-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathnode2vec_feature_onelayer_intentgc_model_mulkernel.py
974 lines (741 loc) · 49.5 KB
/
node2vec_feature_onelayer_intentgc_model_mulkernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
import tensorflow as tf
import numpy as np
import random
import time
from sklearn.metrics import roc_auc_score
from tf_client import base_io
import tf_context as ctx
import graph_embedding.operations as geops
from tensorflow.python.lib.io import file_io
from tensorflow.python.lib.io.file_io import FileIO
import traceback
import time
class Node2VecFeatureOneLayerIntentGCMulKernelModel(object):
def __init__(self, config, task_name, task_id, worker_num, ps_num):
self.config = config
self.task_name = task_name
self.task_id = task_id
self.worker_num = worker_num
self.ps_num = ps_num
print('task id = %d, worker num = %d, ps_num = %d' % (self.task_id, self.worker_num, self.ps_num))
self.global_step = tf.contrib.framework.get_or_create_global_step()
self.weights_map = {}
def build_graph_by_mode(self, mode):
if mode == "train":
self.build_train_graph()
elif mode == "test":
self.build_test_graph()
elif mode == "predict_item":
self.build_predict_item_graph()
elif mode == "predict_user":
self.build_predict_user_graph()
else:
print('fatal error! unsupported mode')
def set_sess(self, sess):
self.sess = sess
# new implementation
def build_train_graph(self):
# 0. reader
self.make_data()
# 1. make item and user feature and embedding
cur_item_whole_embedding, cur_user_whole_embedding, cur_neg_item_whole_embedding = self.make_features_and_embedding()
# 2. build network
self.build_network(cur_item_whole_embedding, cur_user_whole_embedding, cur_neg_item_whole_embedding)
# 3. cal loss
status = self.cal_loss()
if status == False:
print('fatal error! status of cal loss is error')
# 4. make train op
self.make_train_op()
def build_test_graph(self):
# 0. reader
self.make_data()
# 1. make item and user feature and embedding
cur_item_whole_embedding, cur_user_whole_embedding, cur_neg_item_whole_embedding = self.make_features_and_embedding()
# 2. build network
self.build_network(cur_item_whole_embedding, cur_user_whole_embedding, cur_neg_item_whole_embedding)
# 3. cal loss
status = self.cal_loss()
if status == False:
print('fatal error! status of cal loss is error')
def build_predict_item_graph(self):
# 0. reader
self.make_data()
self.create_convolve_weights()
# 1. make item feature and embedding
with ctx.local():
cur_item_ids = tf.reshape(self.datas.mapped_item_id.embed_key.values, [-1])
self.item_ids = cur_item_ids
cur_item_title_package, cur_item_brand_package, cur_item_cate_and_prop_package, cur_item_basic_package, cur_item_usual_user_level_package = self.make_item_fea(cur_item_ids)
cur_item_whole_embedding = self.make_item_embedding(cur_item_title_package, cur_item_brand_package, cur_item_cate_and_prop_package, cur_item_basic_package, cur_item_usual_user_level_package)
cur_item_final_embedding = self.one_layer_item_gcn(cur_item_ids, cur_item_whole_embedding)
# 2. build item network
self.build_network_for_item(cur_item_final_embedding)
def build_predict_user_graph(self):
# 0. reader
self.make_data()
self.create_convolve_weights()
# 1. make user feature and embedding
with ctx.local():
cur_user_ids = tf.reshape(self.datas.mapped_user_id.embed_key.values, [-1])
self.user_ids = cur_user_ids
cur_user_like_brand_package, cur_user_like_cate_package, cur_user_like_term_package, cur_user_pre_item_basic_package, cur_user_info_package, cur_user_pre_item_score_package = self.make_user_fea(cur_user_ids)
cur_user_whole_embedding = self.make_user_embedding(cur_user_like_brand_package, cur_user_like_cate_package, cur_user_like_term_package, cur_user_pre_item_basic_package, cur_user_info_package, cur_user_pre_item_score_package, share_embedding = False)
cur_user_final_embedding = self.one_layer_user_gcn(cur_user_ids, cur_user_whole_embedding)
# 2. build user network
self.build_network_for_user(cur_user_final_embedding)
def make_train_op(self):
optimizer = None
if self.config.opt_type == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate)
elif self.config.opt_type == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.config.learning_rate)
elif self.config.opt_type == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate=self.config.learning_rate, momentum=self.config.momentum)
elif self.config.opt_type == 'ada_grad':
optimizer = tf.train.AdagradOptimizer(learning_rate=self.config.learning_rate)
else:
optimizer = tf.train.AdagradOptimizer(learning_rate=self.config.learning_rate)
if optimizer is None:
print('fatal error! optimizer is None')
sgd_op = None
if self.config.grad_clip_threshold > 0:
print('do clip gradient')
grads_and_vars = optimizer.compute_gradients(self.loss)
gradients, variables = zip(*grads_and_vars)
clipped_gradients, glob_norm = tf.clip_by_global_norm(gradients, self.config.grad_clip_threshold)
sgd_op, glob_norm = optimizer.apply_gradients(zip(clipped_gradients, variables), global_step = self.global_step), glob_norm
else:
sgd_op = optimizer.minimize(self.loss, global_step = self.global_step)
if sgd_op is None:
print('fatal error! sgd op is None')
self.train_op = sgd_op
def cal_loss(self):
# check batch size
if (self.item_l3.get_shape()[0] != self.user_l3.get_shape()[0]):
print('fatal error! batch size is not match')
return False
if (self.item_l3.get_shape()[0] != self.neg_item_l3.get_shape()[0]):
print('fatal error! batch size is not match: neg')
return False
# check layer size
if (self.item_l3.get_shape()[1] != self.user_l3.get_shape()[1]):
print('fatal error! layer size is not match')
return False
if (self.item_l3.get_shape()[1] != self.neg_item_l3.get_shape()[1]):
print('fatal error! layer size is not match: neg')
return False
mid_matrix = self.item_l3 * self.user_l3
print('mid matrix shape:')
