-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·279 lines (245 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
from inplace_abn import InPlaceABN
from pytorch_lightning import LightningModule, Trainer
# pytorch-lightning
from pytorch_lightning.callbacks import ModelCheckpoint,TQDMProgressBar
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.plugins import DDPPlugin
# Dataset
from torch.utils.data import DataLoader
from datasets import dataset_dict
# Loss function
from losses import loss_dict
# Metrics
from metrics import *
# Models
from models.NovelDepthNet import NovelDepthNet
from opt import get_opts
# Optimizer, Scheduler, Visualization
from utils import *
# Hello
class NovelDepthSystem(LightningModule):
def __init__(self, opts):
super(NovelDepthSystem, self).__init__()
self.opts = opts
# to unnormalize image for visualization
# self.unpreprocess = T.Normalize(
# mean=[-0.5 / 0.5, -0.5 / 0.5, -0.5 / 0.5],
# std=[1 / 0.5, 1 / 0.5, 1 / 0.5],
# )
self.unpreprocess = T.Normalize(
mean=[-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225],
std=[1 / 0.229, 1 / 0.224, 1 / 0.225],
)
self.loss = loss_dict[opts.loss_type](opts.levels)
self.model = NovelDepthNet(n_depths=self.opts.n_depths,
interval_ratios=self.opts.interval_ratios,
norm_act=InPlaceABN,
opts=self.opts)
# load model if checkpoint path is provided
if self.opts.ckpt_path != "":
print("Load model from", self.opts.ckpt_path)
load_ckpt(
self.model, self.opts.ckpt_path, self.opts.prefixes_to_ignore
)
def decode_batch(self, batch):
imgs = batch["imgs"]
proj_mats = batch["proj_mats"]
depths = batch["depths"]
masks = batch["masks"]
init_depth_min = batch["init_depth_min"]
depth_interval = batch["depth_interval"]
proj_mats_ref2inputs = batch["proj_mats_ref2inputs"]
return imgs, proj_mats, depths, masks, init_depth_min, depth_interval, proj_mats_ref2inputs
def forward(self, imgs, proj_mats, proj_mats_ref2inputs, init_depth_min, depth_interval):
return self.model(imgs, proj_mats, proj_mats_ref2inputs, init_depth_min, depth_interval)
def setup(self, stage):
dataset = dataset_dict[self.opts.dataset_name]
self.train_dataset = dataset(
root_dir=self.opts.root_dir,
split="train",
n_views=self.opts.n_views,
levels=self.opts.levels,
depth_interval=self.opts.depth_interval,
)
self.val_dataset = dataset(
root_dir=self.opts.root_dir,
split="val",
n_views=self.opts.n_views,
levels=self.opts.levels,
depth_interval=self.opts.depth_interval,
)
def configure_optimizers(self):
self.optimizer = get_optimizer(self.opts, self.model)
scheduler = get_scheduler(self.opts, self.optimizer)
return [self.optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(
self.train_dataset,
shuffle=True,
num_workers=4,
batch_size=self.opts.batch_size,
pin_memory=True,
)
def getLoss(self, loss_type, results, imgs, depths, masks):
return self.loss(results, imgs, depths, masks, self.opts.use_consistentLoss)
def training_step(self, batch, batch_nb):
(
imgs,
proj_mats,
depths,
masks,
init_depth_min,
depth_interval,
proj_mats_ref2inputs
) = self.decode_batch(batch)
results = self(imgs, proj_mats, proj_mats_ref2inputs, init_depth_min, depth_interval)
loss = self.getLoss(opts.loss_type, results, imgs, depths, masks)
sync_log = True if self.opts.num_gpus > 1 else False
self.log('train/loss', loss, on_step=True, on_epoch=True, prog_bar=True, sync_dist=sync_log)
with torch.no_grad():
if batch_nb % 1000 == 0:
img_ = self.unpreprocess(imgs[0, 0]).cpu() # batch 0, ref image
depth_gt_ = visualize_depth(depths["level_0"][0])
depth_pred_ = visualize_depth(
results["depth_0"][0] * masks["level_0"][0]
)
prob = visualize_prob(results["confidence_0"][0] * masks["level_0"][0])
stack = torch.stack(
[img_, depth_gt_, depth_pred_, prob]
) # (4, 3, H, W)
self.logger.experiment.add_images(
"train/image_GT_pred_prob", stack, self.global_step
)
list_img = []
for i in range(self.opts.n_views):
img_i = self.unpreprocess(imgs[0, i]).cpu()
list_img.append(img_i)
stack_imgs = torch.stack([list_img[i] for i in range(self.opts.n_views)])
self.logger.experiment.add_images(
"train/GT_inputviews", stack_imgs, self.global_step
)
final_warp = self.unpreprocess(results["warp_view_0"][0]).unsqueeze(0)
self.logger.experiment.add_images(
"train/final_warp_view", final_warp, self.global_step
)
if self.opts.use_consistentLoss:
# Visualizing reprojected depth image of each input view
list_inputDepth_rpj = []
for i in range(self.opts.n_views - 1):
input_depth_rpj = visualize_depth(results["input_depths_0"][i][0])
