-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogisticRegression.html
930 lines (550 loc) · 339 KB
/
LogisticRegression.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
<!DOCTYPE HTML>
<html lang="zh-hans" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>逻辑回归 · 大数据技术与算法Checklist</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<meta name="author" content="powerlee">
<link rel="stylesheet" href="gitbook/style.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-search-pro/search.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-prism/prism.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-expandable-chapters/expandable-chapters.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-chapter-fold/chapter-fold.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-splitter/splitter.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-back-to-top-button/plugin.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-advanced-emoji/emoji-website.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-insert-logo/plugin.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-pageview-count/plugin.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-flexible-alerts/style.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-katex-new/katex.min.css">
<link rel="stylesheet" href="https://unpkg.com/gitalk/dist/gitalk.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-fontsettings/website.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-theme-comscore/test.css">
<link rel="stylesheet" href="styles/website.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="gitbook/images/favicon.ico" type="image/x-icon">
<link rel="next" href="DecisionTree.html" />
<link rel="prev" href="LinearRegression.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="输入并搜索" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="./">
<a href="./">
Introduction
</a>
</li>
<li class="chapter " data-level="1.2" data-path="GradientDescent.html">
<a href="GradientDescent.html">
梯度下降
</a>
</li>
<li class="chapter " data-level="1.3" data-path="LinearRegression.html">
<a href="LinearRegression.html">
线性回归
</a>
</li>
<li class="chapter active" data-level="1.4" data-path="LogisticRegression.html">
<a href="LogisticRegression.html">
逻辑回归
</a>
</li>
<li class="chapter " data-level="1.5" data-path="DecisionTree.html">
<a href="DecisionTree.html">
决策树
</a>
</li>
<li class="chapter " data-level="1.6" data-path="ABTest.html">
<a href="ABTest.html">
A/B实验
</a>
</li>
<li class="chapter " data-level="1.7" data-path="TimeSeries.html">
<a href="TimeSeries.html">
时间序列
</a>
</li>
<li class="chapter " data-level="1.8" data-path="DimensionalModeling.html">
<a href="DimensionalModeling.html">
维度建模
</a>
</li>
<li class="chapter " data-level="1.9" data-path="UserBehaviorsAnalysisPlatform.html">
<a href="UserBehaviorsAnalysisPlatform.html">
用户行为分析平台
</a>
</li>
<li class="chapter " data-level="1.10" data-path="SQLKeypoints.html">
<a href="SQLKeypoints.html">
SQL要点
</a>
</li>
<li class="chapter " data-level="1.11" data-path="SQLCases.html">
<a href="SQLCases.html">
SQL案例
</a>
</li>
<li class="chapter " data-level="1.12" data-path="Kafka.md">
<span>
Kafka
</a>
</li>
<li class="chapter " data-level="1.13" data-path="Spark.html">
<a href="Spark.html">
Spark
</a>
</li>
<li class="chapter " data-level="1.14" data-path="Flink.md">
<span>
Flink
</a>
</li>
<li class="chapter " data-level="1.15" data-path="ClickHouse.md">
<span>
ClickHouse
</a>
</li>
<li class="chapter " data-level="1.16" data-path="ProbabilityAndStatistics.html">
<a href="ProbabilityAndStatistics.html">
概率论与数理统计
</a>
</li>
<li class="chapter " data-level="1.17" data-path="PythonVirtualEnv.html">
<a href="PythonVirtualEnv.html">
Python虚拟环境
</a>
</li>
<li class="chapter " data-level="1.18" data-path="SparkLocalInstall.html">
<a href="SparkLocalInstall.html">
Spark本地安装部署
</a>
</li>
<li class="chapter " data-level="1.19" data-path="GitCheatSheet.html">
<a href="GitCheatSheet.html">
Git Cheat Sheet
</a>
</li>
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
本书使用 GitBook 发布
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href="." >逻辑回归</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<p>Logistic 回归虽然名字里带 “回归”,但它实际上是一种二分类方法,即 <strong>LR 分类器(Logistic Regression Classifier)</strong>,其数学模型是一个 <strong>sigmoid 函数</strong>,因图像像 S,又经常称之为 S 形曲线,sigmoid 本身就是 S 形的意思。</p>
<p><strong>sigmoid 函数:</strong>
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">
g(z) =\frac{1}{1+e^{-z}}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0908em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>
<strong>sigmoid 函数图像:</strong></p>
<div align="center">
<img src="pics/LogisticRegression/Sigmoid.png" alt="Sigmoid" style="zoom:120%;">
</div>
<p>由于sigmoid函数可以将任意值映射到(0, 1)的区间内,类似求得了一个概率值。如果假设需要判断一个测试样本是否属于某一类别,设置0.5为阈值,sigmoid函数的输出如果大于0.5则认为属于该类别,小于0.5则认为不属于该类别。即可实现二分类问题。</p>
<h3 id="逻辑回归的目标函数">逻辑回归的目标函数</h3>
<p>逻辑回归和线性回归一脉相承。假设已知数据集 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">X</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{X}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.07778em;">X</span></span></span></span></span></span> ,其中有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span> 个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 维样本 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">\boldsymbol{x}^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8247em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> ,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 代表第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 个样本。每个样本 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">\boldsymbol{x}^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8247em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 对应着一个标签 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">y^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> ,与线性回归不同的是,这里 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">y^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 的值是0或1,而不是任意实数。把标签值 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">y^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 的集合(向量)记作 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">Y</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{Y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.25555em;">Y</span></span></span></span></span></span> 。</p>
<p>逻辑回归的目标函数是一个sigmoid的函数,函数的输入就是线性回归的目标函数。线性回归的目标函数为:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">
f(\boldsymbol{x}) = \boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9334em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span></span>
则,逻辑回归的目标函数是:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>σ</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><mi mathvariant="bold-italic">x</mi></mrow></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">
\sigma(\boldsymbol{x})=h_{\boldsymbol{\theta}}(\boldsymbol{x})=g(f(\boldsymbol{x}))=g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x})=\frac{1}{1+e^{-\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}}}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1834em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1701em;vertical-align:-0.8487em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.2347em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8753em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8376em;"><span style="top:-2.8416em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight">x</span></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.8487em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>
整个流程绘制成流程图显示如下,之所以要画这样子的流程图,是因为逻辑回归的这个流程图已经很像后续深度学习中的<strong>感知机</strong>的模样,只是<strong>激活函数</strong>使用的是sigmoid函数,这样流程图在后续的深度学习中会经常遇见:</p>
<div align="center">
<img src="pics/LogisticRegression/LogisticFunction.png" alt="LogisticFunction" style="zoom:50%;">
</div>
<h3 id="逻辑回归的损失函数">逻辑回归的损失函数</h3>
<p>逻辑回归的损失函数是一个分段函数:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right" columnspacing=""><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>C</mi><mi>o</mi><mi>s</mi><mi>t</mi><mo stretchy="false">(</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo fence="true">{</mo><mtable rowspacing="0.16em" columnalign="left right" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>i</mi><mi>f</mi><mtext> </mtext><mi>y</mi><mo>=</mo><mn>1</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>i</mi><mi>f</mi><mtext> </mtext><mi>y</mi><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr></mtable></mrow></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">
\begin{align*}
Cost(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) =
\left\{
\begin{array}{lr}
-log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) &if \ y=1\\
-log(1-h_{\boldsymbol{\theta}}(\boldsymbol{x})) &if \ y=0
\end{array}
\right.
