-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathv3_fastest.py
94 lines (83 loc) · 4.03 KB
/
v3_fastest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import cv2 as cv
import numpy as np
# Give the configuration and weight files for the model and load the network using them.
modelConfiguration = "data/yolo-fastest-xl.cfg"
modelWeights = "model/yolo-fastest-xl.weights"
classesFile = "data/coco.names"
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
colors = np.random.randint(0, 255, size=(len(classes), 3), dtype="uint8")
fastest_net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
fastest_net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
fastest_net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
# Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
def drawPred(color, classId, conf, left, top, right, bottom, frame):
cv.rectangle(frame, (left, top), (right, bottom), color, 2)
label = '%.2f' % conf
# Get the label for the class name and its confidence
if classes:
assert (classId < len(classes))
label = '%s:%s' % (classes[classId], label)
# Display the label at the top of the bounding box
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
cv.putText(frame, label, (left, top - 10), cv.FONT_HERSHEY_SIMPLEX, 1, color, thickness=2)
# Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs, confThreshold, nmsThreshold):
frameHeight, frameWidth = frame.shape[0], frame.shape[1]
classIds, confidences, boxes = [], [], []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left, top, width, height = box[0], box[1], box[2], box[3]
color = [int(c) for c in colors[classIds[i]]]
drawPred(color, classIds[i], confidences[i], left, top, left + width, top + height, frame)
def v3_inference(frame):
inpWidth, inpHeight = 320, 320
blob = cv.dnn.blobFromImage(frame, 1 / 255.0, (inpWidth, inpHeight), [0, 0, 0], swapRB=False, crop=False)
# Sets the input to the network
fastest_net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = fastest_net.forward(getOutputsNames(fastest_net))
# Remove the bounding boxes with low confidence
postprocess(frame, outs, confThreshold = 0.5, nmsThreshold = 0.2)
# Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
t, _ = fastest_net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
print(label)
if __name__ == '__main__':
cap = cv.VideoCapture(0, cv.CAP_DSHOW)
cap.set(3, 960) # set video width
cap.set(4, 820) # set video height
while True:
ret, frame = cap.read()
v3_inference(frame)
cv.imshow('fourcc', frame)
k = cv.waitKey(20)
# q键退出
if (k & 0xff == ord('q')):
break
cap.release()
cv.destroyAllWindows()