list_inputDepth_rpj.append(input_depth_rpj)
stack_inputDepth_rpj = torch.stack(
[list_inputDepth_rpj[i] for i in range(len(list_inputDepth_rpj))]
) # (
self.logger.experiment.add_images(
"train/inputDepth_rpj", stack_inputDepth_rpj, self.global_step
)
# Visualizing each reprojected input image using estimated novel view and depth map
list_inputView_rpj = []
for i in range(self.opts.n_views - 1):
inputView_rpj = self.unpreprocess(results[f"reconstructed_input_0"][i][0])
list_inputView_rpj.append(inputView_rpj)
stack_inputView_rpj = torch.stack(
[list_inputView_rpj[i] for i in range(len(list_inputView_rpj))]
) # (
self.logger.experiment.add_images(
"train/inputView_rpj", stack_inputView_rpj, self.global_step
)
depth_pred = results["depth_0"]
depth_gt = depths["level_0"]
mask = masks["level_0"]
abs_err = abs_error(
depth_pred, depth_gt, mask
).mean()
self.log("train/abs_err", abs_err, on_step=True, prog_bar=True)
self.log("train/acc_1mm", acc_threshold(depth_pred, depth_gt, mask, 1).mean(), on_epoch=True)
self.log("train/acc_2mm", acc_threshold(depth_pred, depth_gt, mask, 2).mean(), on_epoch=True)
self.log("train/acc_4mm", acc_threshold(depth_pred, depth_gt, mask, 4).mean(), on_epoch=True)
novel_view = self.unpreprocess(results["warp_view_0"][0])
gt_novel_view = self.unpreprocess(imgs[0, 0])
self.log("train/ssim", ssim(novel_view, gt_novel_view), on_epoch=True)
# log["train/lpis"] = lpips(novel_view, gt_novel_view)
self.log("train/psnr", psnr(novel_view, gt_novel_view), on_epoch=True)
return loss
def val_dataloader(self):
return DataLoader(
self.val_dataset,
shuffle=False,
num_workers=4,
batch_size=self.opts.batch_size,
pin_memory=True,
)
def validation_step(self, batch, batch_nb):
(
imgs,
proj_mats,
depths,
masks,
init_depth_min,
depth_interval,
proj_mats_ref2inputs
) = self.decode_batch(batch)
results = self(imgs, proj_mats, proj_mats_ref2inputs, init_depth_min, depth_interval)
loss = self.getLoss(opts.loss_type, results, imgs, depths, masks)
sync_log = True if self.opts.num_gpus > 1 else False
self.log('val/loss', loss, on_epoch=True, prog_bar=True, sync_dist=sync_log)
if batch_nb == 0:
img_ = self.unpreprocess(imgs[0, 0]).cpu() # batch 0, ref image
depth_gt_ = visualize_depth(depths["level_0"][0])
depth_pred_ = visualize_depth(results["depth_0"][0] * masks["level_0"][0])
prob = visualize_prob(results["confidence_0"][0] * masks["level_0"][0])
stack = torch.stack([img_, depth_gt_, depth_pred_, prob]) # (4, 3, H, W)
self.logger.experiment.add_images(
"val/image_GT_pred_prob", stack, self.global_step
)
list_img = []
for i in range(self.opts.n_views):
img_i = self.unpreprocess(imgs[0, i]).cpu()
list_img.append(img_i)
stack_imgs = torch.stack([list_img[i] for i in range(self.opts.n_views)])
self.logger.experiment.add_images(
"val/GT_inputviews", stack_imgs, self.global_step
)
final_warp = self.unpreprocess(results["warp_view_0"][0]).unsqueeze(0)
self.logger.experiment.add_images(
"val/final_warp_view", final_warp, self.global_step
)
depth_pred = results["depth_0"]
depth_gt = depths["level_0"]
mask = masks["level_0"]
novel_view = self.unpreprocess(results["warp_view_0"][0])
gt_novel_view = self.unpreprocess(imgs[0, 0])
self.log('val/abs_err', abs_error(depth_pred, depth_gt, mask).mean(), sync_dist=sync_log)
self.log('val/acc_1mm', acc_threshold(depth_pred, depth_gt, mask, 1).mean(), sync_dist=sync_log)
self.log('val/acc_2mm', acc_threshold(depth_pred, depth_gt, mask, 2).mean(), sync_dist=sync_log)
self.log('val/acc_4mm', acc_threshold(depth_pred, depth_gt, mask, 4).mean(), sync_dist=sync_log)
self.log('val/ssim', ssim(novel_view, gt_novel_view))
self.log('val/psnr', psnr(novel_view, gt_novel_view))
return loss
if __name__ == "__main__":
opts = get_opts()
system = NovelDepthSystem(opts)
checkpoint_callback = ModelCheckpoint(
dirpath=os.path.join(f'{opts.ckpt_dir}/{opts.exp_name}'),
filename = "{epoch:02d}",
monitor='val/loss',
mode='max',
save_top_k=2
)
bar = TQDMProgressBar(refresh_rate=100 if opts.num_gpus > 1 else 1)
logger = TensorBoardLogger(save_dir=f'{opts.log_dir}', name=opts.exp_name)
trainer = Trainer(
max_epochs=opts.num_epochs,
callbacks=[checkpoint_callback,bar],
logger=logger,
enable_model_summary=True,
gpus=opts.num_gpus,
strategy=DDPPlugin(find_unused_parameters=True),
num_sanity_val_steps=0 if opts.num_gpus > 1 else 5,
gradient_clip_val=0.5,
benchmark=True,
)
# Add a comment ^^
trainer.fit(system)
trainer.save_checkpoint(os.path.join(f'{opts.ckpt_dir}/{opts.exp_name}', 'epoch_final.ckpt'))