-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_interpcube.py
46 lines (32 loc) · 1.02 KB
/
run_interpcube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
This script shows how to run interpcube in parallel using multiprocessing.
"""
from __future__ import print_function, division
import multiprocessing
from glob import glob
import numpy as np
from . import interpcube
from . import constants
lsize = 128
INDIR = '/data3/piyanat/model/21cm/original/'
OUTDIR = '/data3/piyanat/model/21cm/interpolated/'
zi, xi = np.genfromtxt(INDIR + 'delta_21cm_z_vs_xi.txt', unpack=True)
zi = zi[::-1] + 1
xi = xi[::-1]
cube = np.sort(glob(INDIR + 'delta_21cm_l{:d}_xi????.npy'.format(lsize)))[::-1]
freqlow = constants.FREQ['EoR_low_80kHz']
freqhi = constants.FREQ['EoR_hi_80kHz']
f21 = constants.FREQ['21cm'].value
zlow = f21 / freqlow - 1
zhi = f21 / freqhi - 1
freq = np.hstack((freqlow, freqhi))
z = np.hstack((zlow, zhi))
out = [OUTDIR + 'interp_delta_21cm_l{:d}_{:3.3f}MHz.npy'
.format(lsize, f) for f in freq]
def run(args):
i, o = args
interpcube.interp_cube(i, zi=zi, cube=cube, outfile=o)
pool = multiprocessing.Pool(8)
pool.map(run, zip(z, out))
pool.close()
pool.join()