print(mid_matrix.get_shape())
neg_mid_matrix = self.neg_item_l3 * self.user_l3
print('neg mid matrix shape:')
print(neg_mid_matrix.get_shape())
z_out = tf.reduce_sum(mid_matrix, axis=1, name="z_out")
print('z_out shape:')
print(z_out.get_shape())
neg_z_out = tf.reduce_sum(neg_mid_matrix, axis=1, name="neg_z_out")
print('neg z_out shape:')
print(neg_z_out.get_shape())
# cal predicts
#self.predicts = 1. / (1. + tf.exp(-z_out))
item_norm = tf.sqrt(tf.reduce_sum(tf.square(self.item_l3), axis=1))
print('item norm shape:')
print(item_norm.get_shape())
user_norm = tf.sqrt(tf.reduce_sum(tf.square(self.user_l3), axis=1))
print('user norm shape:')
print(user_norm.get_shape())
neg_item_norm = tf.sqrt(tf.reduce_sum(tf.square(self.neg_item_l3), axis=1))
print('neg item norm shape:')
print(neg_item_norm.get_shape())
self.predicts = tf.divide(z_out, tf.multiply(item_norm, user_norm) + 0.000001)
print('predicts shape:')
print(self.predicts.get_shape())
self.neg_predicts = tf.divide(neg_z_out, tf.multiply(neg_item_norm, user_norm) + 0.000001)
print('neg predicts shape:')
print(self.neg_predicts.get_shape())
#print('label shape:')
#print(self.labels.get_shape())
# used for auc
labels_real_tensor = tf.concat([(self.predicts * 0.) + 1., self.neg_predicts * 0.], 0)
print('labels_real_tensor shape:')
print(labels_real_tensor.get_shape())
scores_tensor = tf.concat([(self.predicts + 1.) / 2., (self.neg_predicts + 1.) / 2.], 0)
print('scores_tensor shape:')
print(scores_tensor.get_shape())
self.auc, self.auc_op = tf.metrics.auc(labels_real_tensor, scores_tensor, num_thresholds = 2000)
self.test_auc, self.test_auc_op = tf.metrics.auc(labels_real_tensor, scores_tensor, name = 'test_auc', num_thresholds = 2000)
# cal logit loss: [batch_size, 1]
#pre_loss = (self.labels * tf.log(self.predicts) + (1 - self.labels) * tf.log(1 - self.predicts) )
#pre_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=self.labels, logits=z_out)
#process_labels = -1 + (self.labels * 2)
#process_labels = 1 + (self.labels * 0)
pre_loss = tf.maximum(0.0, self.neg_predicts - self.predicts + self.config.threshold)
print('pre_loss shape:')
print(pre_loss.get_shape())
#self.loss = tf.reduce_sum(tf.square(self.predicts - 1.), 0) + tf.reduce_sum(tf.square(self.neg_predicts - (-1.)), 0)
#self.loss = tf.reduce_sum(tf.square(self.predicts - process_labels), 0)
#self.loss = - tf.reduce_mean(pre_loss, 0)
self.loss = tf.reduce_sum(pre_loss, 0)
return True
def build_network(self, cur_item_whole_embedding, cur_user_whole_embedding, cur_neg_item_whole_embedding):
self.build_network_for_item(cur_item_whole_embedding)
self.build_network_for_user(cur_user_whole_embedding)
self.build_network_for_neg_item(cur_neg_item_whole_embedding)
def build_network_for_item(self, cur_item_whole_embedding):
activation_fn = tf.nn.relu
# build network for item
with tf.variable_scope("item_layer1"):
self.item_l1 = self.full_connect(cur_item_whole_embedding, [cur_item_whole_embedding.get_shape()[1], self.config.item_l1_size], [self.config.item_l1_size], activation_fn, "item_layer1")
with tf.variable_scope("item_layer2"):
self.item_l2 = self.full_connect(self.item_l1, [self.item_l1.get_shape()[1], self.config.item_l2_size], [self.config.item_l2_size], activation_fn, "item_layer2")
with tf.variable_scope("item_layer3"):
self.item_l3 = self.full_connect(self.item_l2, [self.item_l2.get_shape()[1], self.config.item_l3_size], [self.config.item_l3_size], None, "item_layer3")
def build_network_for_neg_item(self, cur_neg_item_whole_embedding):
activation_fn = tf.nn.relu
# build network for item
self.neg_item_l1 = self.get_shared_full_connect(cur_neg_item_whole_embedding, activation_fn, "item_layer1")
self.neg_item_l2 = self.get_shared_full_connect(self.neg_item_l1, activation_fn, "item_layer2")
self.neg_item_l3 = self.get_shared_full_connect(self.neg_item_l2, None, "item_layer3")
def build_network_for_user(self, cur_user_whole_embedding):
activation_fn = tf.nn.relu
# build network for user
with tf.variable_scope("user_layer1"):
self.user_l1 = self.full_connect(cur_user_whole_embedding, [cur_user_whole_embedding.get_shape()[1], self.config.user_l1_size], [self.config.user_l1_size], activation_fn, "user_layer1")
with tf.variable_scope("user_layer2"):
self.user_l2 = self.full_connect(self.user_l1, [self.user_l1.get_shape()[1], self.config.user_l2_size], [self.config.user_l2_size], activation_fn, "user_layer2")
with tf.variable_scope("user_layer3"):
self.user_l3 = self.full_connect(self.user_l2, [self.user_l2.get_shape()[1], self.config.user_l3_size], [self.config.user_l3_size], None, "user_layer3")
def full_connect(self, train_inputs, weights_shape, biases_shape, activation_fn, scope_name):
# weights
if self.ps_num > 1:
weights = tf.get_variable("weights", weights_shape, initializer=self.get_initializer(stddev=self.config.network_stddev), regularizer=tf.nn.l2_loss, partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
else:
weights = tf.get_variable("weights", weights_shape, initializer=self.get_initializer(stddev=self.config.network_stddev), regularizer=tf.nn.l2_loss)
self.weights_map[scope_name] = weights
# biases
biases = tf.get_variable("biases", biases_shape, initializer=tf.constant_initializer(value=self.config.biases_init_value))
self.weights_map['%s_biases' % scope_name] = biases
out = tf.nn.bias_add(tf.matmul(train_inputs, weights), biases)
if activation_fn != None:
out = activation_fn(out)
else:
print("warning! no activation fn !")
return out
def get_shared_full_connect(self, train_inputs, activation_fn, scope_name):
# weights
weights = self.weights_map[scope_name]
# biases
biases = self.weights_map['%s_biases' % scope_name]
out = tf.nn.bias_add(tf.matmul(train_inputs, weights), biases)
if activation_fn != None:
out = activation_fn(out)
else:
print("warning! no activation fn !")