\end{align*}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.7em;vertical-align:-1.1em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6em;"><span style="top:-3.6em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mord mathnormal">os</span><span class="mord mathnormal">t</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">{</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">))</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">))</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">i</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace"> </span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">1</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">i</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace"> </span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.1em;"><span></span></span></span></span></span></span></span></span></span></span></span>
下图为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">-log(h_{\boldsymbol{\theta}}(\boldsymbol{x}))</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">))</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">-log(1-h_{\boldsymbol{\theta}}(\boldsymbol{x}))</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">))</span></span></span></span> 的函数图像。因为sigmod函数的输出为(0, 1)的区间,所以以下函数图像只显示(0, 1)区间的取值。可以看出当样本真实的标签为1时,预测值越接近于1则损失趋近于0,预测值越接近于0则损失趋近于无穷大;反之,如果样本真实的标签为0时,预测值越接近于1则损失趋近于无穷大,预测值越接近于0则损失趋近于0。</p>
<div align="center">
<figure>
<img src="pics/LogisticRegression/log1.png" alt="image-20230110205800597" style="zoom:15%; margin-right:300px;">
<img src="pics/LogisticRegression/log2.png" alt="image-20230110210005606" style="zoom:15%;">
</figure>
</div>
<p>于是接下来要做的事情就是优化损失函数,找到损失函数最小时对应的参数组 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">θ</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span></span></span></span> 。但是毕竟分段函数不利于计算,将分段函数做一下改写,这个函数就叫做<strong>负对数似然损失(Negative Log-Likelihood)函数</strong>,顾名思义这个损失函数同样可以通过<strong>极大似然估计</strong>推导而来:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>J</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">θ</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><msup><mi>y</mi><mi>i</mi></msup><mo>⋅</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo>⋅</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">
J(\boldsymbol{\theta})=-\frac{1}{m}\sum_{i=1}^{m}[y^i\cdot log(h_{\boldsymbol{\theta}}(\boldsymbol{x}^i))+(1-y^i)\cdot log(1-h_{\boldsymbol{\theta}}(\boldsymbol{x}^i))]
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9291em;vertical-align:-1.2777em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1247em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1247em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1247em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))]</span></span></span></span></span>
类似线性回归,为了防止过拟合,可以加入正则化项,比如<strong>L2正则</strong>:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>J</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">θ</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><msup><mi>y</mi><mi>i</mi></msup><mo>⋅</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo>⋅</mo><mi>l</mi><mi>o</mi><mi>g</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>+</mo><mfrac><mi>λ</mi><mrow><mn>2</mn><mi>m</mi></mrow></mfrac><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>θ</mi><mi>j</mi><mn>2</mn></msubsup></mrow><annotation encoding="application/x-tex">
J(\boldsymbol{\theta})=-\frac{1}{m}\sum_{i=1}^{m}[y^i\cdot log(h_{\boldsymbol{\theta}}(\boldsymbol{x}^i))+(1-y^i)\cdot log(1-h_{\boldsymbol{\theta}}(\boldsymbol{x}^i))]+\frac{\lambda}{2m}\sum_{j=1}^n\theta_j^2
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.9291em;vertical-align:-1.2777em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1247em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1247em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.1247em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))]</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:3.0652em;vertical-align:-1.4138em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">λ</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.4138em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3831em;"><span></span></span></span></span></span></span></span></span></span></span></p>
<h3 id="梯度下降法优化逻辑回归的损失函数">梯度下降法优化逻辑回归的损失函数</h3>
<p>先求损失函数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>J</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">θ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">J(\boldsymbol{\theta})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="mclose">)</span></span></span></span> 的梯度,对每一个分量 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>θ</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">\theta_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9805em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span> 求偏导:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>J</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">θ</mi><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="normal">∂</mi><msub><mi>θ</mi><mi>j</mi></msub></mrow></mfrac></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><msup><mi>y</mi><mi>i</mi></msup><mfrac><mn>1</mn><mrow><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow></mfrac><mfrac><mi mathvariant="normal">∂</mi><mrow><mi mathvariant="normal">∂</mi><msub><mi>θ</mi><mi>j</mi></msub></mrow></mfrac><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>−</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow></mfrac><mfrac><mi mathvariant="normal">∂</mi><mrow><mi mathvariant="normal">∂</mi><msub><mi>θ</mi><mi>j</mi></msub></mrow></mfrac><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><mo stretchy="false">(</mo><msup><mi>y</mi><mi>i</mi></msup><mfrac><mn>1</mn><mrow><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow></mfrac><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>−</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow></mfrac><mo stretchy="false">)</mo><mo>⋅</mo><mfrac><mi mathvariant="normal">∂</mi><mrow><mi mathvariant="normal">∂</mi><msub><mi>θ</mi><mi>j</mi></msub></mrow></mfrac><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">
\begin{align*}
\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_j}
&=-\frac{1}{m}\sum_{i=1}^{m}[y^i\frac{1}{h_{\boldsymbol{\theta}}(\boldsymbol{x}^i)} \frac{\partial}{\partial \theta_j}h_{\boldsymbol{\theta}}(\boldsymbol{x}^i)-(1-y^i) \frac{1}{1-h_{\boldsymbol{\theta}}(\boldsymbol{x}^i)} \frac{\partial}{\partial \theta_j}h_{\boldsymbol{\theta}}(\boldsymbol{x}^i)] \\
&=-\frac{1}{m}\sum_{i=1}^{m}[(y^i\frac{1}{g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)}-(1-y^i) \frac{1}{1-g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)}) \cdot \frac{\partial}{\partial \theta_j}g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)] \\
\end{align*}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.4581em;vertical-align:-2.9791em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.4791em;"><span style="top:-5.4791em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:2.9791em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.4791em;"><span style="top:-5.4791em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7507em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7507em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)]</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.1766em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7507em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.0734em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.1766em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7507em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.0734em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)]</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:2.9791em;"><span></span></span></span></span></span></span></span></span></span></span></span>
其中sigmod函数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">g(z)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span></span> 对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span> 的导数为:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msup><mi>g</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup></mrow></mfrac><msup><mo stretchy="false">)</mo><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup></mrow></mfrac><mo>⋅</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup></mrow></mfrac><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>z</mi></mrow></msup></mrow></mfrac><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>g</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">
\begin{align*}
g'(z) &= (\frac{1}{1+e^{-z}})' = \frac{e^{-z}}{(1+e^{-z})^2} \\
&= \frac{1}{1+e^{-z}} \cdot \frac{e^{-z}}{1+e^{-z}} \\
&= \frac{1}{1+e^{-z}} \cdot (1-\frac{1}{1+e^{-z}}) \\
&= g(z) \cdot (1-g(z))
\end{align*}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:9.0928em;vertical-align:-4.2964em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.7964em;"><span style="top:-6.7964em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span><span style="top:-4.1121em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"></span></span><span style="top:-1.7213em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"></span></span><span style="top:0.1881em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:4.2964em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4.7964em;"><span style="top:-6.7964em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4483em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7713em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-4.1121em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4483em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7713em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-1.7213em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span></span></span><span style="top:0.1881em;"><span class="pstrut" style="height:3.4483em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">))</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:4.2964em;"><span></span></span></span></span></span></span></span></span></span></span></span>
