-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpreposition_predictors.py
276 lines (251 loc) · 15.1 KB
/
preposition_predictors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import sys
from keras.engine import Layer
from keras import initializations
from keras import backend as K
from keras_extensions import switch
class PrepositionPredictor(Layer):
'''
This is a generic predictor for various preposition tasks (PP attachment prediction, preposition relation
prediction, etc.). We generally have one projector each for the head phrase, preposition and the child
phrase, yielding a projection that is passed through an MLP to yield a distribution over the required number
of classes.
'''
def __init__(self, score_dim=1, num_hidden_layers=0, proj_dim=None, init='uniform', composition_type='HPCT',
**kwargs):
self.composition_type = composition_type
self.supports_masking = True
self.num_hidden_layers = num_hidden_layers
self.proj_dim = proj_dim
self.init = initializations.get(init)
self.proj_head = None
self.proj_prep = None
self.proj_child = None
self.scorer = None
self.hidden_layers = []
self.score_dim = score_dim
self.allowed_compositions = []
super(PrepositionPredictor, self).__init__(**kwargs)
def get_output_shape_for(self, input_shape):
raise NotImplementedError
def build(self, input_shape):
# The composition types are taken from Belinkov et al.'s TACL 2014 paper:
# HC: Head-Child; HPC: Head-Prep-Child; HPCT: Head-Prep-Child-Ternary.
assert self.composition_type in self.allowed_compositions, "Unknown composition type: %s" % self.composition_type
if isinstance(input_shape[0], tuple):
# This layer has multiple inputs (RelationPredictor).
input_dim = input_shape[0][-1]
input_length = input_shape[0][1]
else:
input_dim = input_shape[-1]
input_length = input_shape[1]
if self.proj_dim is None:
self.proj_dim = int(input_dim / 2)
if self.composition_type == 'HPCD':
max_num_heads = input_length - 2
# Clipping number of distance based projection matrices to 5.
num_head_projectors = min(max_num_heads, 5)
self.proj_head = self.init((num_head_projectors, input_dim, self.proj_dim))
if max_num_heads > num_head_projectors:
diff = max_num_heads - num_head_projectors
farthest_head_proj = K.expand_dims(self.proj_head[0, :, :], dim=0) # (1, input_dim, proj_dim)
# (diff, input_dim, proj_dim)
tiled_farthest_head_proj = K.repeat_elements(farthest_head_proj, diff, 0)
# (head_size, input_dim, proj_dim)
self.dist_proj_head = K.concatenate([tiled_farthest_head_proj, self.proj_head], axis=0)
else:
self.dist_proj_head = self.proj_head
else:
self.proj_head = self.init((input_dim, self.proj_dim), name='{}_proj_head'.format(self.name))
self.proj_prep = self.init((input_dim, self.proj_dim), name='{}_proj_prep'.format(self.name))
self.proj_child = self.init((input_dim, self.proj_dim), name='{}_proj_child'.format(self.name))
self.trainable_weights = [self.proj_head, self.proj_prep, self.proj_child]
self.hidden_layers = []
if self.num_hidden_layers > 0:
# This means we have to pass the composed representation through an MLP instead of directly computing
# scores.
for i in range(self.num_hidden_layers):
hidden_layer = self.init((self.proj_dim, self.proj_dim), name='%s_hidden_layer_%d' % (self.name, i))
self.hidden_layers.append(hidden_layer)
self.trainable_weights.extend(self.hidden_layers)
self.scorer = self.init((self.proj_dim, self.score_dim), name='{}_scorer'.format(self.name))
self.trainable_weights.append(self.scorer)
def compute_mask(self, input, mask=None):
return None
def call(self, x, mask=None):
raise NotImplementedError
def get_config(self):
config = {"num_hidden_layers": self.num_hidden_layers,
"proj_dim": self.proj_dim,
"composition_type": self.composition_type,
"init": self.init.__name__}
base_config = super(PrepositionPredictor, self).get_config()
config.update(base_config)
return config
class AttachmentPredictor(PrepositionPredictor):
'''
AttachmentPredictor is a layer that takes an encoded representation of a phrase that ends with a preposition
phrase (preposition followed by a noun) and predicts which of the words that come before the PP it attaches to.
This layer takes as input a sequence output from an RNN, and suumes that the last two timesteps correspond to
the PP.