return out
def one_layer_item_gcn(self, cur_item_ids, cur_item_whole_embedding):
with ctx.local():
# 1-D neighbors
cur_item_1s_neighbor_ids = self.get_neighbor_ids(cur_item_ids)
cur_item_1s_neighbor_title_package, cur_item_1s_neighbor_brand_package, cur_item_1s_neighbor_cate_and_prop_package, cur_item_1s_neighbor_basic_package, cur_item_1s_neighbor_usual_user_level_package = self.make_item_fea(cur_item_1s_neighbor_ids)
cur_item_1s_neighbor_whole_embedding = self.make_shared_item_embedding(cur_item_1s_neighbor_title_package, cur_item_1s_neighbor_brand_package, cur_item_1s_neighbor_cate_and_prop_package, cur_item_1s_neighbor_basic_package, cur_item_1s_neighbor_usual_user_level_package)
# reshape to [batch, neighbor_cnt, emb_size]
batch_size = tf.shape(cur_item_ids)[0]
cur_item_1s_neighbor_format_embedding = tf.reshape(cur_item_1s_neighbor_whole_embedding, [batch_size, self.config.neighbor_cnt, -1])
# [batch, emb_size]
cur_item_1s_neighbor_pool_embedding = tf.reduce_mean(cur_item_1s_neighbor_format_embedding, axis = 1)
cur_item_kernel0_embedding = (cur_item_1s_neighbor_pool_embedding * self.convolve_weights_item_neighbor[0]) + (cur_item_whole_embedding * self.convolve_weights_item_self[0])
cur_item_kernel1_embedding = (cur_item_1s_neighbor_pool_embedding * self.convolve_weights_item_neighbor[1]) + (cur_item_whole_embedding * self.convolve_weights_item_self[1])
cur_item_kernel2_embedding = (cur_item_1s_neighbor_pool_embedding * self.convolve_weights_item_neighbor[2]) + (cur_item_whole_embedding * self.convolve_weights_item_self[2])
cur_item_kernel3_embedding = (cur_item_1s_neighbor_pool_embedding * self.convolve_weights_item_neighbor[3]) + (cur_item_whole_embedding * self.convolve_weights_item_self[3])
cur_item_kernel0_embedding_active = tf.nn.relu(cur_item_kernel0_embedding)
cur_item_kernel1_embedding_active = tf.nn.relu(cur_item_kernel1_embedding)
cur_item_kernel2_embedding_active = tf.nn.relu(cur_item_kernel2_embedding)
cur_item_kernel3_embedding_active = tf.nn.relu(cur_item_kernel3_embedding)
cur_item_final_embedding = (cur_item_kernel0_embedding_active * self.convolve_weights_item_kernel[0]) + (cur_item_kernel1_embedding_active * self.convolve_weights_item_kernel[1]) + (cur_item_kernel2_embedding_active * self.convolve_weights_item_kernel[2]) + (cur_item_kernel3_embedding_active * self.convolve_weights_item_kernel[3])
return cur_item_final_embedding
def one_layer_user_gcn(self, cur_user_ids, cur_user_whole_embedding):
with ctx.local():
# 1-D neighbors
cur_user_1s_neighbor_ids = self.get_neighbor_ids(cur_user_ids)
cur_user_1s_neighbor_like_brand_package, cur_user_1s_neighbor_like_cate_package, cur_user_1s_neighbor_like_term_package, cur_user_1s_neighbor_pre_item_basic_package, cur_user_1s_neighbor_info_package, cur_user_1s_neighbor_pre_item_score_package = self.make_user_fea(cur_user_1s_neighbor_ids)
cur_user_1s_neighbor_whole_embedding = self.make_user_embedding(cur_user_1s_neighbor_like_brand_package, cur_user_1s_neighbor_like_cate_package, cur_user_1s_neighbor_like_term_package, cur_user_1s_neighbor_pre_item_basic_package, cur_user_1s_neighbor_info_package, cur_user_1s_neighbor_pre_item_score_package, share_embedding = True)
# reshape to [batch, neighbor_cnt, emb_size]
batch_size = tf.shape(cur_user_ids)[0]
cur_user_1s_neighbor_format_embedding = tf.reshape(cur_user_1s_neighbor_whole_embedding, [batch_size, self.config.neighbor_cnt, -1])
# [batch, emb_size]
cur_user_1s_neighbor_pool_embedding = tf.reduce_mean(cur_user_1s_neighbor_format_embedding, axis = 1)
cur_user_kernel0_embedding = (cur_user_1s_neighbor_pool_embedding * self.convolve_weights_user_neighbor[0]) + (cur_user_whole_embedding * self.convolve_weights_user_self[0])
cur_user_kernel1_embedding = (cur_user_1s_neighbor_pool_embedding * self.convolve_weights_user_neighbor[1]) + (cur_user_whole_embedding * self.convolve_weights_user_self[1])
cur_user_kernel2_embedding = (cur_user_1s_neighbor_pool_embedding * self.convolve_weights_user_neighbor[2]) + (cur_user_whole_embedding * self.convolve_weights_user_self[2])
cur_user_kernel3_embedding = (cur_user_1s_neighbor_pool_embedding * self.convolve_weights_user_neighbor[3]) + (cur_user_whole_embedding * self.convolve_weights_user_self[3])
cur_user_kernel0_embedding_active = tf.nn.relu(cur_user_kernel0_embedding)
cur_user_kernel1_embedding_active = tf.nn.relu(cur_user_kernel1_embedding)
cur_user_kernel2_embedding_active = tf.nn.relu(cur_user_kernel2_embedding)
cur_user_kernel3_embedding_active = tf.nn.relu(cur_user_kernel3_embedding)
cur_user_final_embedding = (cur_user_kernel0_embedding_active * self.convolve_weights_user_kernel[0]) + (cur_user_kernel1_embedding_active * self.convolve_weights_user_kernel[1]) + (cur_user_kernel2_embedding_active * self.convolve_weights_user_kernel[2]) + (cur_user_kernel3_embedding_active * self.convolve_weights_user_kernel[3])
return cur_user_final_embedding
def create_convolve_weights(self):
# convolve, TODO can be more, notice name and scope
if self.ps_num > 1:
self.convolve_weights_item_neighbor = tf.get_variable("convolve_weights_item_neighbor", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev), partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
self.convolve_weights_item_self = tf.get_variable("convolve_weights_item_self", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev), partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
self.convolve_weights_item_kernel = tf.get_variable("convolve_weights_item_kernel", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev), partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
self.convolve_weights_user_neighbor = tf.get_variable("convolve_weights_user_neighbor", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev), partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