将sigmod函数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">g(z)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span></span> 对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span> 的导数带入前面 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>J</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">θ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">J(\boldsymbol{\theta})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="mclose">)</span></span></span></span> 的梯度求偏导的计算过程中:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mi mathvariant="normal">∂</mi><mi>J</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">θ</mi><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="normal">∂</mi><msub><mi>θ</mi><mi>j</mi></msub></mrow></mfrac></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><mo stretchy="false">(</mo><msup><mi>y</mi><mi>i</mi></msup><mfrac><mn>1</mn><mrow><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow></mfrac><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>−</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow></mfrac><mo stretchy="false">)</mo><mo>⋅</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>⋅</mo><mfrac><mi mathvariant="normal">∂</mi><mrow><mi mathvariant="normal">∂</mi><msub><mi>θ</mi><mi>j</mi></msub></mrow></mfrac><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><mo stretchy="false">(</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>⋅</mo><msubsup><mi mathvariant="bold-italic">x</mi><mi>j</mi><mi>i</mi></msubsup><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><mo stretchy="false">(</mo><msup><mi>y</mi><mi>i</mi></msup><mo>−</mo><mi>g</mi><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo><msubsup><mi mathvariant="bold-italic">x</mi><mi>j</mi><mi>i</mi></msubsup><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><mo stretchy="false">(</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><msubsup><mi mathvariant="bold-italic">x</mi><mi>j</mi><mi>i</mi></msubsup><mo stretchy="false">]</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">
\begin{align*}
\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_j}
&=-\frac{1}{m}\sum_{i=1}^{m}[(y^i\frac{1}{g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)}-(1-y^i) \frac{1}{1-g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)}) \cdot g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)(1-g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)) \cdot \frac{\partial}{\partial \theta_j}\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i] \\
&=-\frac{1}{m}\sum_{i=1}^{m}[(y^i(1-g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i))-(1-y^i)g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i)) \cdot \boldsymbol{x}_j^i] \\
&=-\frac{1}{m}\sum_{i=1}^{m}[(y^i-g(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}^i))\boldsymbol{x}_j^i] \\
&=\frac{1}{m}\sum_{i=1}^{m}[(h_{\boldsymbol{\theta}}(\boldsymbol{x}^i)-y^i)\boldsymbol{x}_j^i]
\end{align*}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:12.9163em;vertical-align:-6.2081em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.7081em;"><span style="top:-8.7081em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-5.4791em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"></span></span><span style="top:0.9791em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:6.2081em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.7081em;"><span style="top:-8.7081em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.1766em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7507em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.0734em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.1766em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7507em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.0734em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord" style="margin-right:0.05556em;">∂</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9721em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">]</span></span></span><span style="top:-5.4791em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3831em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">))</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3831em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span><span style="top:0.9791em;"><span class="pstrut" style="height:3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[(</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3831em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:6.2081em;"><span></span></span></span></span></span></span></span></span></span></span></span>
对比<strong>线性回归均方误差损失函数的梯度</strong>,可以看出和逻辑回归损失函数的梯度形式上基本是完全一致的,具体见<a href="LinearRegression.html#lrgd">线性回归的梯度下降法</a>。接下来利用梯度下降法对损失函数进行迭代优化即可找到最优参数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">θ</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span></span></span></span> :
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>θ</mi><mi>j</mi></msub><mo>:</mo><mo>=</mo><msub><mi>θ</mi><mi>j</mi></msub><mo>−</mo><mi>α</mi><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mo stretchy="false">[</mo><mo stretchy="false">(</mo><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo><mo>−</mo><msup><mi>y</mi><mi>i</mi></msup><mo stretchy="false">)</mo><msubsup><mi mathvariant="bold-italic">x</mi><mi>j</mi><mi>i</mi></msubsup><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">
\theta_j := \theta_j - \alpha\frac{1}{m}\sum_{i=1}^{m}[(h_{\boldsymbol{\theta}}(\boldsymbol{x}^i)-y^i)\boldsymbol{x}_j^i]
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9805em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9805em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.9291em;vertical-align:-1.2777em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mopen">[(</span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.2578em;vertical-align:-0.3831em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3831em;"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span></span></p>
<h3 id="通过sklearn实现逻辑回归">通过sklearn实现逻辑回归</h3>
<p>既然逻辑回归损失函数的梯度跟线性回归损失函数的梯度形式上完全一致,我们就不手写代码实现逻辑回归的梯度下降算法了,可以参考<a href="LinearRegression.html#lrcode">线性回归梯度下降算法实现</a>。直接尝试调用sklearn中逻辑回归相关的API。</p>
<p>如果去翻看<a href="https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model" target="_blank">sklearn的官方文档</a>,会发现<code>linear_model</code>中也包含了3个这样的分类器API:<code>LogisticRegression</code>、<code>SGDClassifier</code>以及<code>RidgeClassifier</code>,和之前线性回归的3个API非常相似。但其实它们没有对应关系。</p>
<p>主要实现逻辑回归的就是<code>LogisticRegression</code>这个接口,但是这个接口中没有包含<strong>SGD</strong>的实现。而<code>SGDClassifier</code>接口实现了不同损失函数下的<strong>SGD</strong>算法,其中甚至包含<strong>SVM</strong>,虽然把损失函数设置为<code>log_loss</code>即为SGD的逻辑回归,但该接口不是专门为逻辑回归设计的。而<code>RidgeClassifier</code>根本就不是逻辑回归,没有用到sigmoid函数,只是用L2正则的线性回归实现了分类的效果,具体可以参考sklearn官方文档。</p>
<p>本实验采用<a href="https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/" target="_blank"><strong>乳腺癌分类预测数据集</strong></a>。数据集描述:</p>
<ol>
<li>699条样本,共11列数据,第1列为id,后9列是与肿瘤相关的医学特征。</li>
<li>最后一列表示肿瘤类型的数值:<code>2</code>表示良性,<code>4</code>表示恶性。这一列就是分类的目标。</li>
<li>包含16个缺失值,用<code>?</code>标出。</li>
</ol>
<p>既然数据有一些缺失,在逻辑回归预测之前肯定需要做一些预处理。</p>
<pre class="language-"><code class="lang-python"><span class="token keyword">import</span> numpy <span class="token keyword">as</span> np
<span class="token keyword">import</span> pandas <span class="token keyword">as</span> pd
<span class="token keyword">from</span> sklearn <span class="token keyword">import</span> linear_model
<span class="token keyword">from</span> sklearn<span class="token punctuation">.</span>metrics <span class="token keyword">import</span> classification_report<span class="token punctuation">,</span> roc_auc_score<span class="token punctuation">,</span> roc_curve<span class="token punctuation">,</span> auc
<span class="token keyword">from</span> sklearn<span class="token punctuation">.</span>model_selection <span class="token keyword">import</span> train_test_split
<span class="token keyword">from</span> sklearn<span class="token punctuation">.</span>preprocessing <span class="token keyword">import</span> StandardScaler
<span class="token keyword">import</span> matplotlib<span class="token punctuation">.</span>pyplot <span class="token keyword">as</span> plt
</code></pre>
<pre class="language-"><code class="lang-python">column_name <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token string">'Sample code number'</span><span class="token punctuation">,</span> <span class="token string">'Clump Thickness'</span><span class="token punctuation">,</span>
<span class="token string">'Uniformity of Cell Size'</span><span class="token punctuation">,</span> <span class="token string">'Uniformity of Cell Shape'</span><span class="token punctuation">,</span> <span class="token string">'Marginal Adhesion'</span><span class="token punctuation">,</span>
<span class="token string">'Single Epithelial Cell Size'</span><span class="token punctuation">,</span>
<span class="token string">'Bare Nuclei'</span><span class="token punctuation">,</span> <span class="token string">'Bland Chromatin'</span><span class="token punctuation">,</span>
<span class="token string">'Normal Nucleoli'</span><span class="token punctuation">,</span> <span class="token string">'Mitoses'</span><span class="token punctuation">,</span> <span class="token string">'Class'</span><span class="token punctuation">]</span>
path <span class="token operator">=</span> <span class="token string">"http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"</span>
original_data <span class="token operator">=</span> pd<span class="token punctuation">.</span>read_csv<span class="token punctuation">(</span>path<span class="token punctuation">,</span> names<span class="token operator">=</span>column_name<span class="token punctuation">)</span> <span class="token comment"># 从源地址下载数据集</span>
</code></pre>
<pre class="language-"><code class="lang-python"><span class="token keyword">def</span> <span class="token function">preprocess_data</span><span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
data <span class="token operator">=</span> original_data<span class="token punctuation">.</span>replace<span class="token punctuation">(</span>to_replace<span class="token operator">=</span><span class="token string">"?"</span><span class="token punctuation">,</span> value<span class="token operator">=</span>np<span class="token punctuation">.</span>nan<span class="token punctuation">)</span> <span class="token comment"># 将缺失值"?"替换为NaN</span>
data<span class="token punctuation">.</span>dropna<span class="token punctuation">(</span>inplace<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">)</span> <span class="token comment"># 简单处理,把缺失值所在行丢弃</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"Is there any null?\n"</span><span class="token punctuation">,</span> data<span class="token punctuation">.</span>isnull<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">.</span><span class="token builtin">any</span><span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token comment"># 检测是否还有缺失值</span>
x <span class="token operator">=</span> data<span class="token punctuation">.</span>iloc<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">:</span><span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">]</span> <span class="token comment"># 选择数据集第一行到倒数第二行作为样本数据</span>
