-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlda.py
35 lines (27 loc) · 1.09 KB
/
lda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
class LDA:
def __init__(self, n_components):
self.n_components = n_components
self.linear_discriminants = None
def fit(self, X, y):
n_features = X.shape[1]
class_labels = np.unique(y)
mean_over_all = np.mean(X, axis=0)
S_W = np.zeros((n_features, n_features))
S_B = np.zeros((n_features, n_features))
for c in class_labels:
X_c = X[y == c]
mean_c = np.mean(X_c, axis=0)
S_W += (X_c - mean_c).T.dot((X_c - mean_c))
n_c = X_c.shape[0]
mean_diff = (mean_c - mean_over_all).reshape(n_features, 1)
S_B += n_c * mean_diff.dot(mean_diff.T)
A = np.linalg.inv(S_W).dot(S_B)
eigenvalues, eigenvectors = np.linalg.eig(A)
eigenvectors = eigenvectors.T
idxs = np.argsort(abs(eigenvalues))[::-1]
eigenvalues = eigenvalues[idxs]
eigenvectors = eigenvectors[idxs]
self.linear_discriminants = eigenvectors[: self.n_components]
def transform(self, X):
return X @ self.linear_discriminants.T