self.convolve_weights_user_self = tf.get_variable("convolve_weights_user_self", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev), partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
self.convolve_weights_user_kernel = tf.get_variable("convolve_weights_user_kernel", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev), partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
else:
self.convolve_weights_item_neighbor = tf.get_variable("convolve_weights_item_neighbor", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev))
self.convolve_weights_item_self = tf.get_variable("convolve_weights_item_self", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev))
self.convolve_weights_item_kernel = tf.get_variable("convolve_weights_item_kernel", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev))
self.convolve_weights_user_neighbor = tf.get_variable("convolve_weights_user_neighbor", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev))
self.convolve_weights_user_self = tf.get_variable("convolve_weights_user_self", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev))
self.convolve_weights_user_kernel = tf.get_variable("convolve_weights_user_kernel", (4,), initializer=self.get_initializer(stddev=self.config.convolve_stddev))
def make_features_and_embedding(self):
# 0. create convolve weights
self.create_convolve_weights()
# 1. make embedding for item
with ctx.local():
cur_item_ids = tf.reshape(self.datas.mapped_item_id.embed_key.values, [-1])
cur_item_title_package, cur_item_brand_package, cur_item_cate_and_prop_package, cur_item_basic_package, cur_item_usual_user_level_package = self.make_item_fea(cur_item_ids)
cur_item_whole_embedding = self.make_item_embedding(cur_item_title_package, cur_item_brand_package, cur_item_cate_and_prop_package, cur_item_basic_package, cur_item_usual_user_level_package)
cur_item_final_embedding = self.one_layer_item_gcn(cur_item_ids, cur_item_whole_embedding)
# 2. make embedding for user
with ctx.local():
cur_user_ids = tf.reshape(self.datas.mapped_user_id.embed_key.values, [-1])
cur_user_like_brand_package, cur_user_like_cate_package, cur_user_like_term_package, cur_user_pre_item_basic_package, cur_user_info_package, cur_user_pre_item_score_package = self.make_user_fea(cur_user_ids)
cur_user_whole_embedding = self.make_user_embedding(cur_user_like_brand_package, cur_user_like_cate_package, cur_user_like_term_package, cur_user_pre_item_basic_package, cur_user_info_package, cur_user_pre_item_score_package, share_embedding = False)
cur_user_final_embedding = self.one_layer_user_gcn(cur_user_ids, cur_user_whole_embedding)
# 3. make embedding for neg item, notice that the neg item share the same networks with the item
with ctx.local():
cur_neg_item_ids = tf.reshape(self.datas.mapped_neg_item_id.embed_key.values, [-1])
cur_neg_item_title_package, cur_neg_item_brand_package, cur_neg_item_cate_and_prop_package, cur_neg_item_basic_package, cur_neg_item_usual_user_level_package = self.make_item_fea(cur_neg_item_ids)
cur_neg_item_whole_embedding = self.make_shared_item_embedding(cur_neg_item_title_package, cur_neg_item_brand_package, cur_neg_item_cate_and_prop_package, cur_neg_item_basic_package, cur_neg_item_usual_user_level_package)
cur_neg_item_final_embedding = self.one_layer_item_gcn(cur_neg_item_ids, cur_neg_item_whole_embedding)
# 4. return
return [cur_item_final_embedding, cur_user_final_embedding, cur_neg_item_final_embedding]
def get_neighbor_ids(self, cur_nodes_ids):
# fill neighbor ids from graph
src_feature_idxs = [19]
cur_item_neighbor_ids_sparse = self.assemble_graph(cur_nodes_ids, src_feature_idxs)
#batch_size = tf.shape(cur_nodes_ids)[0]
cur_item_neighbor_ids = cur_item_neighbor_ids_sparse[0].values
return cur_item_neighbor_ids
# new imple, this will be a basic api that be called by various function
def make_item_fea(self, cur_nodes_ids):
# fill feature from graph
src_feature_idxs = range(10, 19)
cur_item_fill_fea_nodes = self.assemble_graph(cur_nodes_ids, src_feature_idxs)
# build abstract group data
ret_item_title_term_data = [cur_item_fill_fea_nodes[0]]
ret_item_title_term_data_dim = [self.config.i01_embed_dim]
ret_item_title_term_data_name = ['i01']
ret_item_title_package = [ret_item_title_term_data, ret_item_title_term_data_dim, ret_item_title_term_data_name]
print('i01 embeded_dim: %d' % self.config.i01_embed_dim)
ret_item_brand_data = [cur_item_fill_fea_nodes[1]]
ret_item_brand_data_dim = [self.config.i02_embed_dim]
ret_item_brand_data_name = ['i02']
ret_item_brand_package = [ret_item_brand_data, ret_item_brand_data_dim, ret_item_brand_data_name]
print('i02 embeded_dim: %d' % self.config.i02_embed_dim)
ret_item_cate_and_prop_data = [cur_item_fill_fea_nodes[2], cur_item_fill_fea_nodes[3]]
ret_item_cate_and_prop_data_dim = [self.config.i03_embed_dim, self.config.i04_embed_dim]
ret_item_cate_and_prop_data_name = ['i03', 'i04']
ret_item_cate_and_prop_package = [ret_item_cate_and_prop_data, ret_item_cate_and_prop_data_dim, ret_item_cate_and_prop_data_name]
print('i03 embeded_dim: %d' % self.config.i03_embed_dim)
print('i04 embeded_dim: %d' % self.config.i04_embed_dim)
ret_item_basic_data = [cur_item_fill_fea_nodes[4], cur_item_fill_fea_nodes[5]]
ret_item_basic_data_dim = [self.config.i05_embed_dim, self.config.i06_embed_dim]
ret_item_basic_data_name = ['i05', 'i06']
ret_item_basic_package = [ret_item_basic_data, ret_item_basic_data_dim, ret_item_basic_data_name]
print('i05 embeded_dim: %d' % self.config.i05_embed_dim)
print('i06 embeded_dim: %d' % self.config.i06_embed_dim)
# new add feature
ret_item_usual_user_level_data = [cur_item_fill_fea_nodes[6]]
ret_item_usual_user_level_data_dim = [self.config.i07_embed_dim]
ret_item_usual_user_level_data_name = ['i07']
ret_item_usual_user_level_package = [ret_item_usual_user_level_data, ret_item_usual_user_level_data_dim, ret_item_usual_user_level_data_name]
print('i07 embeded_dim: %d' % self.config.i07_embed_dim)