y <span class="token operator">=</span> data<span class="token punctuation">[</span><span class="token string">"Class"</span><span class="token punctuation">]</span> <span class="token comment"># 选择Class列作为标签数据</span>
x_train<span class="token punctuation">,</span> x_test<span class="token punctuation">,</span> y_train<span class="token punctuation">,</span> y_test <span class="token operator">=</span> train_test_split<span class="token punctuation">(</span>x<span class="token punctuation">,</span> y<span class="token punctuation">,</span>
test_size<span class="token operator">=</span><span class="token number">0.25</span><span class="token punctuation">,</span> <span class="token comment"># 设置测试集的比例占全体数据集的比例</span>
random_state<span class="token operator">=</span><span class="token number">16</span><span class="token punctuation">)</span> <span class="token comment"># 设置随机数种子,相同的随机数种子每次都会产生完全一样的划分结果</span>
transfer <span class="token operator">=</span> StandardScaler<span class="token punctuation">(</span><span class="token punctuation">)</span>
x_train <span class="token operator">=</span> transfer<span class="token punctuation">.</span>fit_transform<span class="token punctuation">(</span>x_train<span class="token punctuation">)</span> <span class="token comment"># 对训练集数据进行标准化处理</span>
x_test <span class="token operator">=</span> transfer<span class="token punctuation">.</span>transform<span class="token punctuation">(</span>x_test<span class="token punctuation">)</span> <span class="token comment"># 注意:这里是基于训练集标准化后的均值和方差,对测试集进行标准化</span>
<span class="token keyword">return</span> x_train<span class="token punctuation">,</span> x_test<span class="token punctuation">,</span> y_train<span class="token punctuation">,</span> y_test
x_train<span class="token punctuation">,</span> x_test<span class="token punctuation">,</span> y_train<span class="token punctuation">,</span> y_test <span class="token operator">=</span> preprocess_data<span class="token punctuation">(</span><span class="token punctuation">)</span>
</code></pre>
<pre class="language-"><code class="lang-python"><span class="token keyword">def</span> <span class="token function">LogisticRegression</span><span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
classifier <span class="token operator">=</span> linear_model<span class="token punctuation">.</span>LogisticRegression<span class="token punctuation">(</span>penalty<span class="token operator">=</span><span class="token string">"l2"</span><span class="token punctuation">,</span> <span class="token comment"># 选择L2正则化</span>
solver<span class="token operator">=</span><span class="token string">"sag"</span><span class="token punctuation">)</span> <span class="token comment"># 选择sag作为梯度下降迭代算法</span>
classifier<span class="token punctuation">.</span>fit<span class="token punctuation">(</span>x_train<span class="token punctuation">,</span> y_train<span class="token punctuation">)</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"regr.coef_: {}"</span><span class="token punctuation">.</span><span class="token builtin">format</span><span class="token punctuation">(</span>classifier<span class="token punctuation">.</span>coef_<span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token comment"># 输出回归权重系数</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"regr.intercept_: {}"</span><span class="token punctuation">.</span><span class="token builtin">format</span><span class="token punctuation">(</span>classifier<span class="token punctuation">.</span>intercept_<span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token comment"># 输出回归偏置</span>
y_predict <span class="token operator">=</span> classifier<span class="token punctuation">.</span>predict<span class="token punctuation">(</span>x_test<span class="token punctuation">)</span> <span class="token comment"># 预测分类结果,给出每个样本具体的类别的判定</span>
y_predict_proba <span class="token operator">=</span> classifier<span class="token punctuation">.</span>predict_proba<span class="token punctuation">(</span>x_test<span class="token punctuation">)</span> <span class="token comment"># 预测各分类的概率值,给出具体每个样本不同类别的概率</span>
y_score <span class="token operator">=</span> y_predict_proba<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token punctuation">,</span><span class="token number">1</span><span class="token punctuation">]</span> <span class="token comment"># 取第2列,也就是"恶性"(正例)的概率</span>
score <span class="token operator">=</span> classifier<span class="token punctuation">.</span>score<span class="token punctuation">(</span>x_test<span class="token punctuation">,</span> y_test<span class="token punctuation">)</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"mean accuracy: {}"</span><span class="token punctuation">.</span><span class="token builtin">format</span><span class="token punctuation">(</span>score<span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token comment"># 准确率</span>
report <span class="token operator">=</span> classification_report<span class="token punctuation">(</span>y_test<span class="token punctuation">,</span> y_predict<span class="token punctuation">,</span> labels<span class="token operator">=</span><span class="token punctuation">[</span><span class="token number">2</span><span class="token punctuation">,</span> <span class="token number">4</span><span class="token punctuation">]</span><span class="token punctuation">,</span> target_names<span class="token operator">=</span><span class="token punctuation">[</span><span class="token string">"良性"</span><span class="token punctuation">,</span> <span class="token string">"恶性"</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
<span class="token keyword">print</span><span class="token punctuation">(</span>report<span class="token punctuation">)</span> <span class="token comment"># 精确率,召回率,F1-score</span>
y_true <span class="token operator">=</span> np<span class="token punctuation">.</span>where<span class="token punctuation">(</span>y_test <span class="token operator">></span> <span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">)</span> <span class="token comment"># roc_auc_score函数要求传入的y_true:必须为0或1,0为反例,1为正例(貌似高版本sklearn没有这个要求)</span>
AUC_value <span class="token operator">=</span> roc_auc_score<span class="token punctuation">(</span>y_true<span class="token punctuation">,</span> y_score<span class="token punctuation">)</span> <span class="token comment"># AUC指标</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"AUC value: {}"</span><span class="token punctuation">.</span><span class="token builtin">format</span><span class="token punctuation">(</span>AUC_value<span class="token punctuation">)</span><span class="token punctuation">)</span>
fpr<span class="token punctuation">,</span> tpr<span class="token punctuation">,</span> thresholds <span class="token operator">=</span> roc_curve<span class="token punctuation">(</span>y_true<span class="token punctuation">,</span> y_score<span class="token punctuation">)</span> <span class="token comment"># roc_curve函数对y_true的取值是有规范要求的</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"AUC value again: {}"</span><span class="token punctuation">.</span><span class="token builtin">format</span><span class="token punctuation">(</span>auc<span class="token punctuation">(</span>fpr<span class="token punctuation">,</span> tpr<span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token comment"># 已知FPR和TPR的情况下求AUC指标</span>
plt<span class="token punctuation">.</span>plot<span class="token punctuation">(</span>fpr<span class="token punctuation">,</span> tpr<span class="token punctuation">,</span> label<span class="token operator">=</span><span class="token string">"AUC = {:.2f}"</span><span class="token punctuation">.</span><span class="token builtin">format</span><span class="token punctuation">(</span>AUC_value<span class="token punctuation">)</span><span class="token punctuation">)</span>
plt<span class="token punctuation">.</span>xlabel<span class="token punctuation">(</span><span class="token string">"False Positive Rate"</span><span class="token punctuation">)</span>
plt<span class="token punctuation">.</span>ylabel<span class="token punctuation">(</span><span class="token string">"True Positive Rate"</span><span class="token punctuation">)</span>
plt<span class="token punctuation">.</span>title<span class="token punctuation">(</span><span class="token string">"ROC Curve"</span><span class="token punctuation">)</span>
plt<span class="token punctuation">.</span>legend<span class="token punctuation">(</span>loc<span class="token operator">=</span><span class="token string">"lower right"</span><span class="token punctuation">)</span>
plt<span class="token punctuation">.</span>show<span class="token punctuation">(</span><span class="token punctuation">)</span>
LogisticRegression<span class="token punctuation">(</span><span class="token punctuation">)</span>
</code></pre>
<pre class="language-"><code>regr.coef_: [[1.28874969 1.07409426 1.11121314 0.61213973 0.11802989 1.34477968
0.69445954 0.93152164 0.50223701]]
regr.intercept_: [-0.83654326]
mean accuracy: 0.9590643274853801
precision recall f1-score support
良性 0.98 0.96 0.97 117
恶性 0.91 0.96 0.94 54
accuracy 0.96 171
macro avg 0.95 0.96 0.95 171
weighted avg 0.96 0.96 0.96 171
AUC value: 0.9893953782842672
AUC value again: 0.9893953782842672
</code></pre><p><img src="pics/LogisticRegression/ROCCurve.png" alt="image-20230113201734703" style="zoom:80%;"></p>
<h3 id="分类问题的模型评估">分类问题的模型评估</h3>
<p>以上sklearn代码包含了不少模型评估相关的内容。线性回归的模型评估相对简单,直接利用均方误差即可。但分类问题的模型评估就相对复杂。</p>
<h4 id="混淆矩阵">混淆矩阵</h4>
<p>在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类),如下所示:</p>
<div align="center">
<img src="pics/LogisticRegression/ConfusionMatrix.png" alt="ConfusionMatrix" style="zoom:100%;">
</div>
#### 精确率(Precision)与召回率(Recall)
**精确率(Precision)**:预测结果为正例的样本中真正为正例的比例
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>=</mo><mfrac><mrow><mi>T</mi><mi>P</mi></mrow><mrow><mi>T</mi><mi>P</mi><mo>+</mo><mi>F</mi><mi>P</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">
Precision = \frac{TP}{TP+FP}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mord mathnormal">rec</span><span class="mord mathnormal">i</span><span class="mord mathnormal">s</span><span class="mord mathnormal">i</span><span class="mord mathnormal">o</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1297em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">FP</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>
<div align="center">
<img src="pics/LogisticRegression/Precision.png" alt="Precision" style="zoom:100%;">
</div>
<p><strong>召回率(Recall)</strong>:真实为正例的样本中预测结果为正例的比例
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi><mo>=</mo><mfrac><mrow><mi>T</mi><mi>P</mi></mrow><mrow><mi>T</mi><mi>P</mi><mo>+</mo><mi>F</mi><mi>N</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">
