-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCellDelayPredictorALL.py
executable file
·286 lines (200 loc) · 8.42 KB
/
CellDelayPredictorALL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# coding: utf-8
# In[16]:
import tensorflow as tf
from tensorflow.contrib import learn
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn import datasets, linear_model
from sklearn import cross_validation
import numpy as np
# In[17]:
import pandas as pd
data = pd.read_csv('/home/pranav/Downloads/Cell_Delays.csv',sep='\t')
# In[18]:
data['Arc'] = data.From.str.cat("->" + data.To)
data['EdgeID'], EdgeLevels = pd.factorize(data.Edge)
data['LibCellID'], LibcellLevels = pd.factorize(data.LibraryCell)
data['ArcID'], ArcLevels = pd.factorize(data.Arc)
data['CompleteArc'] = data.LibraryCell.str.cat(":" + data.From + "->" + data.To + ":" + data.Edge)
data['CompleteArcID'], CompleteArcLevels = pd.factorize(data.CompleteArc)
data[0:5]
# In[19]:
from sklearn import preprocessing
continues_vars = ['LibCellID', 'ArcID', 'EdgeID', 'NumFanouts', 'Cout', 'CCoupling', 'WireResistance', 'RCProduct', 'DriveResistance', 'SignoffInputSlew']
X = data[continues_vars]
Y = data['SignoffDelay']
Y = Y[:,np.newaxis]
#X = X[0:200000]
#Y = Y[0:200000]
X.shape
# In[20]:
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=42)
training_size = X_train.shape[0]
test_size = X_test.shape[0]
print ("Numbe of Training Examples (Training Set): ", training_size)
print ("Numbe of Test Examples (Test Set): ", test_size)
# In[21]:
# Neural Network Parameters
n_hidden_1 = 100 # 512 # 1st layer number of features
n_hidden_2 = 100 # 512 # 2nd layer number of features
n_hidden_3 = 50 # 512
n_hidden_4 = 50 # 256
n_hidden_5 = 50 # 256
n_hidden_6 = 50 # 256
n_hidden_7 = 30 # 256
n_hidden_8 = 30 # 256
n_hidden_9 = 10 # 256
n_hidden_10 = 10 # 256
n_input = X_train.shape[1]
n_classes = 1
# tf Graph input
x = tf.placeholder("float", [None, n_input])
#PVS
y = tf.placeholder("float", [None, 1])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with TANH activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.tanh(layer_1)
# Hidden layer with TANH activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.tanh(layer_2)
# Hidden layer with TANH activation
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.tanh(layer_3)
# Hidden layer with TANH activation
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
layer_4 = tf.nn.tanh(layer_4)
# Hidden layer with TANH activation
layer_5 = tf.add(tf.matmul(layer_4, weights['h5']), biases['b5'])
layer_5 = tf.nn.tanh(layer_5)
# Hidden layer with TANH activation
layer_6 = tf.add(tf.matmul(layer_5, weights['h6']), biases['b6'])
layer_6 = tf.nn.tanh(layer_6)
# Hidden layer with TANH activation
layer_7 = tf.add(tf.matmul(layer_6, weights['h7']), biases['b7'])
layer_7 = tf.nn.tanh(layer_7)
# Hidden layer with TANH activation
layer_8 = tf.add(tf.matmul(layer_7, weights['h8']), biases['b8'])
layer_8 = tf.nn.tanh(layer_8)
# Hidden layer with TANH activation
layer_9 = tf.add(tf.matmul(layer_8, weights['h9']), biases['b9'])
layer_9 = tf.nn.tanh(layer_9)
# Hidden layer with TANH activation
layer_10 = tf.add(tf.matmul(layer_9, weights['h10']), biases['b10'])
layer_10 = tf.nn.tanh(layer_10)
# Output layer with linear activation
out_layer = tf.matmul(layer_10, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 0.7)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 0.7)),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, 0.7)),
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], 0, 0.7)),
'h5': tf.Variable(tf.random_normal([n_hidden_4, n_hidden_5], 0, 0.7)),
'h6': tf.Variable(tf.random_normal([n_hidden_5, n_hidden_6], 0, 0.7)),