return [ret_item_title_package, ret_item_brand_package, ret_item_cate_and_prop_package, ret_item_basic_package, ret_item_usual_user_level_package]
# new imple, this will be a basic api that be called by various function
def make_user_fea(self, cur_nodes_ids):
# fill feature from graph
src_feature_idxs = range(1, 10)
cur_user_fill_fea_nodes = self.assemble_graph(cur_nodes_ids, src_feature_idxs)
# build abstract group data
cur_user_like_brand_data = [cur_user_fill_fea_nodes[0]]
cur_user_like_brand_data_dim = [self.config.u01_embed_dim]
cur_user_like_brand_data_name = ['u01']
ret_user_like_brand_package = [cur_user_like_brand_data, cur_user_like_brand_data_dim, cur_user_like_brand_data_name]
print('u01 embeded_dim: %d' % self.config.u01_embed_dim)
cur_user_like_cate_data = [cur_user_fill_fea_nodes[1], cur_user_fill_fea_nodes[2]]
cur_user_like_cate_data_dim = [self.config.u02_embed_dim, self.config.u03_embed_dim]
cur_user_like_cate_data_name = ['u02', 'u03']
ret_user_like_cate_package = [cur_user_like_cate_data, cur_user_like_cate_data_dim, cur_user_like_cate_data_name]
print('u02 embeded_dim: %d' % self.config.u02_embed_dim)
print('u03 embeded_dim: %d' % self.config.u03_embed_dim)
cur_user_like_term_data = [cur_user_fill_fea_nodes[3]]
cur_user_like_term_data_dim = [self.config.u04_embed_dim]
cur_user_like_term_data_name = ['u04']
ret_user_like_term_package = [cur_user_like_term_data, cur_user_like_term_data_dim, cur_user_like_term_data_name]
print('u04 embeded_dim: %d' % self.config.u04_embed_dim)
# new add feature
cur_user_pre_item_basic_data = [cur_user_fill_fea_nodes[4]]
cur_user_pre_item_basic_data_dim = [self.config.u05_embed_dim]
cur_user_pre_item_basic_data_name = ['u05']
ret_user_pre_item_basic_package = [cur_user_pre_item_basic_data, cur_user_pre_item_basic_data_dim, cur_user_pre_item_basic_data_name]
print('u05 embeded_dim: %d' % self.config.u05_embed_dim)
cur_user_info_data = [cur_user_fill_fea_nodes[5]]
cur_user_info_data_dim = [self.config.u06_embed_dim]
cur_user_info_data_name = ['u06']
ret_user_info_package = [cur_user_info_data, cur_user_info_data_dim, cur_user_info_data_name]
print('u06 embeded_dim: %d' % self.config.u06_embed_dim)
cur_user_pre_item_score_data = [cur_user_fill_fea_nodes[6]]
cur_user_pre_item_score_data_dim = [self.config.u07_embed_dim]
cur_user_pre_item_score_data_name = ['u07']
ret_user_pre_item_score_package = [cur_user_pre_item_score_data, cur_user_pre_item_score_data_dim, cur_user_pre_item_score_data_name]
print('u07 embeded_dim: %d' % self.config.u07_embed_dim)
return [ret_user_like_brand_package, ret_user_like_cate_package, ret_user_like_term_package, ret_user_pre_item_basic_package, ret_user_info_package, ret_user_pre_item_score_package]
# new imple, this will be a basic api that be called by various function
def make_item_embedding(self, cur_item_title_package, cur_item_brand_package, cur_item_cate_and_prop_package, cur_item_basic_package, cur_item_usual_user_level_package):
# note here is no scope name, if there is several out api call, they will get the same weights
# 2. make item embedding
cur_item_title_term_data = cur_item_title_package[0]
cur_item_title_term_data_dim = cur_item_title_package[1]
cur_item_title_term_data_name = cur_item_title_package[2]
cur_item_title_term_embedding = self.sparse_embedding(cur_item_title_term_data, cur_item_title_term_data_dim, self.config.term_embedding_dim, names=cur_item_title_term_data_name)
cur_item_title_term_embedding = tf.concat(cur_item_title_term_embedding, 1)
cur_item_brand_data = cur_item_brand_package[0]
cur_item_brand_data_dim = cur_item_brand_package[1]
cur_item_brand_data_name = cur_item_brand_package[2]
cur_item_brand_embedding = self.sparse_embedding(cur_item_brand_data, cur_item_brand_data_dim, self.config.brand_embedding_dim, names=cur_item_brand_data_name)
cur_item_brand_embedding = tf.concat(cur_item_brand_embedding, 1)
cur_item_cate_and_prop_data = cur_item_cate_and_prop_package[0]
cur_item_cate_and_prop_data_dim = cur_item_cate_and_prop_package[1]
cur_item_cate_and_prop_data_name = cur_item_cate_and_prop_package[2]
cur_item_cate_and_prop_embedding = self.sparse_embedding(cur_item_cate_and_prop_data, cur_item_cate_and_prop_data_dim, self.config.cate_prop_embedding_dim, names=cur_item_cate_and_prop_data_name)
cur_item_cate_and_prop_embedding = tf.concat(cur_item_cate_and_prop_embedding, 1)
# new add feature
cur_item_basic_data = cur_item_basic_package[0]
cur_item_basic_data_dim = cur_item_basic_package[1]
cur_item_basic_data_name = cur_item_basic_package[2]
cur_item_basic_embedding = self.sparse_embedding(cur_item_basic_data, cur_item_basic_data_dim, self.config.basic_info_dim, names=cur_item_basic_data_name)
cur_item_basic_embedding = tf.concat(cur_item_basic_embedding, 1)
cur_item_usual_user_level_data = cur_item_usual_user_level_package[0]
cur_item_usual_user_level_data_dim = cur_item_usual_user_level_package[1]
cur_item_usual_user_level_data_name = cur_item_usual_user_level_package[2]
cur_item_usual_user_level_embedding = self.sparse_embedding(cur_item_usual_user_level_data, cur_item_usual_user_level_data_dim, self.config.basic_info_dim, names=cur_item_usual_user_level_data_name)
cur_item_usual_user_level_embedding = tf.concat(cur_item_usual_user_level_embedding, 1)
# 3. concate item all embeddings and dense
#self.item_whole_embedding = tf.concat([self.item_title_term_embedding, self.item_cate_and_prop_embedding, self.item_brand_embedding, self.datas.i05.dense_val, self.datas.i06.dense_val, self.datas.i07.dense_val, self.datas.i08.dense_val], 1)
cur_item_whole_embedding = tf.concat([cur_item_title_term_embedding, cur_item_brand_embedding, cur_item_cate_and_prop_embedding, cur_item_basic_embedding, cur_item_usual_user_level_embedding], 1)
return cur_item_whole_embedding
# new imple, this will be a basic api that be called by various function
def make_shared_item_embedding(self, cur_item_title_package, cur_item_brand_package, cur_item_cate_and_prop_package, cur_item_basic_package, cur_item_usual_user_level_package):