Recall = \frac{TP}{TP+FN}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="mord mathnormal">ec</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">ll</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1297em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">FN</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<div align="center">
<img src="pics/LogisticRegression/Recall.png" alt="Recall" style="zoom:100%;">
</div>
<p><strong>F1-score</strong>:综合考量了模型的精确率和召回率,相对比较稳健的一个评估指标
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>F</mi><mn>1</mn><mo>=</mo><mfrac><mrow><mn>2</mn><mi>T</mi><mi>P</mi></mrow><mrow><mn>2</mn><mi>T</mi><mi>P</mi><mo>+</mo><mi>F</mi><mi>N</mi><mo>+</mo><mi>F</mi><mi>P</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mo>⋅</mo><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>⋅</mo><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow><mrow><mi>P</mi><mi>r</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>+</mo><mi>R</mi><mi>e</mi><mi>c</mi><mi>a</mi><mi>l</mi><mi>l</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">
F1 = \frac{2TP}{2TP+FN+FP}=\frac{2 \cdot Precision \cdot Recall}{Precision+Recall}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1297em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">FN</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">FP</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1408em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mord mathnormal">rec</span><span class="mord mathnormal">i</span><span class="mord mathnormal">s</span><span class="mord mathnormal">i</span><span class="mord mathnormal">o</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="mord mathnormal">ec</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">ll</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mord mathnormal">rec</span><span class="mord mathnormal">i</span><span class="mord mathnormal">s</span><span class="mord mathnormal">i</span><span class="mord mathnormal">o</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="mord mathnormal">ec</span><span class="mord mathnormal">a</span><span class="mord mathnormal" style="margin-right:0.01968em;">ll</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<h4 id="roc曲线与auc指标">ROC曲线与AUC指标</h4>
<p><strong>真正率(召回率)</strong>:正确的样本判断为正例的比例。所有真实类别为1的样本中,预测类别为1的比例。
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>T</mi><mi>P</mi><mi>R</mi><mo>=</mo><mfrac><mrow><mi>T</mi><mi>P</mi></mrow><mrow><mi>T</mi><mi>P</mi><mo>+</mo><mi>F</mi><mi>N</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">
TPR = \frac{TP}{TP+FN}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">TPR</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1297em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">FN</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">TP</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p><strong>假正率</strong>:错误的样本判断为正例的比例。所有真实类别为0的样本中,预测类别为1的比例。
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>F</mi><mi>P</mi><mi>R</mi><mo>=</mo><mfrac><mrow><mi>F</mi><mi>P</mi></mrow><mrow><mi>F</mi><mi>P</mi><mo>+</mo><mi>T</mi><mi>N</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">
FPR=\frac{FP}{FP+TN}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">FPR</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1297em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">FP</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">TN</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">FP</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>
<strong>真正率</strong>和<strong>假正率</strong>是<strong>ROC曲线</strong>会用到的两个数值指标。</p>
<p>逻辑回归分类器的输出实际并非样本的类别标签0或1,而是(0, 1)之间的一个”概率值”,表示样本属于该类别的可能性。如果想要获得样本的标签,就需要设定一个<strong>阈值</strong>,如果概率值高于阈值则标签为1,反之则标签为0。如果调整阈值的大小,那么相应的,一部分样本的标签值可能会发生变化。</p>
<blockquote>
<p>[!NOTE]</p>
<p>这个理解其实跟真实逻辑回归的计算不太一样。对于二分类问题,逻辑回归分类器做预测时最终会输出两个类别的概率值,哪个概率值高,样本就属于哪个类别。</p>
<p>假设分类器预测一个样本标签为1的概率为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> ,则标签为0的概率分类器实际就是通过 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">1-A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 计算而来。然后再来判断 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">1-A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 到底哪个大,然后决定最终的标签。</p>
<p>这样一来,对于二分类问题,<strong>阈值</strong>其实始终都是0.5,跟刚才说的调整阈值大小有点不太一样。如何理解这一点呢?实际在逻辑回归训练的过程中,可以理解为分类器将阈值设定为0.5,通过不断训练调整输出的概率值,以满足这个概率最终能被判定为相应的标签。简单说就是确定阈值,调整概率值,来达到最优化的效果。</p>
</blockquote>
<p>如果我们将<strong>阈值Threshold</strong>从0开始逐步调整到1,每调整一步,就可以获得一对<strong>真正率</strong>和<strong>假正率</strong>构成的二维坐标 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>F</mi><mi>P</mi><mi>R</mi><mo separator="true">,</mo><mi>T</mi><mi>P</mi><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(FPR,TPR)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.00773em;">FPR</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">TPR</span><span class="mclose">)</span></span></span></span> ,将这些坐标绘制在二维坐标系中,就会形成一条曲线。这条曲线就是<strong>ROC曲线</strong>。<strong>ROC曲线</strong>下所包含的面积即为<strong>AUC指标(Area Under the Curve of ROC)</strong>,是一个数值。</p>
<div align="center">
<img src="pics/LogisticRegression/ROCExplain.png" alt="ROC" style="zoom:50%;">
</div>
<p>对于<strong>ROC曲线</strong>,曲线的凸起程度越高就代表着模型的性能越好,而对角线意味着一个随机瞎猜的分类器模型。从下图可以看出,三个模型 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">M1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord">1</span></span></span></span> 优于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">M2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord">2</span></span></span></span> ,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">M2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord">2</span></span></span></span> 优于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mn>3</mn></mrow><annotation encoding="application/x-tex">M3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord">3</span></span></span></span> 。</p>
<div align="center">
<img src="pics/LogisticRegression/ROCCompare.png" style="zoom:50%;">
</div>
<p>对于<strong>AUC指标</strong>,是<strong>ROC曲线</strong>下的面积,也即是被限制在1乘1方格中一部分的面积值,所以<strong>AUC指标</strong>的取值也在0到1之间。</p>
<ul>
<li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">AUC = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> ,完美的分类器,该模型至少存在一个阈值,可以将正负样本完美的划分开。</li>
<li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.5</mn><mo><</mo><mi>A</mi><mi>U</mi><mi>C</mi><mo><</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">0.5<AUC<1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6835em;vertical-align:-0.0391em;"></span><span class="mord">0.5</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">A</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> ,优于随机猜测,数值越大,分类器越好</li>
<li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi><mo>=</mo><mn>0.5</mn></mrow><annotation encoding="application/x-tex"> AUC = 0.5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.5</span></span></span></span> ,相当于随机猜测,模型没有预测价值</li>
<li><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi><mo><</mo><mn>0.5</mn></mrow><annotation encoding="application/x-tex">AUC<0.5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">A</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.5</span></span></span></span> ,比随机猜测还要差,然而若反向预测,该模型即可优于随机猜测</li>
</ul>
<p><strong>ROC曲线</strong>的绘制步骤:</p>
<ol>
<li>将全部样本按分类器输出的概率值降序排列。</li>
<li>将<strong>阈值Theshold</strong>从1到0逐步减小,计算各阈值下对应的<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>F</mi><mi>P</mi><mi>R</mi><mo separator="true">,</mo><mi>T</mi><mi>P</mi><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(FPR,TPR)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.00773em;">FPR</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">TPR</span><span class="mclose">)</span></span></span></span>数值对。实际操作中,<strong>阈值Theshold</strong>的取值可以从1开始,逐个选取按降序排列的样本概率值,直至0。</li>
<li>将数值对绘于直角坐标系中,形成曲线。实际操作中,ROC曲线不是一个曲线,而是阶梯线,见代码示例。只有当样本量巨大时,会趋近于曲线。</li>
</ol>
<h3 id="用pytorch实现逻辑回归">用PyTorch实现逻辑回归</h3>
<p>现在尝试用PyTorch解决乳腺癌分类预测数据集数据集的逻辑回归二分类问题。和PyTorch实现的线性回归代码做比较,可以看到,两者的差异非常小。差异只存在于:</p>
<ul>
<li>模型构建的时候增加了sigmoid函数</li>
<li>损失函数采用了交叉熵损失函数BCE(Binary Cross Entropy Loss)。这里的BCE指的就是前面所说的负对数似然函数。</li>
</ul>
<p>代码如下:</p>
<pre class="language-"><code class="lang-python"><span class="token keyword">import</span> numpy <span class="token keyword">as</span> np
<span class="token keyword">import</span> pandas <span class="token keyword">as</span> pd
<span class="token keyword">import</span> torch
<span class="token keyword">import</span> torch<span class="token punctuation">.</span>nn <span class="token keyword">as</span> nn
<span class="token keyword">from</span> sklearn<span class="token punctuation">.</span>model_selection <span class="token keyword">import</span> train_test_split
<span class="token keyword">from</span> sklearn<span class="token punctuation">.</span>preprocessing <span class="token keyword">import</span> StandardScaler
column_name <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token string">'Sample code number'</span><span class="token punctuation">,</span> <span class="token string">'Clump Thickness'</span><span class="token punctuation">,</span>
<span class="token string">'Uniformity of Cell Size'</span><span class="token punctuation">,</span> <span class="token string">'Uniformity of Cell Shape'</span><span class="token punctuation">,</span> <span class="token string">'Marginal Adhesion'</span><span class="token punctuation">,</span>
<span class="token string">'Single Epithelial Cell Size'</span><span class="token punctuation">,</span>
<span class="token string">'Bare Nuclei'</span><span class="token punctuation">,</span> <span class="token string">'Bland Chromatin'</span><span class="token punctuation">,</span>
<span class="token string">'Normal Nucleoli'</span><span class="token punctuation">,</span> <span class="token string">'Mitoses'</span><span class="token punctuation">,</span> <span class="token string">'Class'</span><span class="token punctuation">]</span>
path <span class="token operator">=</span> <span class="token string">"http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"</span>
original_data <span class="token operator">=</span> pd<span class="token punctuation">.</span>read_csv<span class="token punctuation">(</span>path<span class="token punctuation">,</span> names<span class="token operator">=</span>column_name<span class="token punctuation">)</span> <span class="token comment"># 从源地址下载数据集</span>
<span class="token keyword">def</span> <span class="token function">preprocess_data</span><span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
