-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathonto_attention.py
301 lines (265 loc) · 16.5 KB
/
onto_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import warnings
from overrides import overrides
from keras.layers import LSTM
from keras.engine import InputSpec
from keras import backend as K
from keras_extensions import changing_ndim_rnn, switch
from nse import NSE, MultipleMemoryAccessNSE
class OntoAttentionLSTM(LSTM):
'''
Modification of LSTM implementation in Keras to take a WordNet subtree instead of a the word at each timestep.
The WordNet subtree is given as a sense separated hypernym hierarchy i.e., words are represented as tensors
instead of vectors at each time step. The wows in the tensors are shared, as synsets are shared across words in
WordNet. We take a weighted average of the tensor using attention mechanism conditioned on the output of the
previous timestep to get a vector, and that vector is processed in the same way the input is processed by LSTM.
'''
input_ndim = 5
def __init__(self, output_dim, num_senses, num_hyps, use_attention=False, return_attention=False, **kwargs):
# Set output_dim in kwargs so that we can pass it along to LSTM's init
kwargs['output_dim'] = output_dim
self.num_senses = num_senses
self.num_hyps = num_hyps
self.use_attention = use_attention
self.return_attention = return_attention
super(OntoAttentionLSTM, self).__init__(**kwargs)
# Recurrent would have set the input shape to cause the input dim to be 3. Change it.
self.input_spec = [InputSpec(ndim=5)]
if self.consume_less == "cpu":
# In the LSTM implementation in Keras, consume_less = cpu causes all gates' inputs to be precomputed
# and stored in memory. However, this doesn't work with OntoLSTM since the input to the gates is
# dependent on the previous timestep's output.
warnings.warn("OntoLSTM does not support consume_less = cpu. Changing it to mem.")
self.consume_less = "mem"
#TODO: Remove this dependency.
if K.backend() == "tensorflow" and not self.unroll:
warnings.warn("OntoLSTM does not work with unroll=False when backend is TF. Changing it to True.")
self.unroll = True
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
input_dim = input_shape[4] - 1 # ignore sense prior parameter
self.input_dim = input_dim
# Saving onto-lstm weights to set them later. This way, LSTM's build method won't
# delete them.
initial_ontolstm_weights = self.initial_weights
self.initial_weights = None
lstm_input_shape = input_shape[:2] + (input_dim,) # removing senses and hyps
# Now calling LSTM's build to initialize the LSTM weights
super(OntoAttentionLSTM, self).build(lstm_input_shape)
# This would have changed the input shape and ndim. Reset it again.
self.input_spec = [InputSpec(shape=input_shape)]
if self.use_attention:
# Following are the attention parameters
self.input_hyp_projector = self.inner_init((input_dim, self.output_dim),
name='{}_input_hyp_projector'.format(self.name)) # Projection operator for synsets
self.context_hyp_projector = self.inner_init((self.output_dim, self.output_dim),
name='{}_context_hyp_projector'.format(self.name)) # Projection operator for hidden state (context)
self.hyp_projector2 = self.inner_init((self.output_dim, self.output_dim),
name='{}_hyp_projector2'.format(self.name)) # Projection operator for hidden state (context)
self.hyp_scorer = self.init((self.output_dim,), name='{}_hyp_scorer'.format(self.name))
# LSTM's build method would have initialized trainable_weights. Add to it.
self.trainable_weights.extend([self.input_hyp_projector, self.context_hyp_projector,
self.hyp_projector2, self.hyp_scorer])
if initial_ontolstm_weights is not None:
self.set_weights(initial_ontolstm_weights)
del initial_ontolstm_weights
def get_initial_states(self, x):
# Reimplementing because ndim of x is 5. (samples, timesteps, num_senses, num_hyps, embedding_dim)
sense_hyp_stripped_x = x[:, :, 0, 0, :-1] # (samples, timesteps, input_dim), just like LSTM input.
# We need the same initial states as regular LSTM
return super(OntoAttentionLSTM, self).get_initial_states(sense_hyp_stripped_x)
def _step(self, x_onto_aware, states):
h_tm1 = states[0]
mask_i = states[-1] # (samples, senses, hyps, 1)
lstm_states = states[:-1]
# Before the step function is called, the original input is dimshuffled to have (time, samples, senses, hyps, concept_dim)
# So shape of x_onto_aware is (samples, senses, hyps, concept_dim + 1), +1 for sense prior parameter
# TODO: Use sense priors even when not using attention?
x_synset_embeddings = x_onto_aware[:,:,:,:-1] # (samples, senses, hyps, embedding_dim)