# note here is no scope name, if there is several out api call, they will get the same weights
# 2. make item embedding
cur_item_title_term_data = cur_item_title_package[0]
cur_item_title_term_data_name = cur_item_title_package[2]
cur_item_title_term_embedding = self.get_shared_sparse_embedding(cur_item_title_term_data, names=cur_item_title_term_data_name)
cur_item_title_term_embedding = tf.concat(cur_item_title_term_embedding, 1)
cur_item_brand_data = cur_item_brand_package[0]
cur_item_brand_data_name = cur_item_brand_package[2]
cur_item_brand_embedding = self.get_shared_sparse_embedding(cur_item_brand_data, names=cur_item_brand_data_name)
cur_item_brand_embedding = tf.concat(cur_item_brand_embedding, 1)
cur_item_cate_and_prop_data = cur_item_cate_and_prop_package[0]
cur_item_cate_and_prop_data_name = cur_item_cate_and_prop_package[2]
cur_item_cate_and_prop_embedding = self.get_shared_sparse_embedding(cur_item_cate_and_prop_data, names=cur_item_cate_and_prop_data_name)
cur_item_cate_and_prop_embedding = tf.concat(cur_item_cate_and_prop_embedding, 1)
# new add feature
cur_item_basic_data = cur_item_basic_package[0]
cur_item_basic_data_name = cur_item_basic_package[2]
cur_item_basic_embedding = self.get_shared_sparse_embedding(cur_item_basic_data, names=cur_item_basic_data_name)
cur_item_basic_embedding = tf.concat(cur_item_basic_embedding, 1)
cur_item_usual_user_level_data = cur_item_usual_user_level_package[0]
cur_item_usual_user_level_data_name = cur_item_usual_user_level_package[2]
cur_item_usual_user_level_embedding = self.get_shared_sparse_embedding(cur_item_usual_user_level_data, names=cur_item_usual_user_level_data_name)
cur_item_usual_user_level_embedding = tf.concat(cur_item_usual_user_level_embedding, 1)
# 3. concate item all embeddings and dense
#self.item_whole_embedding = tf.concat([self.item_title_term_embedding, self.item_cate_and_prop_embedding, self.item_brand_embedding, self.datas.i05.dense_val, self.datas.i06.dense_val, self.datas.i07.dense_val, self.datas.i08.dense_val], 1)
cur_item_whole_embedding = tf.concat([cur_item_title_term_embedding, cur_item_brand_embedding, cur_item_cate_and_prop_embedding, cur_item_basic_embedding, cur_item_usual_user_level_embedding], 1)
return cur_item_whole_embedding
# new imple, this will be a basic api that be called by various function
def make_user_embedding(self, cur_user_like_brand_package, cur_user_like_cate_package, cur_user_like_term_package, cur_user_pre_item_basic_package, cur_user_info_package, cur_user_pre_item_score_package, share_embedding):
# 4. make user embedding
cur_user_like_brand_data = cur_user_like_brand_package[0]
cur_user_like_brand_data_dim = cur_user_like_brand_package[1]
cur_user_like_brand_data_name = cur_user_like_brand_package[2]
if share_embedding == True:
cur_user_like_brand_embedding = self.get_shared_sparse_embedding(cur_user_like_brand_data, names=cur_user_like_brand_data_name)
else:
cur_user_like_brand_embedding = self.sparse_embedding(cur_user_like_brand_data, cur_user_like_brand_data_dim, self.config.brand_embedding_dim, names=cur_user_like_brand_data_name)
cur_user_like_brand_embedding = tf.concat(cur_user_like_brand_embedding, 1)
cur_user_like_cate_data = cur_user_like_cate_package[0]
cur_user_like_cate_data_dim = cur_user_like_cate_package[1]
cur_user_like_cate_data_name = cur_user_like_cate_package[2]
if share_embedding == True:
cur_user_like_cate_embedding = self.get_shared_sparse_embedding(cur_user_like_cate_data, names=cur_user_like_cate_data_name)
else:
cur_user_like_cate_embedding = self.sparse_embedding(cur_user_like_cate_data, cur_user_like_cate_data_dim, self.config.cate_prop_embedding_dim, names=cur_user_like_cate_data_name)
cur_user_like_cate_embedding = tf.concat(cur_user_like_cate_embedding, 1)
cur_user_like_term_data = cur_user_like_term_package[0]
cur_user_like_term_data_dim = cur_user_like_term_package[1]
cur_user_like_term_data_name = cur_user_like_term_package[2]
if share_embedding == True:
cur_user_like_term_embedding = self.get_shared_sparse_embedding(cur_user_like_term_data, names=cur_user_like_term_data_name)
else:
cur_user_like_term_embedding = self.sparse_embedding(cur_user_like_term_data, cur_user_like_term_data_dim, self.config.term_embedding_dim, names=cur_user_like_term_data_name)
cur_user_like_term_embedding = tf.concat(cur_user_like_term_embedding, 1)
# add new feature
cur_user_pre_item_basic_data = cur_user_pre_item_basic_package[0]
cur_user_pre_item_basic_data_dim = cur_user_pre_item_basic_package[1]
cur_user_pre_item_basic_data_name = cur_user_pre_item_basic_package[2]
if share_embedding == True:
cur_user_pre_item_basic_embedding = self.get_shared_sparse_embedding(cur_user_pre_item_basic_data, names=cur_user_pre_item_basic_data_name)
else:
cur_user_pre_item_basic_embedding = self.sparse_embedding(cur_user_pre_item_basic_data, cur_user_pre_item_basic_data_dim, self.config.basic_info_dim, names=cur_user_pre_item_basic_data_name)
cur_user_pre_item_basic_embedding = tf.concat(cur_user_pre_item_basic_embedding, 1)
cur_user_info_data = cur_user_info_package[0]
cur_user_info_data_dim = cur_user_info_package[1]
cur_user_info_data_name = cur_user_info_package[2]
if share_embedding == True:
cur_user_info_embedding = self.get_shared_sparse_embedding(cur_user_info_data, names=cur_user_info_data_name)
else:
cur_user_info_embedding = self.sparse_embedding(cur_user_info_data, cur_user_info_data_dim, self.config.basic_info_dim, names=cur_user_info_data_name)
cur_user_info_embedding = tf.concat(cur_user_info_embedding, 1)
cur_user_pre_item_score_data = cur_user_pre_item_score_package[0]
cur_user_pre_item_score_data_dim = cur_user_pre_item_score_package[1]
cur_user_pre_item_score_data_name = cur_user_pre_item_score_package[2]
