][idx] += tmp
flow[idx][parent] -= tmp
idx = parent
parent = par[parent]
return ret
def dinic_bfs(capacity, flow, level, source, sink):
"""
BFS function for Dinic algorithm.
Check whether sink is reachable only using edges that is not full.
"""
vertices = len(capacity)
queue = Queue()
queue.put(source)
level[source] = 0
while queue.qsize():
front = queue.get()
for nxt in range(vertices):
if level[nxt] == -1 and flow[front][nxt] < capacity[front][nxt]:
level[nxt] = level[front] + 1
queue.put(nxt)
return level[sink] != -1
def dinic_dfs(capacity, flow, level, idx, sink, work, current_flow = 1 << 63):
"""
DFS function for Dinic algorithm.
Finds new flow using edges that is not full.
"""
if idx == sink:
return current_flow
vertices = len(capacity)
while work[idx] < vertices:
nxt = work[idx]
if level[nxt] == level[idx] + 1 and flow[idx][nxt] < capacity[idx][nxt]:
available_flow = min(current_flow, capacity[idx][nxt] - flow[idx][nxt])
tmp = dinic_dfs(capacity, flow, level, nxt, sink, work, available_flow)
if tmp > 0:
flow[idx][nxt] += tmp
flow[nxt][idx] -= tmp
return tmp
work[idx] += 1
return 0
def dinic(capacity, source, sink):
"""
Computes maximum flow from source to sink using Dinic algorithm.
Time complexity : O(V^2*E)
V is the number of vertices and E is the number of edges.
"""
vertices = len(capacity)
flow = [[0]*vertices for i in range(vertices)]
ret = 0
while True:
level = [-1 for i in range(vertices)]
work = [0 for i in range(vertices)]
if not dinic_bfs(capacity, flow, level, source, sink):
break
while True:
tmp = dinic_dfs(capacity, flow, level, source, sink, work)
if tmp > 0:
ret += tmp
else:
break
return ret