# Sense probability calculation
# Taking only the last dimension from all samples. These are the lambda values of exp distributions.
sense_parameters = K.expand_dims(x_onto_aware[:, 0, 0, -1]) # (samples,1)
# (1, num_senses)
sense_indices = K.variable(K.cast_to_floatx([[ind for ind in range(self.num_senses)]]))
# (samples, num_senses)
expanded_sense_indices = K.dot(K.ones_like(sense_parameters), sense_indices)
# Getting the sense probabilities from the exponential distribution. p(x) = \lambda * e^(-\lambda * x)
sense_scores = sense_parameters * K.exp(-sense_parameters * expanded_sense_indices) # (samples, num_senses)
# If sense priors were not set by the embedding layer, the sense_parameters will be zero, making sense
# scores zero. What we really need is sense scores being uniform.
uniform_scores = K.ones_like(sense_scores) * (1. / self.num_senses)
sense_scores = switch(K.equal(sense_scores, K.zeros_like(sense_scores)), uniform_scores, sense_scores)
if mask_i is not None:
sense_mask = K.any(K.squeeze(mask_i, axis=-1), axis=2) # (samples, sense)
sense_scores = switch(sense_mask, sense_scores, K.zeros_like(sense_scores))
# Renormalizing sense scores to make \sum_{num_senses} p(sense | word) = 1
sense_probabilities = sense_scores / K.expand_dims(K.sum(sense_scores, axis=1) + K.epsilon()) # (samples, num_senses)
if self.use_attention:
# Generalization attention
input_hyp_projection = K.dot(x_synset_embeddings, self.input_hyp_projector) # (samples, senses, hyps, output_dim)
context_hyp_projection = K.dot(h_tm1, self.context_hyp_projector) # (samples, output_dim)
context_hyp_projection_expanded = K.expand_dims(K.expand_dims(context_hyp_projection,
dim=1),
dim=1) #(samples, 1, 1, output_dim)
hyp_projection1 = K.tanh(input_hyp_projection + context_hyp_projection_expanded) # (samples, senses, hyps, output_dim)
hyp_projection2 = K.tanh(K.dot(hyp_projection1, self.hyp_projector2)) # (samples, senses, hyps, output_dim)
# K.dot doesn't work with tensorflow when one of the arguments is a vector. So expanding and squeezing.
# (samples, senses, hyps)
hyp_scores = K.squeeze(K.dot(hyp_projection2, K.expand_dims(self.hyp_scorer)), axis=-1)
if mask_i is not None:
hyp_scores = switch(K.squeeze(mask_i, axis=-1), hyp_scores, K.zeros_like(hyp_scores))
scores_shape = K.shape(hyp_scores)
# We need to flatten this because we cannot perform softmax on tensors.
flattened_scores = K.batch_flatten(hyp_scores) # (samples, senses*hyps)
hyp_attention = K.reshape(K.softmax(flattened_scores), scores_shape) # (samples, senses, hyps)
else:
# matrix of ones for scores to be consistent (samples, senses, hyps)
hyp_attention = K.ones_like(x_synset_embeddings)[:, :, :, 0]
if mask_i is not None:
hyp_attention = switch(K.squeeze(mask_i, axis=-1), hyp_attention, K.zeros_like(hyp_attention))
# Renormalizing hyp attention to get p(hyp | sense, word). Summing over hyps.
hyp_given_sense_attention = hyp_attention / K.expand_dims(K.sum(hyp_attention, axis=2) + K.epsilon())
# Multiply P(hyp | sense, word) and p(sense|word) . Attention values now sum to 1.
sense_hyp_attention = hyp_given_sense_attention * K.expand_dims(sense_probabilities)
if mask_i is not None:
# Applying the mask on input
zeros_like_input = K.zeros_like(x_synset_embeddings) # (samples, senses, hyps, dim)
x_synset_embeddings = switch(mask_i, x_synset_embeddings, zeros_like_input)
weighted_product = x_synset_embeddings * K.expand_dims(sense_hyp_attention) # (samples, senses, hyps, input_dim)
# Weighted average, summing over senses and hyps
lstm_input_t = K.sum(weighted_product, axis=(1, 2)) # (samples, input_dim)
# Now pass the computed lstm_input to LSTM's step function to get current h and c.
h, [_, c] = super(OntoAttentionLSTM, self).step(lstm_input_t, lstm_states)
return h, c, sense_hyp_attention
def step(self, x, states):
h, c, att = self._step(x, states)
if self.return_attention:
# Flattening attention to (batch_size, senses*hyps)
return K.batch_flatten(att), [h, c]
else:
return h, [h, c]
def get_constants(self, x):
# Reimplementing because ndim of x is 5. (samples, timesteps, num_senses, num_hyps, input_dim)
if K.ndim(x) == 4:
x = K.expand_dims(x)
sense_hyp_stripped_x = x[:, :, 0, 0, :-1] # (samples, timesteps, input_dim), just like LSTM input.
