forked from Yuliang-Liu/Monkey
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
42 lines (38 loc) · 1.85 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from transformers import AutoModelForCausalLM, AutoTokenizer
import argparse
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="echo840/Monkey-Chat") #echo840/Monkey-Chat echo840/Monkey
parser.add_argument("--image_path", type=str, default=None)
parser.add_argument("--question", type=str, default=None)
args = parser.parse_args()
checkpoint = args.model_path
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda', trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
tokenizer.padding_side = 'left'
tokenizer.pad_token_id = tokenizer.eod_id
img_path = args.image_path
question = args.question
if question == "Generate the detailed caption in English:" and "Monkey-Chat" not in checkpoint:
query = f'<img>{img_path}</img> Generate the detailed caption in English: ' #detailed caption
else:
query = f'<img>{img_path}</img> {question} Answer: ' #VQA
input_ids = tokenizer(query, return_tensors='pt', padding='longest')
attention_mask = input_ids.attention_mask
input_ids = input_ids.input_ids
pred = model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=1,
max_new_tokens=512,
min_new_tokens=1,
length_penalty=1,
num_return_sequences=1,
output_hidden_states=True,
use_cache=True,
pad_token_id=tokenizer.eod_id,
eos_token_id=tokenizer.eod_id,
)
response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
print(f"Question: {question} Answer: {response}")