data <span class="token operator">=</span> original_data<span class="token punctuation">.</span>replace<span class="token punctuation">(</span>to_replace<span class="token operator">=</span><span class="token string">"?"</span><span class="token punctuation">,</span> value<span class="token operator">=</span>np<span class="token punctuation">.</span>nan<span class="token punctuation">)</span> <span class="token comment"># 将缺失值"?"替换为NaN</span>
data<span class="token punctuation">.</span>dropna<span class="token punctuation">(</span>inplace<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">)</span> <span class="token comment"># 简单处理,把缺失值所在行丢弃</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"Is there any null?\n"</span><span class="token punctuation">,</span> data<span class="token punctuation">.</span>isnull<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">.</span><span class="token builtin">any</span><span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token comment"># 检测是否还有缺失值</span>
x <span class="token operator">=</span> data<span class="token punctuation">.</span>iloc<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">:</span><span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">.</span>to_numpy<span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token comment"># 选择数据集第一行到倒数第二行作为样本数据</span>
y <span class="token operator">=</span> data<span class="token punctuation">[</span><span class="token string">"Class"</span><span class="token punctuation">]</span><span class="token punctuation">.</span><span class="token builtin">apply</span><span class="token punctuation">(</span><span class="token keyword">lambda</span> x<span class="token punctuation">:</span> <span class="token number">1</span> <span class="token keyword">if</span> x <span class="token operator">==</span> <span class="token number">4</span> <span class="token keyword">else</span> <span class="token number">0</span><span class="token punctuation">)</span><span class="token punctuation">.</span>to_numpy<span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token comment"># 选择Class列作为标签数据,将标签为4的转化为1,标签为2的转化为0(sklearn中不需要做这一操作)</span>
x_train<span class="token punctuation">,</span> x_test<span class="token punctuation">,</span> y_train<span class="token punctuation">,</span> y_test <span class="token operator">=</span> train_test_split<span class="token punctuation">(</span>x<span class="token punctuation">,</span> y<span class="token punctuation">,</span>
test_size<span class="token operator">=</span><span class="token number">0.25</span><span class="token punctuation">,</span> <span class="token comment"># 设置测试集的比例占全体数据集的比例</span>
random_state<span class="token operator">=</span><span class="token number">16</span><span class="token punctuation">)</span> <span class="token comment"># 设置随机数种子,相同的随机数种子每次都会产生完全一样的划分结果</span>
transfer <span class="token operator">=</span> StandardScaler<span class="token punctuation">(</span><span class="token punctuation">)</span>
x_train <span class="token operator">=</span> transfer<span class="token punctuation">.</span>fit_transform<span class="token punctuation">(</span>x_train<span class="token punctuation">)</span> <span class="token comment"># 对训练集数据进行标准化处理</span>
x_test <span class="token operator">=</span> transfer<span class="token punctuation">.</span>transform<span class="token punctuation">(</span>x_test<span class="token punctuation">)</span> <span class="token comment"># 注意:这里是基于训练集标准化后的均值和方差,对测试集进行标准化</span>
<span class="token keyword">return</span> x_train<span class="token punctuation">,</span> x_test<span class="token punctuation">,</span> y_train<span class="token punctuation">,</span> y_test
x_train<span class="token punctuation">,</span> x_test<span class="token punctuation">,</span> y_train<span class="token punctuation">,</span> y_test <span class="token operator">=</span> preprocess_data<span class="token punctuation">(</span><span class="token punctuation">)</span>
</code></pre>
<pre class="language-"><code class="lang-python">device <span class="token operator">=</span> torch<span class="token punctuation">.</span>device<span class="token punctuation">(</span><span class="token string">'cuda'</span> <span class="token keyword">if</span> torch<span class="token punctuation">.</span>cuda<span class="token punctuation">.</span>is_available<span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token keyword">else</span> <span class="token string">'cpu'</span><span class="token punctuation">)</span>
<span class="token keyword">class</span> <span class="token class-name">LogisticRegression</span><span class="token punctuation">(</span>torch<span class="token punctuation">.</span>nn<span class="token punctuation">.</span>Module<span class="token punctuation">)</span><span class="token punctuation">:</span>
<span class="token keyword">def</span> <span class="token function">__init__</span><span class="token punctuation">(</span>self<span class="token punctuation">,</span> input_dim<span class="token punctuation">,</span> output_dim<span class="token punctuation">)</span><span class="token punctuation">:</span>
<span class="token builtin">super</span><span class="token punctuation">(</span>LogisticRegression<span class="token punctuation">,</span> self<span class="token punctuation">)</span><span class="token punctuation">.</span>__init__<span class="token punctuation">(</span><span class="token punctuation">)</span>
self<span class="token punctuation">.</span>linear <span class="token operator">=</span> torch<span class="token punctuation">.</span>nn<span class="token punctuation">.</span>Linear<span class="token punctuation">(</span>input_dim<span class="token punctuation">,</span> output_dim<span class="token punctuation">)</span>
<span class="token keyword">def</span> <span class="token function">forward</span><span class="token punctuation">(</span>self<span class="token punctuation">,</span> x<span class="token punctuation">)</span><span class="token punctuation">:</span>
outputs <span class="token operator">=</span> torch<span class="token punctuation">.</span>sigmoid<span class="token punctuation">(</span>self<span class="token punctuation">.</span>linear<span class="token punctuation">(</span>x<span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token comment"># 全连接增加sigmoid函数</span>
<span class="token keyword">return</span> outputs
epochs <span class="token operator">=</span> <span class="token number">1000</span>
input_dim <span class="token operator">=</span> <span class="token number">9</span>
output_dim <span class="token operator">=</span> <span class="token number">1</span>
learning_rate <span class="token operator">=</span> <span class="token number">0.01</span>
LRModel <span class="token operator">=</span> LogisticRegression<span class="token punctuation">(</span>input_dim<span class="token punctuation">,</span> output_dim<span class="token punctuation">)</span>
LRModel<span class="token punctuation">.</span>to<span class="token punctuation">(</span>device<span class="token punctuation">)</span> <span class="token comment"># 如果有能用GPU计算,就把model放到GPU上去,后续就会用GPU计算</span>
criterion <span class="token operator">=</span> torch<span class="token punctuation">.</span>nn<span class="token punctuation">.</span>BCELoss<span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token comment"># 二分类交叉熵损失函数(Binary Cross Entropy Loss)</span>
optimizer <span class="token operator">=</span> torch<span class="token punctuation">.</span>optim<span class="token punctuation">.</span>SGD<span class="token punctuation">(</span>LRModel<span class="token punctuation">.</span>parameters<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">,</span> lr<span class="token operator">=</span>learning_rate<span class="token punctuation">)</span>
<span class="token comment"># ndarray转化成tensor;数据类型变为float32和模型权重参数的数据类型保持一致;如果有能用的GPU,就把数据放到GPU上去</span>
inputs <span class="token operator">=</span> torch<span class="token punctuation">.</span>from_numpy<span class="token punctuation">(</span>x_train<span class="token punctuation">)</span><span class="token punctuation">.</span>to<span class="token punctuation">(</span>torch<span class="token punctuation">.</span>float32<span class="token punctuation">)</span><span class="token punctuation">.</span>to<span class="token punctuation">(</span>device<span class="token punctuation">)</span>
<span class="token comment"># ndarray转化成tensor;形状变成n行1列的矩阵;数据类型变为float32和模型权重参数的数据类型保持一致;如果有能用的GPU,就把数据放到GPU上去 </span>
labels <span class="token operator">=</span> torch<span class="token punctuation">.</span>from_numpy<span class="token punctuation">(</span>y_train<span class="token punctuation">)</span><span class="token punctuation">.</span>reshape<span class="token punctuation">(</span><span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">)</span><span class="token punctuation">.</span>to<span class="token punctuation">(</span>torch<span class="token punctuation">.</span>float32<span class="token punctuation">)</span><span class="token punctuation">.</span>to<span class="token punctuation">(</span>device<span class="token punctuation">)</span>
</code></pre>
<pre class="language-"><code class="lang-python"><span class="token keyword">for</span> epoch <span class="token keyword">in</span> <span class="token builtin">range</span><span class="token punctuation">(</span>epochs<span class="token punctuation">)</span><span class="token punctuation">:</span>
optimizer<span class="token punctuation">.</span>zero_grad<span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token comment"># 每一次迭代梯度要清零</span>
outputs <span class="token operator">=</span> LRModel<span class="token punctuation">(</span>inputs<span class="token punctuation">)</span> <span class="token comment"># 前向传播</span>
loss <span class="token operator">=</span> criterion<span class="token punctuation">(</span>outputs<span class="token punctuation">,</span> labels<span class="token punctuation">)</span> <span class="token comment"># 计算损失</span>
loss<span class="token punctuation">.</span>backward<span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token comment"># 反向传播</span>
optimizer<span class="token punctuation">.</span>step<span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token comment"># 梯度下降迭代</span>
<span class="token keyword">if</span> epoch <span class="token operator">%</span> <span class="token number">100</span> <span class="token operator">==</span> <span class="token number">0</span><span class="token punctuation">:</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"epoch {}, loss {}"</span><span class="token punctuation">.</span><span class="token builtin">format</span><span class="token punctuation">(</span>epoch<span class="token punctuation">,</span> loss<span class="token punctuation">.</span>item<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