# We need the same constants as regular LSTM.
lstm_constants = super(OntoAttentionLSTM, self).get_constants(sense_hyp_stripped_x)
return lstm_constants
def compute_mask(self, input, mask):
# redefining compute mask because the input ndim is different from the output ndim, and
# this needs to be handled.
if self.return_sequences and mask is not None:
# Get rid of syn and hyp dimensions
# input mask's shape: (batch_size, num_words, num_hyps, num_senses)
# output mask's shape: (batch_size, num_words)
return K.any(mask, axis=(-2, -1))
else:
return None
def get_output_shape_for(self, input_shape):
super_shape = super(OntoAttentionLSTM, self).get_output_shape_for(input_shape)
if self.return_attention:
# Replacing output_dim with attention over senses and hyps
return super_shape[:-1] + (self.num_hyps * self.num_senses,)
else:
return super_shape
def call(self, x, mask=None):
# Overriding call to make a call to our own rnn instead of the inbuilt rnn.
# Keras assumes we won't need access to the mask in the step function. But we do, for properly
# averaging x (while ignoring masked parts). Moreover, since input's ndim is not the same as
# output's ndim, we'll need to process the mask within rnn to define a separate output mask.
# See the definition of changing_ndim_rnn for more details.
input_shape = self.input_spec[0].shape
if self.stateful:
initial_states = self.states
else:
initial_states = self.get_initial_states(x)
constants = self.get_constants(x)
preprocessed_input = self.preprocess_input(x)
last_output, outputs, states = changing_ndim_rnn(self.step, preprocessed_input,
initial_states,
go_backwards=self.go_backwards,
mask=mask,
constants=constants,
unroll=self.unroll,
input_length=input_shape[1],
eliminate_mask_dims=(1, 2))
if self.stateful:
self.updates = []
for i in range(len(states)):
self.updates.append((self.states[i], states[i]))
if self.return_sequences:
return outputs
else:
return last_output
def get_config(self):
config = {"num_senses": self.num_senses,
"num_hyps": self.num_hyps,
"use_attention": self.use_attention,
"return_attention": self.return_attention}
base_config = super(OntoAttentionLSTM, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class OntoAttentionNSE(NSE):
'''
NSE with an OntoLSTM as the reader.
'''
def __init__(self, num_senses, num_hyps, use_attention=False, return_attention=False, **kwargs):
assert "output_dim" in kwargs
output_dim = kwargs.pop("output_dim")
super(OntoAttentionNSE, self).__init__(output_dim, **kwargs)
self.input_spec = [InputSpec(ndim=5)]
# TODO: Define an attention output method that rebuilds the reader.
self.return_attention = return_attention
self.reader = OntoAttentionLSTM(self.output_dim, num_senses, num_hyps, use_attention=use_attention,
consume_less='gpu', return_attention=False)
def compute_mask(self, input, mask):
reader_mask = self.reader.compute_mask(input, mask)
# The input mask is of ndim 5. Pass the output mask of the reader to NSE instead of the input mask.
return super(OntoAttentionNSE, self).compute_mask(input, reader_mask)
@overrides
def get_initial_states(self, onto_nse_input, input_mask=None):
input_to_read = onto_nse_input # (batch_size, num_words, num_senses, num_hyps, output_dim + 1)
memory_input = input_to_read[:, :, :, :, :-1] # (bs, words, senses, hyps, output_dim)
if input_mask is None:
mem_0 = K.mean(memory_input, axis=(2, 3)) # (batch_size, num_words, output_dim)
else:
memory_mask = input_mask
if K.ndim(onto_nse_input) != K.ndim(input_mask):
memory_mask = K.expand_dims(input_mask)
memory_mask = K.cast(memory_mask / (K.sum(memory_mask) + K.epsilon()), 'float32')
mem_0 = K.sum(memory_input * memory_mask, axis=(2,3)) # (batch_size, num_words, output_dim)
flattened_mem_0 = K.batch_flatten(mem_0)
initial_states = self.reader.get_initial_states(input_to_read)
initial_states += [flattened_mem_0]
return initial_states
@staticmethod
def split_states(states):
# OntoLSTM also has the mask as one of its states (the last one, because of how changing_ndim_rnn is
# defined).
mask = states[-1]
return [states[0], states[1], mask], states[2], [states[3], states[4]]
@overrides
def loop(self, x, initial_states, mask):
# Overriding this method because we have to make a call to changing_ndim_rnn.
input_shape = self.input_spec[0].shape
constants = self.reader.get_constants(x)
preprocessed_input = self.reader.preprocess_input(x)
last_output, outputs, states = changing_ndim_rnn(self.step, preprocessed_input,
initial_states,
mask=mask,
constants=constants,
input_length=input_shape[1],
eliminate_mask_dims=(1, 2))
return last_output, outputs, states
@overrides
def get_config(self):
config = {"num_senses": self.num_senses,
"num_hyps": self.num_hyps,
"use_attention": self.use_attention,
"return_attention": return_attention}
base_config = super(OntoaAttentionNSE, self).get_config()
config.update(base_config)
return config
class MultipleMemoryAccessOntoNSE(MultipleMemoryAccessNSE):
#@overrides
def get_initial_states(self, onto_nse_input, input_mask=None):
pass