if share_embedding == True:
cur_user_pre_item_score_embedding = self.get_shared_sparse_embedding(cur_user_pre_item_score_data, names=cur_user_pre_item_score_data_name)
else:
cur_user_pre_item_score_embedding = self.sparse_embedding(cur_user_pre_item_score_data, cur_user_pre_item_score_data_dim, self.config.basic_info_dim, names=cur_user_pre_item_score_data_name)
cur_user_pre_item_score_embedding = tf.concat(cur_user_pre_item_score_embedding, 1)
# 5. concate user all embeddings
cur_user_whole_embedding = tf.concat([cur_user_like_brand_embedding, cur_user_like_cate_embedding, cur_user_like_term_embedding, cur_user_pre_item_basic_embedding, cur_user_info_embedding, cur_user_pre_item_score_embedding], 1)
return cur_user_whole_embedding
def make_data(self):
with ctx.local():
# build reader
self.reader = base_io.DolphinReader(batch_size = self.config.mini_batch_size)
self.tags, self.datas = self.reader.read(self.config.source_data_dir, self.task_id, self.worker_num)
# get labels (click or not)
#self.labels = tf.reshape(self.datas.label_click.dense_val, [-1])
def assemble_graph(self, src_nodes, src_feature_idxs):
#batch_size = tf.shape(src_nodes)[0]
src_filled_nodes = geops.fill_sample(src_nodes, src_feature_idxs)
#filled_nodes = tf.train.batch(src_filled_nodes,
#batch_size=self.config.mini_batch_size, # model batch_size
#num_threads=1,
#capacity=20000,
#enqueue_many=True,
#allow_smaller_final_batch=True)
return src_filled_nodes
def sparse_embedding(self, sp_tensors, input_dimensions, embedding_dimension, names):
l = []
for i in range(len(sp_tensors)):
with tf.variable_scope(names[i]):
embedding = self.full_connect_sparse(sp_tensors[i], [input_dimensions[i], embedding_dimension], None, names[i])
l.append(embedding)
return l
def get_shared_sparse_embedding(self, sp_tensors, names):
l = []
for i in range(len(sp_tensors)):
embedding = self.get_shared_full_connect_sparse(sp_tensors[i], None, names[i])
l.append(embedding)
return l
def full_connect_sparse(self, train_inputs, weights_shape, sp_weights, scope_name):
# weights
#from tf_ps.ps_context import variable_info
#with variable_info(batch_read=3000, var_type="hash"):
if self.ps_num > 1:
weights = tf.get_variable("weights", weights_shape, initializer=self.get_initializer(stddev=self.config.embedding_stddev), partitioner=tf.min_max_variable_partitioner(max_partitions=self.ps_num))
else:
weights = tf.get_variable("weights", weights_shape, initializer=self.get_initializer(stddev=self.config.embedding_stddev))
self.weights_map[scope_name] = weights
sample_embedding = tf.nn.embedding_lookup_sparse(weights, sp_ids=train_inputs, sp_weights=sp_weights, combiner="mean")
# no bias here
return sample_embedding
def get_shared_full_connect_sparse(self, train_inputs, sp_weights, scope_name):
# weights
weights = self.weights_map[scope_name]
sample_embedding = tf.nn.embedding_lookup_sparse(weights, sp_ids=train_inputs, sp_weights=sp_weights, combiner="mean")
# no bias here
return sample_embedding
def get_initializer(self, dtype=tf.float32, stddev=1.0):
if self.config.init_type == 1:
return tf.initializers.truncated_normal(mean=0.0, stddev=stddev, seed=self.config.seed, dtype=dtype)
else:
# TODO, we can add more initializer here
print('warning, init_type is wrong!')
return tf.initializers.truncated_normal(mean=0.0, stddev=stddev, seed=self.config.seed, dtype=dtype)
def train(self):
cur_train_step = 0
read_samples = 0
start = time.time()
while not self.sess.should_stop():
#_, cur_loss, cur_auc_op, cur_auc = self.sess.run([self.train_op, self.loss, self.auc_op, self.auc])
_, cur_loss = self.sess.run([self.train_op, self.loss])
#_, cur_loss, cur_auc_op, cur_auc, cur_predicts, cur_neg_predicts, sample_batches_i01, sample_batches_i02, sample_batches_i03, sample_batches_i04, sample_batches_u01, sample_batches_u02, sample_batches_u03, sample_batches_u04, sample_batches_u05 = self.sess.run([self.train_op, self.loss, self.auc_op, self.auc, self.predicts, self.neg_predicts, self.datas.i01.embed_key, self.datas.i02.embed_key, self.datas.i03.embed_key, self.datas.i04.embed_key, self.datas.u01.embed_key, self.datas.u02.embed_key, self.datas.u03.embed_key, self.datas.u04.embed_key, self.datas.u05.embed_key])
#if np.any(np.isnan(sample_batches_i01.values)):
#print('nan exists in i01')
#if np.any(np.isnan(sample_batches_i02.values)):
#print('nan exists in i02')
#if np.any(np.isnan(sample_batches_i03.values)):
#print('nan exists in i03')
#if np.any(np.isnan(sample_batches_i04.values)):
#print('nan exists in i04')
#if np.any(np.isnan(sample_batches_u01.values)):
#print('nan exists in u01')
#if np.any(np.isnan(sample_batches_u02.values)):
#print('nan exists in u02')
#if np.any(np.isnan(sample_batches_u03.values)):
#print('nan exists in u03')
#if np.any(np.isnan(sample_batches_u04.values)):
#print('nan exists in u04')
#if np.any(np.isnan(sample_batches_u05.values)):
#print('nan exists in u05')
#read_samples = read_samples + len(sample_batches_i01)
cur_train_step = cur_train_step + 1
#if cur_train_step > self.config.max_train_step:
#break
#print('tf computs using '+str(tf_computs-start)+' s...')
if (cur_train_step >= self.config.test_step) and (cur_train_step % self.config.test_step == 0):
#print('read samples num = [%d]' % read_samples)
cur_auc_op, cur_auc = self.sess.run([self.auc_op, self.auc])
print('cur_train_step=[%d], cur_loss=[%s], cur_auc=[%s]' % (cur_train_step, str(cur_loss), str(cur_auc_op)))
#print('cur_train_step=[%d], cur_loss=[%s]' % (cur_train_step, str(cur_loss)))
#print(sample_batches_i01)
#label_real = np.concatenate([np.ones(len(cur_predicts),dtype=int), np.zeros(len(cur_neg_predicts),dtype=int)], axis = 0)
#scores = np.concatenate([(cur_predicts + 1.) / 2., (cur_neg_predicts + 1.) / 2.], axis = 0)
#auc = roc_auc_score(label_real, scores)
#print('sk auc = [%s]' % str(auc))
tf_computs = time.time()
print('tf computs using '+str(tf_computs-start)+' s...')