</code></pre>
<pre class="language-"><code>epoch 0, loss 0.6377063393592834
epoch 100, loss 0.2625509202480316
epoch 200, loss 0.1790274977684021
epoch 300, loss 0.14283452928066254
epoch 400, loss 0.12268733233213425
epoch 500, loss 0.109866663813591
epoch 600, loss 0.10099361836910248
epoch 700, loss 0.09448736160993576
epoch 800, loss 0.08951068669557571
epoch 900, loss 0.08557910472154617
</code></pre><h3 id="softmax回归实现多分类">softmax回归实现多分类</h3>
<p>逻辑回归主要用来解决二分类问题,多分类问题转化为二分类再用逻辑回归显然不是一个高效的解决方案。在多分类问题中我们通常使用<strong>softmax回归</strong>。</p>
<p>先给出<strong>softmax函数</strong>的定义:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>σ</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">z</mi><msub><mo stretchy="false">)</mo><mi>k</mi></msub><mo>=</mo><mfrac><msup><mi>e</mi><msub><mi>z</mi><mi>k</mi></msub></msup><mrow><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>K</mi></munderover><msup><mi>e</mi><msub><mi>z</mi><mi>l</mi></msub></msup></mrow></mfrac><mspace width="1em"></mspace><mi>f</mi><mi>o</mi><mi>r</mi><mtext> </mtext><mi>k</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">
\sigma(\boldsymbol{z})_k = \frac{e^{z_k}}{\sum_{l=1}^K e^{z_l}} \quad for\ k=1,\cdots,K
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.04213em;">z</span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.5123em;vertical-align:-1.1709em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3414em;"><span style="top:-2.1288em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9812em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1512em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.1709em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal" style="margin-right:0.02778em;">or</span><span class="mspace"> </span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span></span>
softmax函数的输入是一个向量 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">z</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.04213em;">z</span></span></span></span></span></span> ,输出也是一个向量,将输出向量的第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 个分量的值表示为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">z</mi><msub><mo stretchy="false">)</mo><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\sigma(\boldsymbol{z})_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.04213em;">z</span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 。</p>
<h4 id="softmax回归的目标函数">softmax回归的目标函数</h4>
<p>再次重新描述一下我们的问题:假设已知数据集 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">X</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{X}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.07778em;">X</span></span></span></span></span></span> ,其中有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span> 个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 维样本 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">\boldsymbol{x}^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8247em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> ,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 代表第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 个样本。每个样本 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">\boldsymbol{x}^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8247em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 对应着一个标签 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">y^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> ,与<strong>线性回归</strong>和<strong>逻辑回归</strong>都不同的是,这里 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">y^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 的值既不是任意实数,也不仅仅只是0或1的类别标签,而是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 个类别的标签。把标签值 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">y^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 的集合(向量)记作 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">Y</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{Y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.25555em;">Y</span></span></span></span></span></span> 。</p>
<p>在实际操作过程中,会将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">y^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 表示为<strong>One-Hot编码</strong>,变成一个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 维向量 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold-italic">y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">\boldsymbol{y}^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">y</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> ,即第一个类别表示为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(1,0,\cdots,0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">)</span></span></span></span> , 第二类别为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,1,\cdots,0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">)</span></span></span></span> ,以此类推,最后一个类别为<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,0,\cdots,1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span> 。</p>
<p>在具体求解时,类似逻辑回归,需要将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi mathvariant="bold-italic">θ</mi><mi mathvariant="sans-serif">T</mi></msup><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">f(\boldsymbol{x}) = \boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9334em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span> 带入<strong>softmax函数</strong>作为<strong>目标函数</strong>,利用<strong>极大似然估计</strong>求得<strong>损失函数</strong>,对<strong>损失函数</strong>做<strong>梯度下降</strong>优化,最终解得回归方程的权重系数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">θ</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span></span></span></span> 。这一套已经反复在线性回归,逻辑回归的学习中不断重复过。</p>
<p>与逻辑回归不同的时,此时求解的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">θ</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span></span></span></span> 不再是一个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 维向量,而是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 维向量构成的二维矩阵 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">θ</mi><mrow><mi>n</mi><mo>×</mo><mi>K</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}_{n\times K}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9028em;vertical-align:-0.2083em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">×</span><span class="mord mathnormal mtight" style="margin-right:0.07153em;">K</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span></span></span></span> 。每一个样本 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span> 对应 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 套权重系数,每一套权重系数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">θ</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 与 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span> 相乘后输入<strong>softmax函数</strong>得到一个相应类别的概率值。对于每个样本 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span> 最终会输出有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 个概率值对应 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 个类别。其中,哪个类别对应的概率值大,则预测该样本属于这个类别。 </p>
<p>所以对于样本 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span> ,对应第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 个类别(需要使用第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 套权重系数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">θ</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> )的目标函数为:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>h</mi><mi mathvariant="bold-italic">θ</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><msub><mo stretchy="false">)</mo><mi>k</mi></msub><mo>=</mo><mfrac><mrow><mi>exp</mi><mo>⁡</mo><mo stretchy="false">(</mo><msubsup><mi mathvariant="bold-italic">θ</mi><mi>k</mi><mi mathvariant="sans-serif">T</mi></msubsup><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow><mrow><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>K</mi></munderover><mi>exp</mi><mo>⁡</mo><mo stretchy="false">(</mo><msubsup><mi mathvariant="bold-italic">θ</mi><mi>l</mi><mi mathvariant="sans-serif">T</mi></msubsup><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow></mfrac><mspace width="1em"></mspace><mi>f</mi><mi>o</mi><mi>r</mi><mtext> </mtext><mi>k</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mo>⋯</mo><mtext> </mtext><mo separator="true">,</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">
h_{\boldsymbol{\theta}}(\boldsymbol{x})_k = \frac{\exp(\boldsymbol{\theta}_k^\mathsf{T} \boldsymbol{x})}{\sum_{l=1}^K \exp(\boldsymbol{\theta}_l^\mathsf{T} \boldsymbol{x})} \quad for\ k=1,\cdots,K
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right:0.03194em;">θ</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.7814em;vertical-align:-1.1709em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6104em;"><span style="top:-2.1288em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9812em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span></span></span><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">exp</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.1709em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord mathnormal" style="margin-right:0.02778em;">or</span><span class="mspace"> </span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span></span>
下面还是用流程图来展示整个计算过程:</p>
<div align="center">
<img src="pics/LogisticRegression/SoftmaxTarget.png" alt="SoftmaxTarget" style="zoom:70%;">
</div>
<h4 id="logistic回归与softmax回归的关系">logistic回归与softmax回归的关系</h4>
<p>现在我们再回过头来看<strong>logistic回归</strong>,其实它是<strong>softmax回归</strong>的特例,即类别数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">K=2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span> ,<strong>softmax函数</strong>的输入为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">z</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>z</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>z</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\boldsymbol{z}=(z_1,z_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.04213em;">z</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> 。</p>