'''
def __init__(self, **kwargs):
kwargs["score_dim"] = 1 # Softmax is over head indices, so make output of scorer be of size 1.
super(AttachmentPredictor, self).__init__(**kwargs)
self.allowed_compositions = ['HC', 'HPC', 'HPCD', 'HPCT']
print >>sys.stderr, "Initializing attachment predictor with %s composition" % self.composition_type
def get_output_shape_for(self, input_shape):
head_size = input_shape[1] - 2
return (input_shape[0], head_size)
def call(self, x, mask=None):
# x: (batch_size, input_length, input_dim) where input_length = head_size + 2
head_encoding = x[:, :-2, :] # (batch_size, head_size, input_dim)
prep_encoding = x[:, -2, :] # (batch_size, input_dim)
child_encoding = x[:, -1, :] # (batch_size, input_dim)
if self.composition_type == 'HPCD':
# TODO: The following line may not work with TF.
# (batch_size, head_size, input_dim, 1) * (1, head_size, input_dim, proj_dim)
head_proj_prod = K.expand_dims(head_encoding) * K.expand_dims(self.dist_proj_head, dim=0)
head_projection = K.sum(head_proj_prod, axis=2) # (batch_size, head_size, proj_dim)
else:
head_projection = K.dot(head_encoding, self.proj_head) # (batch_size, head_size, proj_dim)
prep_projection = K.expand_dims(K.dot(prep_encoding, self.proj_prep), dim=1) # (batch_size, 1, proj_dim)
child_projection = K.expand_dims(K.dot(child_encoding, self.proj_child), dim=1) # (batch_size, 1, proj_dim)
#(batch_size, head_size, proj_dim)
if self.composition_type == 'HPCT':
composed_projection = K.tanh(head_projection + prep_projection + child_projection)
elif self.composition_type == 'HPC' or self.composition_type == "HPCD":
prep_child_projection = K.tanh(prep_projection + child_projection) # (batch_size, 1, proj_dim)
composed_projection = K.tanh(head_projection + prep_child_projection)
else:
# Composition type in HC
composed_projection = K.tanh(head_projection + child_projection)
for hidden_layer in self.hidden_layers:
composed_projection = K.tanh(K.dot(composed_projection, hidden_layer)) # (batch_size, head_size, proj_dim)
# (batch_size, head_size)
head_word_scores = K.squeeze(K.dot(composed_projection, self.scorer), axis=-1)
if mask is None:
attachment_probabilities = K.softmax(head_word_scores) # (batch_size, head_size)
else:
if K.ndim(mask) > 2:
# This means this layer came after a Bidirectional layer. Keras has this bug which
# concatenates input masks instead of output masks.
# TODO: Fix Bidirectional instead.
mask = K.any(mask, axis=(-2, -1))
# We need to do a masked softmax.
exp_scores = K.exp(head_word_scores) # (batch_size, head_size)
head_mask = mask[:, :-2] # (batch_size, head_size)
# (batch_size, head_size)
masked_exp_scores = switch(head_mask, exp_scores, K.zeros_like(head_encoding[:, :, 0]))
# (batch_size, 1). Adding epsilon to avoid divison by 0. But epsilon is float64.
exp_sum = K.cast(K.expand_dims(K.sum(masked_exp_scores, axis=1) + K.epsilon()), 'float32')
attachment_probabilities = masked_exp_scores / exp_sum # (batch_size, head_size)
return attachment_probabilities
class RelationPredictor(PrepositionPredictor):
'''
RelationPredictor is a layer that takes an encoded sentence, and the index of the preposition
and predicts the relation expressed by the preposition. Optionally it takes attachment probabilities
predicted by an attachment model, and uses the predicted head to predict the relation. If this option
is not used, the layer assumes the last word in the head phrase is the head.
Note that this layer takes two or three inputs.
'''
def __init__(self, output_dim=32, with_attachment_probs=False, **kwargs):
kwargs["score_dim"] = output_dim
super(RelationPredictor, self).__init__(**kwargs)
self.allowed_compositions = ['HC', 'HPC', 'HPCT']
self.with_attachment_probs = with_attachment_probs
print >>sys.stderr, "Initializing relation predictor with %s composition" % self.composition_type
if self.with_attachment_probs:
print >>sys.stderr, "\tAttachment probabilities given."
def get_output_shape_for(self, input_shape):
# input_shape is a list with two or three elements.
return (input_shape[0][0], self.score_dim)
def call(self, x, mask=None):
# x[0]: (batch_size, input_length, input_dim)
# x[1]: (batch_size, 1) indices of prepositions
# Optional: x[2]: (batch_size, input_length - 2)
assert isinstance(x, list) or isinstance(x, tuple)
encoded_sentence = x[0]
prep_indices = K.squeeze(x[1], axis=-1) #(batch_size,)
batch_indices = K.arange(K.shape(encoded_sentence)[0]) # (batch_size,)
if self.with_attachment_probs:
# We're essentially doing K.argmax(x[2]) here, but argmax is not differentiable!
head_probs = x[2]
head_probs_padding = K.zeros_like(x[2])[:, :2] # (batch_size, 2)
# (batch_size, input_length)
padded_head_probs = K.concatenate([head_probs, head_probs_padding])
# (batch_size, 1)
max_head_probs = K.expand_dims(K.max(padded_head_probs, axis=1))
# (batch_size, input_length, 1)
max_head_prob_indices = K.expand_dims(K.equal(padded_head_probs, max_head_probs))
# (batch_size, input_length, input_dim)
masked_head_encoding = K.switch(max_head_prob_indices, encoded_sentence, K.zeros_like(encoded_sentence))
# (batch_size, input_dim)
head_encoding = K.sum(masked_head_encoding, axis=1)
else:
head_indices = prep_indices - 1 # (batch_size,)
head_encoding = encoded_sentence[batch_indices, head_indices, :] # (batch_size, input_dim)
prep_encoding = encoded_sentence[batch_indices, prep_indices, :] # (batch_size, input_dim)
child_encoding = encoded_sentence[batch_indices, prep_indices+1, :] # (batch_size, input_dim)
'''
prep_indices = x[1]
sentence_mask = mask[0]
if sentence_mask is not None:
if K.ndim(sentence_mask) > 2:
# This means this layer came after a Bidirectional layer. Keras has this bug which
# concatenates input masks instead of output masks.
# TODO: Fix Bidirectional instead.
sentence_mask = K.any(sentence_mask, axis=(-2, -1))
head_encoding, prep_encoding, child_encoding = self.get_split_averages(encoded_sentence, sentence_mask,
prep_indices)
'''
head_projection = K.dot(head_encoding, self.proj_head) # (batch_size, proj_dim)
prep_projection = K.dot(prep_encoding, self.proj_prep) # (batch_size, proj_dim)
child_projection = K.dot(child_encoding, self.proj_child) # (batch_size, proj_dim)
#(batch_size, proj_dim)
if self.composition_type == 'HPCT':
composed_projection = K.tanh(head_projection + prep_projection + child_projection)
elif self.composition_type == 'HPC':
prep_child_projection = K.tanh(prep_projection + child_projection) # (batch_size, proj_dim)
composed_projection = K.tanh(head_projection + prep_child_projection)
else:
# Composition type in HC
composed_projection = K.tanh(head_projection + child_projection)
for hidden_layer in self.hidden_layers:
composed_projection = K.tanh(K.dot(composed_projection, hidden_layer)) # (batch_size, proj_dim)
# (batch_size, num_classes)
class_scores = K.dot(composed_projection, self.scorer)
label_probabilities = K.softmax(class_scores)
return label_probabilities
@staticmethod
def get_split_averages(input_tensor, input_mask, indices):
# Splits input tensor into three parts based on the indices and
# returns average of values prior to index, values at the index and
# average of values after the index.
# input_tensor: (batch_size, input_length, input_dim)
# input_mask: (batch_size, input_length)
# indices: (batch_size, 1)
# (1, input_length)
length_range = K.expand_dims(K.arange(K.shape(input_tensor)[1]), dim=0)
# (batch_size, input_length)
batched_range = K.repeat_elements(length_range, K.shape(input_tensor)[0], 0)
tiled_indices = K.repeat_elements(indices, K.shape(input_tensor)[1], 1) # (batch_size, input_length)
greater_mask = K.greater(batched_range, tiled_indices) # (batch_size, input_length)
lesser_mask = K.lesser(batched_range, tiled_indices) # (batch_size, input_length)
equal_mask = K.equal(batched_range, tiled_indices) # (batch_size, input_length)
# We also need to mask these masks using the input mask.
# (batch_size, input_length)
if input_mask is not None:
greater_mask = switch(input_mask, greater_mask, K.zeros_like(greater_mask))
lesser_mask = switch(input_mask, lesser_mask, K.zeros_like(lesser_mask))
post_sum = K.sum(switch(K.expand_dims(greater_mask), input_tensor, K.zeros_like(input_tensor)), axis=1) # (batch_size, input_dim)
pre_sum = K.sum(switch(K.expand_dims(lesser_mask), input_tensor, K.zeros_like(input_tensor)), axis=1) # (batch_size, input_dim)
values_at_indices = K.sum(switch(K.expand_dims(equal_mask), input_tensor, K.zeros_like(input_tensor)), axis=1) # (batch_size, input_dim)
post_normalizer = K.expand_dims(K.sum(greater_mask, axis=1) + K.epsilon(), dim=1) # (batch_size, 1)
pre_normalizer = K.expand_dims(K.sum(lesser_mask, axis=1) + K.epsilon(), dim=1) # (batch_size, 1)
return K.cast(pre_sum / pre_normalizer, 'float32'), values_at_indices, K.cast(post_sum / post_normalizer, 'float32')
def get_config(self):
config = {"output_dim": self.score_dim,
"with_attachment_probs": self.with_attachment_probs}
base_config = super(RelationPredictor, self).get_config()
config.update(base_config)
return config