start = time.time()
print('train finish inner')
def create_hdfs(self, hdfs_dir):
if hdfs_dir is None:
print('write error, the hdfs dir is none!')
return
try:
timestamp = time.strftime("%Y%m%d")
new_hdfs_dir = hdfs_dir + '/' + timestamp
file_io.recursive_create_dir(new_hdfs_dir)
print('create dir succ')
f = file_io.FileIO('%s/trained_vectors_%d' % (new_hdfs_dir, self.task_id), 'w')
print('f create suc')
return f
except Exception, e:
print('exception')
print('str(Exception):\t%s' % str(Exception))
print('str(e):\t\t%s' % str(e))
print('repr(e):\t%s' % repr(e))
print('e.message:\t%s' % e.message)
print('traceback.print_exc():%s' % traceback.print_exc())
print('traceback.format_exc():\n%s' % traceback.format_exc())
# will be removed
def write_to_hdfs(self, f, ids, trained_vectors, hdfs_dir):
if len(ids) != len(trained_vectors):
print('fatal error! len is not match for id and vectors')
return
try:
cnt = 0
for idx in range(0, len(trained_vectors)):
content = '%s,%s\n' % (ids[idx], ';'.join(map(str, trained_vectors[idx])))
f.write(content)
cnt = cnt + 1
#if (cnt % 1000000) == 0:
# print('%d write suc' % cnt)
#f.close()
#print('close suc')
except Exception, e:
print('exception')
print('str(Exception):\t%s' % str(Exception))
print('str(e):\t\t%s' % str(e))
print('repr(e):\t%s' % repr(e))
print('e.message:\t%s' % e.message)
print('traceback.print_exc():%s' % traceback.print_exc())
print('traceback.format_exc():\n%s' % traceback.format_exc())
def test(self):
cur_train_step = 0
batch_all_predicts_list = []
batch_real_label_list = []
sum_auc = 0.
global_auc = 0.
while not self.sess.should_stop():
##cur_loss, cur_auc, cur_auc_op, cur_predicts, cur_neg_predicts = self.sess.run([self.loss, self.test_auc, self.test_auc_op, self.predicts, self.neg_predicts])
cur_loss, cur_auc, cur_auc_op = self.sess.run([self.loss, self.test_auc, self.test_auc_op])
##if (cur_train_step > 0) and (cur_train_step % 2000 == 0):
##batch_all_predicts_list = []
##batch_real_label_list = []
##print('cur_train_step = %d, avg_auc = [%s]' % (cur_train_step, sum_auc / (cur_train_step / self.config.test_step) ))
##batch_real_label_list.append(np.ones(len(cur_predicts), dtype=int))
##batch_real_label_list.append(np.zeros(len(cur_neg_predicts), dtype=int))
##batch_all_predicts_list.append(( (cur_predicts+1.) / 2. ))
##batch_all_predicts_list.append(( (cur_neg_predicts+1.) / 2. ))
cur_train_step = cur_train_step + 1
if (cur_train_step >= self.config.test_step) and (cur_train_step % self.config.test_step == 0):
print('cur_train_step=[%d], cur_loss=[%s], cur_auc = [%s]' % (cur_train_step, str(cur_loss), str(cur_auc_op)))
#print('predict:')
#str_cur_predicts = ','.join(map(lambda x: str(x), cur_predicts))
#print(str_cur_predicts)
#print('neg predict:')
#str_cur_neg_predicts = ','.join(map(lambda x: str(x), cur_neg_predicts))
#print(str_cur_neg_predicts)
# add more check
#f_predicts = map(lambda x : 1 if x > 0.1 else 0, cur_predicts)
#cur_right_num = np.sum(f_predicts)
#recall = 1.0 * cur_right_num / len(cur_predicts)
#neg_f_predicts = map(lambda x : 1 if x > 0.1 else 0, cur_neg_predicts)
#cur_false_num = np.sum(neg_f_predicts)
#precision = 1.0 * cur_right_num / (cur_right_num + cur_false_num + 0.000001)
##batch_labels = np.concatenate(batch_real_label_list, axis = 0)
##batch_scores = np.concatenate(batch_all_predicts_list, axis = 0)
##global_auc = roc_auc_score(batch_labels, batch_scores)
##sum_auc = sum_auc + global_auc
#batch_all_predicts_list = []
#batch_real_label_list = []
##label_real = np.concatenate([np.ones(len(cur_predicts),dtype=int), np.zeros(len(cur_neg_predicts),dtype=int)], axis = 0)
##scores = np.concatenate([(cur_predicts + 1.) / 2., (cur_neg_predicts + 1.) / 2.], axis = 0)
##auc = roc_auc_score(label_real, scores)
#f_predicts = map(lambda x : 1 if x > 0.1 else 0, cur_predicts)
#cur_right_num = np.sum(f_predicts * cur_labels)
#precision = 1.0 * cur_right_num / np.sum(f_predicts)
#recall = 1.0 * cur_right_num / np.sum(cur_labels)
#print('precision = [%s], recall = [%s], auc = [%s]' % (str(precision), str(recall), str(auc)))
##print('sk auc = [%s], global auc = [%s]' % (str(auc), str(global_auc)))
print('test finish inner')
def predict_user(self):
f = self.create_hdfs(self.config.output_hdfs_dir)
cnt = 0
while not self.sess.should_stop():
trained_vectors, cur_user_ids = self.sess.run([self.user_l3, self.user_ids])
self.write_to_hdfs(f, cur_user_ids, trained_vectors, self.config.output_hdfs_dir)
cnt = cnt + 1
if (cnt % 10000) == 0:
print('%d write suc' % cnt)
f.close()
print('close suc')
def predict_item(self):
f = self.create_hdfs(self.config.output_hdfs_dir)
cnt = 0
while not self.sess.should_stop():
trained_vectors, cur_item_ids = self.sess.run([self.item_l3, self.item_ids])
self.write_to_hdfs(f, cur_item_ids, trained_vectors, self.config.output_hdfs_dir)
cnt = cnt + 1
if (cnt % 1000) == 0:
print('%d write suc' % cnt)
f.close()
print('close suc')
def train_experiment(self):
cur_train_step = 0
read_samples = 0
start = time.time()
while not self.sess.should_stop():
cur_item_ids, cur_items_fea = self.sess.run([self.item_ids, self.item_fill_fea_nodes])
print('cur item ids:')
print(cur_item_ids)
for i in range(11, 27):
print('cur items fea %d:' % i)
print(cur_items_fea[i-11].values)
break