<p>考虑到最终我们求得的是不同类别的概率值,那么已知 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>z</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">z_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 输出的概率为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> ,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>z</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">z_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 输出的概率显然应该是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow><annotation encoding="application/x-tex">1-p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> ,完全不用专门计算。于是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>z</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">z_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 具体是多少完全不重要,可以取任意值,只不过取值不同,分类器在训练的时候就会自适应这个取值,算得一套合适的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">θ</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> ,最终得到一样的输出概率。那么我们令 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">z_2 = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> ,则:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>σ</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">z</mi><msub><mo stretchy="false">)</mo><mn>1</mn></msub><mo>=</mo><mfrac><msup><mi>e</mi><msub><mi>z</mi><mn>1</mn></msub></msup><mrow><msup><mi>e</mi><msub><mi>z</mi><mn>1</mn></msub></msup><mo>+</mo><msup><mi>e</mi><msub><mi>z</mi><mn>2</mn></msub></msup></mrow></mfrac><mo>=</mo><mfrac><msup><mi>e</mi><msub><mi>z</mi><mn>1</mn></msub></msup><mrow><msup><mi>e</mi><msub><mi>z</mi><mn>1</mn></msub></msup><mo>+</mo><msup><mi>e</mi><mn>0</mn></msup></mrow></mfrac><mo>=</mo><mfrac><msup><mi>e</mi><msub><mi>z</mi><mn>1</mn></msub></msup><mrow><msup><mi>e</mi><msub><mi>z</mi><mn>1</mn></msub></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>−</mo><msub><mi>z</mi><mn>1</mn></msub></mrow></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">
\sigma(\boldsymbol{z})_1 = \frac{e^{z_1}}{e^{z_1}+e^{z_2}} = \frac{e^{z_1}}{e^{z_1}+e^0} = \frac{e^{z_1}}{e^{z_1}+1} = \frac{1}{1+e^{-z_1}}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.04213em;">z</span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1107em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3414em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1107em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3414em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1107em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3414em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5904em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">1</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0908em;vertical-align:-0.7693em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6973em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:-0.044em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.7693em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>
所以可以看出,对于二分类的<strong>softmax函数</strong>,如果令 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">z_2 = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.044em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> ,则<strong>softmax函数</strong>转化为<strong>sigmod函数</strong>。</p>
<p>同时通过这个例子也可以看出,对于有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 个类别的<strong>softmax回归</strong>问题,只需要求解 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">K-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 套 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">θ</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 即可,最后一组 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">θ</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 的值可以任意选取。也就是说 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 分类的<strong>softmax回归</strong>问题的<strong>自由度</strong>是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">K-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>,参数矩阵 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">θ</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{\theta}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span></span></span></span> 可以简化为一个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>×</mo><mo stretchy="false">(</mo><mi>K</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">n\times (K-1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span> 的二维矩阵。</p>
<h4 id="softmax回归的损失函数">softmax回归的损失函数</h4>
<p>通过极大似然估计可以推导出softmax回归的<strong>负对数似然损失函数</strong>为:
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>J</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">θ</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>K</mi></munderover><mo stretchy="false">(</mo><msubsup><mi mathvariant="bold-italic">y</mi><mi>k</mi><mi>i</mi></msubsup><mo>⋅</mo><mi>l</mi><mi>o</mi><mi>g</mi><mfrac><mrow><mi>exp</mi><mo>⁡</mo><mo stretchy="false">(</mo><msubsup><mi mathvariant="bold-italic">θ</mi><mi>k</mi><mi mathvariant="sans-serif">T</mi></msubsup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow><mrow><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>K</mi></munderover><mi>exp</mi><mo>⁡</mo><mo stretchy="false">(</mo><msubsup><mi mathvariant="bold-italic">θ</mi><mi>l</mi><mi mathvariant="sans-serif">T</mi></msubsup><msup><mi mathvariant="bold-italic">x</mi><mi>i</mi></msup><mo stretchy="false">)</mo></mrow></mfrac><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">
J(\boldsymbol{\theta})= -\frac{1}{m}\sum_{i=1}^m\sum_{k=1}^K(\boldsymbol{y}_k^i\cdot log\frac{\exp(\boldsymbol{\theta}_k^\mathsf{T} \boldsymbol{x}^i)}{\sum_{l=1}^K \exp(\boldsymbol{\theta}_l^\mathsf{T} \boldsymbol{x}^i)})
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:3.1304em;vertical-align:-1.3021em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6514em;"><span style="top:-1.8723em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8283em;"><span style="top:-1.8479em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.05em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.3021em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">y</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:2.7814em;vertical-align:-1.1709em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">o</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6104em;"><span style="top:-2.1288em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:0em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9812em;"><span style="top:-2.4003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2997em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.01968em;">l</span></span></span><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7507em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">exp</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">θ</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9334em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathsf mtight">T</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.1709em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span></span></span></span></span>
其中,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold-italic">y</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">\boldsymbol{y}^i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">y</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span> 为第 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span></span></span></span> 个样本的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span> 维标签向量,是个<strong>One-Hot编码</strong>。</p>
<div id="gitalk-container"></div>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="LinearRegression.html" class="navigation navigation-prev " aria-label="Previous page: 线性回归">
<i class="fa fa-angle-left"></i>
</a>
<a href="DecisionTree.html" class="navigation navigation-next " aria-label="Next page: 决策树">
<i class="fa fa-angle-right"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"逻辑回归","level":"1.4","depth":1,"next":{"title":"决策树","level":"1.5","depth":1,"path":"DecisionTree.md","ref":"DecisionTree.md","articles":[]},"previous":{"title":"线性回归","level":"1.3","depth":1,"path":"LinearRegression.md","ref":"LinearRegression.md","articles":[]},"dir":"ltr"},"config":{"plugins":["-lunr","-search","search-pro","-code","-codeline","-highlight","prism","expandable-chapters","chapter-fold","splitter","back-to-top-button","advanced-emoji","hide-element","insert-logo","custom-favicon","pageview-count","-sharing","sharing-plus","flexible-alerts","katex-new","mygitalk","theme-comscore","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"chapter-fold":{},"prism":{},"styles":{"website":"website.css","ebook":"ebook.css","pdf":"pdf.css","mobi":"ebook.css","epub":"ebook.css"},"katex-new":{},"livereload":{},"splitter":{},"search-pro":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"pics/logo.ico","theme-comscore":{},"back-to-top-button":{},"pageview-count":{},"custom-favicon":{},"flexible-alerts":{"style":"callout","note":{"label":"Note","icon":"fa fa-info-circle","className":"info"},"tip":{"label":"Tip","icon":"fa fa-lightbulb-o","className":"tip"},"warning":{"label":"Warning","icon":"fa fa-exclamation-triangle","className":"warning"},"danger":{"label":"Attention","icon":"fa fa-ban","className":"danger"}},"mygitalk":{"flipMoveOptions":{},"clientID":"c623ce11cb38fa65e5f0","number":-1,"perPage":10,"proxy":"https://cors-anywhere.azm.workers.dev/https://github.com/login/oauth/access_token","admin":["powerAmore"],"createIssueManually":false,"distractionFreeMode":false,"repo":"DataSciChecklist","owner":"powerAmore","enableHotKey":true,"clientSecret":"09a234dcf2ca63822ea9858aa00245147624e61d","pagerDirection":"last","labels":["Gitalk"]},"advanced-emoji":{"embedEmojis":false},"sharing":{"facebook":true,"twitter":true,"all":["douban","facebook","google","twitter","weibo","qq","whatsapp"]},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"insert-logo":{"url":"pics/logo.jpeg","style":"background: none; max-height: 30px; min-height: 30px"},"expandable-chapters":{}},"theme":"default","author":"powerlee","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{},"title":"大数据技术与算法Checklist","language":"zh-hans","links":{},"gitbook":"*","description":"大数据技术与算法Checklist"},"file":{"path":"LogisticRegression.md","mtime":"2023-01-26T09:07:05.500Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2023-02-04T03:57:06.860Z"},"basePath":".","book":{"language":""}});
});
</script>
</div>
<script src="gitbook/gitbook.js"></script>
<script src="gitbook/theme.js"></script>
<script src="gitbook/gitbook-plugin-search-pro/jquery.mark.min.js"></script>
<script src="gitbook/gitbook-plugin-search-pro/search.js"></script>
<script src="gitbook/gitbook-plugin-expandable-chapters/expandable-chapters.js"></script>
<script src="gitbook/gitbook-plugin-chapter-fold/chapter-fold.js"></script>
<script src="gitbook/gitbook-plugin-splitter/splitter.js"></script>
<script src="gitbook/gitbook-plugin-back-to-top-button/plugin.js"></script>
<script src="gitbook/gitbook-plugin-hide-element/plugin.js"></script>
<script src="gitbook/gitbook-plugin-insert-logo/plugin.js"></script>
<script src="gitbook/gitbook-plugin-pageview-count/plugin.js"></script>
<script src="gitbook/gitbook-plugin-sharing-plus/buttons.js"></script>
<script src="gitbook/gitbook-plugin-flexible-alerts/plugin.js"></script>
<script src="https://cdn.bootcss.com/blueimp-md5/2.12.0/js/md5.min.js"></script>
<script src="https://unpkg.com/gitalk/dist/gitalk.min.js"></script>
<script src="gitbook/gitbook-plugin-mygitalk/mygitalk.js"></script>
<script src="gitbook/gitbook-plugin-livereload/plugin.js"></script>
<script src="gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
<script src="gitbook/gitbook-plugin-theme-comscore/test.js"></script>
</body>
</html>