-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathhyper_config.py
111 lines (87 loc) · 2.54 KB
/
hyper_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse
import tf_context as ctx
class HyperConfig(object):
def __init__(self):
#node_count = 492425
#node_count = 500743
#node_count = 23197028
#node_count = 48885
#node_count = 54858
#node_count = 13013332
#self.node_count = 26000000
#self.node_embedding_size = 10
# 0. build mode
self.build_mode = ctx.get_config("build_mode")
# 1. opt config
#learning_rate = 0.001
self.learning_rate = 0.0001
#self.grad_clip_threshold = 1.
self.grad_clip_threshold = 0.
#self.opt_type = 'adam'
#self.opt_type = 'ada_grad'
self.opt_type = 'momentum'
self.momentum = 0.0001
#self.inner_rate = 0.5
# 2. net config
self.item_l1_size = 800
self.item_l2_size = 300
self.item_l3_size = 100
self.user_l1_size = 800
self.user_l2_size = 300
self.user_l3_size = 100
# 3. initial config
self.network_stddev = 0.8
self.embedding_stddev = 0.4
self.convolve_stddev = 0.9
self.biases_init_value = 0.002
self.init_type = 1
self.term_embedding_dim = 15
self.cate_prop_embedding_dim = 10
self.brand_embedding_dim = 15
#self.shop_embedding_dim = 15
self.basic_info_dim = 20
# this is changing
# TODO
self.whole_emb_size = 110
self.whole_user_emb_size = 110
self.seed = 133
self.tf_seed = 123
# 4. runtime config
self.mini_batch_size = 200
#self.mini_batch_size = 1000
#self.train_epochs = 2
#self.instance_read_samples = 10000000
self.max_train_step = 21000
self.test_step = 100
# 5. algo config
self.threshold = 0.3
self.auxi_threshold = 0.3
self.cvr_threshold = 0.2
# 6. path config
#self.split_v = ctx.get_config("split_v")
self.source_data_dir = ctx.get_config("source_data_dir")
self.output_hdfs_dir = ctx.get_config("output_hdfs_dir")
# 7. dict dim
self.u01_embed_dim = 107500
self.u02_embed_dim = 17000
self.u03_embed_dim = 50
self.u04_embed_dim = 500010
self.u05_embed_dim = 30
self.u06_embed_dim = 30
self.u07_embed_dim = 30
self.u08_embed_dim = 30
self.u09_embed_dim = 30
self.i01_embed_dim = 1000010
self.i02_embed_dim = 107500
self.i03_embed_dim = 17000
self.i04_embed_dim = 50
self.i05_embed_dim = 30
self.i06_embed_dim = 30
self.i07_embed_dim = 30
self.i08_embed_dim = 30
self.i09_embed_dim = 30
# 8. gcn relate
self.neighbor_cnt = 10
# 9. laplass
self.laplass_alpha = 0.6
self.laplass_beta = 0.01