'h7': tf.Variable(tf.random_normal([n_hidden_6, n_hidden_7], 0, 0.7)),
'h8': tf.Variable(tf.random_normal([n_hidden_7, n_hidden_8], 0, 0.7)),
'h9': tf.Variable(tf.random_normal([n_hidden_8, n_hidden_9], 0, 0.7)),
'h10': tf.Variable(tf.random_normal([n_hidden_9, n_hidden_10], 0, 0.7)),
'out': tf.Variable(tf.random_normal([n_hidden_10, n_classes], 0, 0.7))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 0.7)),
'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 0.7)),
'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, 0.7)),
'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, 0.7)),
'b5': tf.Variable(tf.random_normal([n_hidden_5], 0, 0.7)),
'b6': tf.Variable(tf.random_normal([n_hidden_6], 0, 0.7)),
'b7': tf.Variable(tf.random_normal([n_hidden_7], 0, 0.7)),
'b8': tf.Variable(tf.random_normal([n_hidden_8], 0, 0.7)),
'b9': tf.Variable(tf.random_normal([n_hidden_9], 0, 0.7)),
'b10': tf.Variable(tf.random_normal([n_hidden_10], 0, 0.7)),
'out': tf.Variable(tf.random_normal([n_classes], 0, 0.7))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
#cost = tf.reduce_mean(tf.square(pred - y))
cost = tf.reduce_mean(tf.abs(pred - y))
#cost = tf.reduce_sum(tf.abs(pred - y))
#cost = tf.reduce_mean( 100 * tf.abs((pred - y) / (y+1)) )
# cross entropy
#cost = -tf.reduce_mean( pred*tf.log(y+1) )
# In[22]:
# Hyper Parameters for Optimization
learning_rate = 0.007
training_epochs = 500
batch_size = 12000
display_step = 1
dropout_rate = 0.9
# Create an optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Launch the graph and run optimization
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Training cycle
for epoch in range(training_epochs):
tot_cost = 0.0
total_batch = int(training_size/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x = X_train[i*batch_size:(i+1)*batch_size]
batch_y = Y_train[i*batch_size:(i+1)*batch_size]
# Run optimization op (backprop) and cost op (to get loss value)
_, c, p = sess.run([optimizer, cost, pred], feed_dict={x: batch_x, y: batch_y})
if i%300 == 0 or i == (total_batch-1):
print ("Batch: ", i, " Actual value:", batch_y[1], " Predicted value:", p[1])
# Compute average loss
tot_cost += c
avg_cost = tot_cost / total_batch
# sample prediction (last batch)
label_value = batch_y
estimate = p
err = label_value-estimate
print ("num batch:", total_batch)
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "Average cost = ", "{:.9f}".format(avg_cost), "Total cost = ", "{:.9f}".format(tot_cost))
print ("[*]----------------------------")
for i in range(3):
print ("Actual value:", label_value[i], "Predicted value:", estimate[i])
print ("[*]============================")
#if avg_cost < 300:
# break
print ("Optimization Finished!")
# Predict delays on seen examples (training set)
predicted_Y_train = sess.run(pred, feed_dict={x: X_train} )
# Predict delays on unseen example (test set)
predicted_Y_test = sess.run(pred, feed_dict={x: X_test} )
# In[23]:
training_err = predicted_Y_train - Y_train
plt.hist(training_err, bins=30, color="blue")
plt.xlabel('Training Predicted Delay Error')
plt.ylabel('Count')
plt.show()
# In[24]:
test_err = predicted_Y_test - Y_test
plt.hist(test_err, bins=30, color="green")
plt.xlabel('Test Predicted Delay Error')
plt.ylabel('Count')
plt.show()
# In[32]:
def prediction_accuracy(y, predicted_y, tolerance):
total_count = y.shape[0]
good_count = 0
optimistic_count = 0
pessimistic_count = 0
for i in range(total_count):
err = (y[i] - predicted_y[i]) / y[i]
if abs(err) <= tolerance:
good_count += 1
elif err > tolerance:
optimistic_count += 1
elif err < -tolerance:
pessimistic_count += 1
good = good_count / total_count
pessimistic = pessimistic_count / total_count
optimistic = optimistic_count / total_count
return good, pessimistic, optimistic