forked from EMI-Group/GMOEA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuniformweight.py
56 lines (49 loc) · 1.66 KB
/
uniformweight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from scipy.special import comb
from itertools import combinations as n_choose_k
def uniform_weight(h1, h2, m):
"""
:param m: number of objectives
:param h1: control parameter
:param h2: control parameter
:return: uniform weight vectors
"""
w, n = weight(h1, m)
if h2 > 0:
w2, n2 = weight(h2, m)
n = n + n2
w = np.r_[w, w2 / 2.0 + 1.0 / (2.0 * m)]
w = np.maximum(w, 1e-6)
return w, n
def weight(h, m):
n = comb(h+m-1, m-1).astype(int)
temp = np.array(list(n_choose_k(range(1, h+m), m-1))) - \
np.tile(np.arange(m-1), (comb(h+m-1, m-1).astype(int), 1)) - 1
w = np.zeros([n, m])
w[:, 0] = temp[:, 0] - 0
for i in range(1, m-1):
w[:, i] = temp[:, i] - temp[:, i-1]
w[:, -1] = h - temp[:, -1]
w /= h
return w, n
def uniform_point(n, m):
h1 = 1
while comb(h1 + m, m - 1) <= n:
h1 += 1
w = np.array(list(n_choose_k(range(1, h1 + m), m-1))) - \
np.tile(np.array(range(m-1)), (comb(h1+m-1, m-1).astype(int), 1)) - 1
w = (np.c_[w, np.zeros((np.shape(w)[0], 1)) + h1] -
np.c_[np.zeros((np.shape(w)[0], 1)), w]) / h1
if h1 < m:
h2 = 0
while comb(h1+m-1, m-1) + comb(h2+m, m-1) <= n:
h2 += 1
if h2 > 0:
w2 = np.array(list(n_choose_k(range(1, h2+m), m-1))) - \
np.tile(np.array(range(m - 1)), (comb(h2+m-1, m-1), 1)) - 1
w2 = (np.c_[w2, np.zeros((np.shape(w2)[0], 1)) + h2] -
np.c_[np.zeros((np.shape(w2)[0], 1)), w2]) / h2
w = np.r_[w, w2/2. + 1./(2.*m)]
w = np.maximum(w, 1e-6)
n = np.shape(w)[0]
return w, n