-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlandscape.py
165 lines (145 loc) · 4.91 KB
/
landscape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import logging
import os
from copy import deepcopy
from functools import partial
from pathlib import Path
import hydra
import torch
import torch.distributed
import torch.multiprocessing as mp
from hydra.utils import get_original_cwd, instantiate
from omegaconf import DictConfig, OmegaConf
from torch.distributed import barrier, destroy_process_group, init_process_group
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from src.dataset import AdvBench, dataloader_prompt
from src.landscape import forward_1d_directions, forward_2d_directions, load_dirs
from src.llm import forward_llama, forward_llama_logits, load_model, load_tokenizer
from src.util import merge_output_from_devices, printer, save_response
log = logging.getLogger(__name__)
_FORWARD_LLM = {
"llama2": forward_llama,
"vicuna": forward_llama,
"mistral": forward_llama,
"llama3": forward_llama,
"llama2-mmlu": forward_llama_logits,
}
@hydra.main(config_path="config", config_name="landscape", version_base="1.3")
def main(cfg: DictConfig):
ddp_setup()
device = int(os.environ["LOCAL_RANK"])
if device == 0:
log.info(OmegaConf.to_yaml(cfg, resolve=True))
# important for ddp to have deterministic results
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
ndim = cfg.landscape.ndim
working_dir = Path(cfg.landscape.vis_type) / cfg.model.name
# Step 1: load directions
log.info(
printer(
device,
f"Loading direction(s) of {cfg.landscape.vis_type} from {working_dir.resolve()} ...",
)
)
dirs_list = load_dirs(working_dir)
# Step 2: load models, tokenizers
model = load_model(
name=cfg.model.name,
model_dir=cfg.model_path,
torch_dtype=torch.float32,
log=log,
)
model.eval()
weights_origin = deepcopy(model.state_dict())
model.to(device)
# model = DDP(model, device_ids=[device])
tokenizer = load_tokenizer(
name=cfg.model.name,
tokenizer_dir=cfg.tokenizer_dir,
padding_side="left",
log=log,
)
# tokenizer.pad_token_id = tokenizer.eos_token_id
# Step 3: load dataset
log.info(
printer(device, f"Loading dataset from {cfg.dataset.test_dataset._target_} ...")
)
dataset = instantiate(
cfg.dataset.test_dataset,
tokenizer=tokenizer,
max_seq_len=model.config.max_position_embeddings,
)
dataloader = dataloader_prompt(
dataset,
tokenizer,
bs=cfg.dataset.batch_size,
sampler=DistributedSampler(dataset),
)
# Step 4: evaluate and save
# TODO: if ddp is used, need to change the filename to include the device id
if ndim == 1:
forward_1d_directions(
model=model,
weights_origin=weights_origin,
vis_type=cfg.landscape.vis_type,
dirs=dirs_list[0],
steps=cfg.landscape.steps,
additional_steps_for_interpolation=cfg.landscape.additional_steps_for_interpolation,
forward=lambda m: _FORWARD_LLM[cfg.model.name](
model=m,
dataloader=dataloader,
tokenizer=tokenizer,
device=device,
**cfg.model.kwargs,
),
postprocess=partial(
save_response,
save_to=(
cfg.landscape.save_output_to
if cfg.landscape.save_output_to
else working_dir / "tmp"
),
filename=f"device{device}.jsonl",
log=log,
),
device=device,
log=log,
)
elif ndim == 2:
forward_2d_directions(
model=model,
weights_origin=weights_origin,
vis_type=cfg.landscape.vis_type,
dirs1=dirs_list[0],
dirs2=dirs_list[1],
steps=cfg.landscape.steps,
additional_steps_for_interpolation=cfg.landscape.additional_steps_for_interpolation,
forward=lambda m: _FORWARD_LLM[cfg.model.name](
model=m,
dataloader=dataloader,
tokenizer=tokenizer,
device=device,
**cfg.model.kwargs,
),
postprocess=partial(
save_response,
save_to=(
cfg.landscape.save_output_to
if cfg.landscape.save_output_to
else working_dir / "tmp"
),
filename=f"device{device}.jsonl",
log=log,
),
device=device,
log=log,
)
# torch.distributed.barrier()
# if device == 0:
# merge_output_from_devices(file_dir=working_dir, delete_tmp=True)
destroy_process_group()
def ddp_setup():
init_process_group(backend="nccl")
if __name__ == "__main__":
main()